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Shape from stereo: A systematic approach
using quadratic surfaces

SJOERD C. DE VRIES, ASTRID M. L. KAPPERS, and JAN J. KOENDERINK
Utrecht Biophysics Research Institute, Utrecht, The Netherlands

We used quadratic shapes in several psychophysical shape-from-stereo tasks. The shapes were
elegantly represented in a 2-D parameter space by the scale-independent shape index and the
scale-dependent curuedness. Using random-dot stereograms to depict the surfaces, we found that
the shape of hyperbolic surfaces is slightly more difficult to recognize than the shape of elliptic
surfaces. We found that curvedness (and indirectly, scale) has little or no influence on shape
recognition.

Wheatstone (1838) was the first to observe that a
dichoptic presentation of two projected images (differing
slightly in the viewpoint) could induce a depth percept.
This important finding reveals the ability of the human
visual system to make depth-related judgments using dis
parity information. Generally, it is thought that stereop
sis stems from the direct calculation of depth from dis
parities. This is a very logical assumption, because this
is the inverse of the method that we normally use to gener
ate stereograms. Recent research (Brookes & Stevens,
1989a, 1989b; Rogers & Cagenello, 1989; Stevens and
Brookes, 1987, 1988) suggests that depth reconstruction
of surfaces is done indirectly through surface shape
descriptors such as curvatures and discontinuities of dis
parity fields. This indicates that shape recognition is not
simply a matter of calculating some kind of depth map
(Gibson, 1950). Thus, we might expect shape recogni
tion to depend on the type of shape that is seen. Most
shape-from-stereo research is done with a collection of
rather arbitrary shapes (Uttal, 1987; Uttal, Davis, Welke,
& Kakarala, 1988) or a very restricted set of shapes, for
instance, cylinders (Johnston, 1991, Rogers & Cagenello,
1989). Here, we present a more systematic approach to
the research of recognition of shape with stereo.

Shape Definitions
First of all, we need a more concise definition of

"shape." Clearly, only a few objects can be identified
by a descriptive name. To describe the infinitely large
family of arbitrary shapes requires some kind of restric
tion and we will therefore consider local surface patches
only.

Position and attitude of a local surface patch do not con
tribute to its shape, because they are dependent on the
observer-object geometry only and are not an intrinsic
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property of the patch. Therefore, we choose our frame
ofreference so as to get rid of these terms. We place the
origin at the fixation point and align the z-axis parallel
to the surface normal. With these coordinates, we can de
scribe a general patch as a Taylor series expansion:

I .
z = - (ax2+by2) + hIgher order terms. (1)

2

An infinite number of normal sections (the intersection
of a plane containing the surface normal and the surface
itself) can be drawn through the origin on the patch. To
gether, they totally define the patch. The curvature in a
point of such a normal section is given by:

zxx
x = (2)

(l +ZW /2
'

where the x-axis is chosen in the plane of the normal sec
tion and tangent to the surface (zx denotes derivation of
z with respect to x). Euler (see, e.g., AIeksandrov, Kol
mogorov, & Lavrent'ev, 1963) showed that the curvature
of all normal sections is constrained by the so-called prin
cipal curvatures of the surface, which are the maximum
and minimum curvatures of the patch. He showed that
the normal sections that have these principal curvatures
(Kmax and Kmin) lie in planes that are perpendicular to each
other. The principal curvatures relate to all other curva
tures of normal sections in the following way:

x(cP) = Kmax cos2 cP + Kmin sinz cP (3)

(where cP is the angle between the planes containing the
normal sections with curvature Kmax and x). Simple com
binations of the principal curvatures yield K = K max Kmin

and H = lh(Kmax +Kmin), called the Gaussian (or total)
and mean curvature, respectively. These quantities are
very important descriptors of surface geometry (Aleksan
drov, Kolmogorov, & Lavrent'ev, 1963). For instance,
all hyperbolic surfaces have negative K, and all elliptic
surfaces have positive K.

However important their geometrical properties may
be, K and H are less suitable for describing shape in tan
gible terms. Such a shape measure should comply with

Copyright 1993 Psychonomic Society, Inc.
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Figure 1. The shape index scale. The shape index value of the scale corresponds to
the shape index value at the center of the quadratic surfaces shown under the scale, be
cause the shape index is a local measure and can have different values at different points
on the surface.

Aim of Study
We have now obtained the tools we need for system

atic shape psychophysics. We have restricted ourselves
to second-order form description, but this restriction still
permits a broad area of research. In the research presented
here, we have centered our attention on shape recogni
tion tasks and are interested in the relation of curvedness
and shape recognition. In the definition of shape, Scan

(6)
1z = - (K,r+K,y').
2

GENERAL METHOD

be chosen independently of C, but is the recognition of
shape independent of curvedness? In other words, is shape
recognition scale independent? And, for future discrimi
nation experiments, we would like to know whether we
can use distance along the S scale as a measure of the dis
criminability of two shapes.

We point out here that although the present research
may look superficially like that of Uttal (1987) and Uttal
et al. (1988), by no means are the studies similar. Al
though all are concerned with shape recognition from
stereo-defined objects (some of them identical), there are
very important differences. For instance, Uttal et al. used
a set ofdiscrete shapes, whereas we use a continuous fam
ily of shapes. When we calculate the shape index of the
surfaces in the origin, we see that in their shapes three
values are present: S = 1, S = lh, and S = 0 (the plane
has an indeterminate shape index value). Also, setup,
tasks, parameters, and goals are quite distinct.

Apparatus
To depict the stereo images, we used an ATARI 1040 ST com

puter connected to a pair of LCD shutter spectacles. The frame rate
ofthe monitor (P4 white phosphor) was 70 Hz. Screen dimensions
were 20.75x 13.0 cm (18.7° x 12.2°), with 640 x 400 pixels. The
LCD spectacles were toggled in synchronization with the vertical
retrace of the monitor in such a way that after every even vertical
retrace, the monitor showed the left-eye image and after every odd
retrace, the right-eye image. We used a chinrest to immobilize the
head. Viewing distance was 60 em. The experiments were done
in a dark room; average luminance of the screen was 45 cd/m'.

Stimuli
The images we presented were random-dot stereograms (Julesz,

1960, 1971) so most monocular cues were avoided. The small den
sity cue present was diminished by selecting half of the number
of points from a uniform random distribution in the right-eye im
age, projecting them on the surface of the object to be depicted,
and then projecting them back to the left-eye image and vice versa.
In this way, the density cue became virtually invisible and tests
showed that, monocularly, no shape information whatsoever could
be extracted. Mean pixel density was 15%.

Depicted in the random-dot stereograms were quadratic shapes
given by:

This form was chosen so that the principal curvatures are given

(5)C=

the intuitive idea of "shape." The key observation is that
spheres of different radii look the same. Although these
spheres have unequal curvatures and hence unequal mean
and Gaussian curvature, they "look alike." Obviously,
then, perception of shape should be characterized by some
kind of scale-independent quantity. Koenderink (1990) pr<r
poses such a quantity, the shape index S. It is defined by:

2 Kmv.+Kmin
S = - - arctan . (4)

11" Kmv. - Kmin

With the shape index, shapes can be placed on a continu
ous one-dimensional scale. This scale can be divided into
a number of meaningful sections (see Figure 1). From
- 1 to -lh the range contains concave ellipsoidal surfaces,
from -lh to +lh we fmd the hyperbolic shapes (saddles),
and from +lh to +1 the shapes are convex ellipsoidal.
The boundaries at ±lh are cylinders. Two objects hav
ing shape indexes of opposite sign relate much like a stamp
and mold.

The amount of curvature of the patch is packed in a
quantity called the curvedness, C, defined as:

2

These definitions may seem to be rather baroque, but
they are no more than polar coordinates in Kmv., Kmin
space in disguise. The shape index corresponds to a direc
tion in this space. The 0° axis is rotated over 45° in order
to make the scale symmetric with respect to convexity and
concavity; this rotation is apparent in the argument of the
arctan. The curvedness is a measure for distance from
the origin. Therefore, the distribution of shapes along the
shape index scale is uniform (the arctan in Equation 4
might suggest otherwise). From the definitions of Sand
C, it easily follows that S is scale independent and C is
scale dependent.



by K, and K 2 , as can be checked easily with Equations 2 and 3.
K, and K2 can be calculated from Equations 4 and 5. In this way,
we are able to generate shapes with a specific shape index and
curvedness. We stress here that shape index and curvedness are
purely local measures. Every point on a surface has its own Sand
C value. Normally, the shape index and curvedness change all over
the surface. An example of an exception is the sphere, which has
the same Sand C value everywhere. A paraboloid of rotation with
C = 0.5 cm-' has in its top at the origin a shape index value of
I, while at a distance of about 3 cm from this point, the shape in
dex value drops to 0.65, getting closer to a cylindric shape. (When
referring to the shape index of an object, like the one defined in
Equation 6, we always mean the value at the origin.) From the
generating equation, it follows that the tangent plane to the surface
in this point is frontoparallel.

The quadratic shapes subtended a circular domain of3.5 cm (3.3°)
radius. The simulated quadratic surfaces were translated 7.5 cm
in front of the screen to ensure that no part of the shape would ever
lie behind the screen, as this could yield an unwanted cue. Starting
at 1.5 cm (l.4 0

) from the center, the shape was blurred by back
ground pixels. The ratio of background to object pixels increased
as a Gaussian function ofdistance from the unblurred region in such
a way that, at the boundary, about 90% of the pixels were back
ground. Again, this was done to remove an unwanted shape cue,
in this case, the telltale boundary contour.

Due to the discrete character of the screen, dispiuities on the screen
could only change stepwise, as is shown in Figure 2a. In order to
smooth the surface, the disparity of a point on the screen could be
increased by I pixel, with a probability proportional to the round
ing error that was made by truncating the calculated disparity of
that point. In this way, the average height of a small neighborhood
of a point was about the same as it would be in the continuous case.
There is some evidence that this averaging does indeed take place
(Parker & Yang, 1989; Westheimer & Levi, 1987). A disadvan
tage of this method is that the depth of the surface appears slightly
blurred. A typical result is shown in Figure 2b.

Subjects
Four subjects (L.B., male, age 24; S.D. V., male, age 27; C.D.I.,

female, age 28; and A.K., female, age 32) took part in some or
all of the experiments. The subjects had normal or corrected-to
normal vision. They were checked for normal stereo vision by means
of partially decorrelated random-dot test images (Iulesz, 1971). Fur
thermore, we did some preliminary testing of the response time in
the actual setup and we made sure that all the subjects were able
to perceive the quadratic shapes within 3 sec (after a few trials).
The stereo images had to be calculated for two interocular distances
only (6.5 cm for Subjects L.B. and S.D.V. and 5.8 cm for Sub
jects A.K. and C.D.I.). The subjects were knowledgeable about
the purposes of the experiments.

EXPERIMENT 1
Categorization Task With Shapes

of Constant Curvedness

Procedure
For this experiment, we generated 501 stereo images distributed

evenly along the shape index scale. The distance between two suc
ceeding images was 0.004 (on the S scale). The images were se
lected randomly from this pool and the subjects assigned them to
one of eight possible categories-Category I: [-1.0, -0.75], IT:
(-0.75, -0.5], ill: (-0.5, -0.25], N: (-0.25, 0], V: (0, 0.25],
VI: (0.25,0.5], VIT: (0.5,0.75], and Vill: (0.75, 1.0]-where
parentheses indicate that the boundary is excluded, and brackets
indicate that it is included. Before the experiments, we showed the
subjects wire-frame pictures of quadratic surfaces of several shape
index values to familiarize them with the scale. Furthermore, we
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Figure 2. Disparities present on the screen in the case of a shape
with S = -1 and C = 0.5. The undistorted figure is shown in (a).
Each step corresponds to a I-pixel disparity. Size and shape of the
equidisparity areas depend on S and C. The smoothed figure is shown
in (b). An error of 1 pixel is added with a prohability proportional
to the distance to the next lower step. This not only smoothes the
shape, but also conceals the steps, which conld be used as a shape
cue otherwise.

presented the actual stereo images in a few sessions, with feedback
to accustom them to the scale.

Stimulus display time was 3 sec. In some of the later measure
ments, the subjects had the opportunity to interrupt the presenta
tion ofthe stimulus, at their request. The subjects typically responded
within 2 sec; longer display times did not improve their perfor
mance, provided that they interrupted the stimulus only when they
were sure that their response would not change anymore. The re
sponse times were recorded, although it was not our primary goal
to measure them; they served as additional information.

Each of the 501 shapes was rotated around the z-axis over a ran
dom angle, so that the direction of the principal curvatures did not
yield a cue in the categorization task (convex cylinders generated
with Equations 4, 5, and 6 have an orientation that is perpendicu
lar to concave cylinders). This also provided a means to get rid
of a directional anisotropy (Mustillo, Francis, Oross, Fox, & Or-
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Figure 3. Cross section through a family of symmetric ellipsoids
(8 = -1). The curvednesses shown here cover the range used in
Experiments 1-4. The values are (in upward direction): 0.3, 0.5,
0.75, 1.0, 1.25, and 1.5 em-I.

ban, 1988; Rogers & Cagenello. 1989; Rogers & Graham, 1983).
Because of the large number of available shapes. each category had
a wide range of different orientations and any existing orientational
effect would be averaged out.

In each session, the subjects categorized 200 shapes; this took
aboul 30 min. Each complete experiment consisted of three such
sessions. The experiments were done with four values of the curved
ness: 0.3, 0.5, 0.8, and 1.25 cm- I (see Figure 3).

Results
The results for Subjects L.B. and S.D.V. (with C =

0.5 cm- I
) are shown in Figures 4a and 4b, respectively.

The horizontal scale on the right marks the stimulus cat
egories, the horizontal scale on the left marks the response
categories, and the vertical data show the responses as
a percentage of the total number of stimuli in a particular
category. The results of the other subjects and with other
curvednesses were qualitatively similar. Clearly, answers
are clustered around the stimulus category. The distribu
tion is unimodal. Percentages of correct answers or scores
are, on average, lower for the hyperbolic surfaces than
for convex or concave. From the response time data of
Figure 5, it follows that hyperbolic shapes take longer to
categorize. Small peaks are visible at the borders between
Categories I and 2 and between 7 and 8, indicating that
responding to stimuli from the vicinity of these borders
also takes more time. A closer look at the time data re
veals that it takes longer (500-1000 msec) to give an in
correct answer than a correct one.

In Figure 6a, scores averaged over all shape categories
are plotted against curvedness. In most of the cases in this
graph, scores are higher when curvedness is higher. If
we consider the shape categories individually, this trend
is not so clear. For certain shape categories, curvedness
C = 0.3 cm- I yields the highest score (see, e.g., Fig
ure 6b). This behavior was strongly subject dependent.
An analysis of variance (ANDVA) shows a significant
overall trend in the averaged data for all the subjects, ex
cept for Subject A.K. (C.D.J., p = .0003; L.B., p =
.0003; S.D.V., p = .G\l13; and A.K., p = .19). Tests
on the data ignoring C = 0.3 cm- I show no significant
deviations for Subjects L.B. (p = .92), S. D. V. (p =
.05), and A.K. (p = .23). Subject C.D.J. still has sig
nificant differences in her scores (p = .023).

Discussion
We can make a few observations on the basis of the

data. First, the subjects were able to use the shape index
reasonably well. The results indicate that distance on this
scale can be used as a discrimination measure for shape,
because confusion of shapes decreases monotonically with
distance on the scale.

Second, hyperbolic surfaces are somewhat harder to
recognize than elliptic ones, although this effect was not
equally strong among the subjects. The dip in the score
in the hyperbolic region is not symmetric. Category 4
scores are higher than Category 5 scores except for
1 subject (L.B.). This suggests that the difference between
Categories 4 and 5 especially is hard to perceive and that
the subjects' responses are biased in the relatively large
region around the border where the difference between
Categories 4 and 5 is not evident. L.B. 's bias is proba
bly the reverse of that of the others.

Third, there seems to be an influence of curvedness on
shape recognition, but this is mostly due to the lower
scores at C = 0.3 cm- I

. A lower curvedness implies a
smaller height range, so it could be assumed that the lower
scores might be due to simple height detection thresholds.
This, however, is not the case.

Among his subjects, Howard (1919) found the best re
sults of stereoacuity to be about 2" of arc and the worst

Figure 4. Results of a categorization experiment with constant
curvedness, in this case C = 0.5 em-I. Upper panel (a) shows re
sults for Subject L.B., and lower panel (b), for Subject S.D.V. Right
scale is category number of the presented stimuli, left scale is re
sponse category, and vertical data show scores in percent.



SECOND-ORDER SHAPE FROM STEREO 75

Averaged response times

-- AK
-- SOY

-- COJ

-- LB

A5

75

95

90

80

u
~
o
u

CD
OJ
2!
c:
CD
u...
CD
Q.

100,---------------------,

pooled data

Results
The response histograms were qualitatively the same

as those of Figure 4. The curvedness range was split into

a

might have done previously. The ratio of Kmv. and Kmin is dependent
on S only, and has a unique value for each S. Hence, in principle,
it should be possible to determine the shape index independent of
curvedness. The program producing the above-mentioned fit to the
data points did not require knowledge about the curvedness of the
object in order to reconstruct its shape index.
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Figure 5. Response times averaged over all the experiments, when
measured. Each point is the average over a range of 0.1 on the shape
index scale.
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to be 10/1-136/1 of arc. Our stepsize is about 140/1 of are,
so this is certainly suprathreshold. The number of height
levels does not constrain the performance either. To de
fine a curvature, we need at least three points (see Equa
tion 2). We chose the value of 0.3 cm-t as a minimum
curvedness value, because in its unblurred region of
1.5 em it had just enough steps to define a curvature. With
blurred and unblurred regions combined, quadratic shapes
with this curvedness had a minimum of six to eight steps
(depending on the shape index) in each direction, which
should be enough for an ideal observer.

A third-order two-dimensional polynomial fit to a set
of points like that of Figure 2b generated a surface whose
principal curvatures, calculated by Equation 2, deviated
from the real values by only 1%. Even a very sparse sam
pling of 5 X 5 points was enough for a correct calculation.
So it seems that neither the stimulus nor early stereo pro
cessing is responsible for the lower scores at C =
0.3 cm- t

• Hence, we could assume that it is subsequent
3-D shape processing that determines the results.

60 +---.--,--.........--,--r---r-.----r---.--_r_.........---,--r-"""'1

shape category of stimUlus

EXPERIMENT 2
Categorization Task With Shapes

of Random Curvedness

2 4 5 6 7 8

Procedure
To investigate further whether or not curvedness influences shape

recognition, we used a slightly modified version of Experiment I.
In this experiment, the shapes had random curvedness values ranging
from 0.3 to 0.8 cm- t

• This forced the subjects to use relative cur
vature measures instead of absolute curvature measures, which they

Figure 6. Results of the categorization experiments with constant
curvedness. Averaged scores for 4 subjects as a function of stimu
lus curvedness are shown in (a). Scores are the percentage of cor
rect answers (usually the values of the central peaks, like those of
Figure 4). Scores of 1 subject (L.B.) as a function of stimulus shape
category parametrized by curvedness are shown in (b).
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a category. They could respond as precisely as they liked, entering
their response at the numerical keypad of the ATARl. In practice,
this meant entering one or two decimals, though occasionally three
decimals were used. Two subjects (S.D.V. and L.B.) took part in
this experiment. Measurements were done at C = 0.5,0.8 (S.D.V.
only), and 1.0 cm-' .

Results
Figure 8 shows the results for Subjects L.B. (top) and

S.D.V. (bottom). Clearly, Subject L.B. deviates less from
the perfect score (straight line) than does Subject S.D.V.
In Table 1, mean absolute deviations from correct response
are shown. An ANOVA reveals that means do not differ
significantly for Subject L.B. (p = .3 and p = .09 for
C = 0.5 and 1.0 cm- I

, respectively). For Subject S.D.V.,
the difference in means is significant (p = .0006, P =
0, and p = 0 for C = 0.5, 0.8, and 1.0 cm- I

, respec
tively). This is mainly due to the positive hyperbolic
surfaces. Without these, means do not differ significantly
in two of the three cases (p = .01, P = .32, and p =
.76, respectively).

0.80.70.5 0.60.4
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90

~ 80
~
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0 70u
III

subjects
• AK
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Curvedness (em- 1)

Figure 7. Response scores as a function of curvedness, in the ran
dom curvedness experiment (see text for details).

15 subranges. For each subrange, the percentage of cor
rect answers was calculated; Figure 7 shows the results.
In this figure, a trend with curvedness is not visible and
a calculation of product-moment correlations shows that
all correlation coefficients are insignificant (S.D.V., r =
.482,p> .05; C.D.I., r = .332,p > .10; L.B., r =
.220, p > .10; A.K., r = .294, p > .10). Mean scores
of Experiments I and 2 were S.D.V., 81.0% and 78.2%;
C.DJ., 88.6% and 89.9%; L.B., 86.1 % and 79.2%; AK,
81.1 % and 81.7%, respectively.

Discussion
The results do not reveal an effect of curvedness on

shape recognition. However, correlations are useful for
testing whether a linear model underlies the data, which,
in this case (finite y range), clearly cannot be the case.

The chaotic behavior of the scores versus curvedness
(Figure 7) might indicate that the slight trend we noticed
in Experiment I is just a coincidence. So, in the region
of 0.3 :5 C :5 1.25 cm- I

, shape recognition is not
strongly dependent on the curvedness.

A comparison of the mean scores for the constant
curvedness experiment with those for the random curved
ness experiment shows that scores are lower for 2 subjects
(2.8% and 6.9%, respectively) and higher for the 2 others
(by only 1.3% and 0.6%). This could mean that Sub
ject L.B. was indeed using absolute curvature measures.

EXPERIMENT 3
Shape Index Estimation

Procedure
This experiment was the same as Experiment I, except that the

subjects estimated the shape index value instead of assigning it to

Discussion
The results for Subject L.B. reveal no differences in

estimation errors between surface types. This is rather
different from what we might expect after the results of
the first experiment with this subject, when there was al
ways at least an 8% score difference between the highest
and the lowest scoring surface type. This might be due
to a learning effect. The results of Subject S. D. V. are
more like those in Experiment 1. The high deviation at
the positive hyperbolic surfaces is reflected in the dip in
the scores for this area.

A striking feature of the graphs of Figure 8 is their stair
like character. It appears that there are gauge shapes
toward which perceived shapes are shifted. The assumed
existence of these gauge shapes suggests that estimation
of shape is done by means of some' 'natural categories, "
like the cylinder.

EXPERIMENT 4
Matching of Shapes

Procedure
In the previous experiments, the subjects translated their notion

of shape into some abstract number. In order to circumvent this,
a new setup was devised.

Instead of responding with a category number or a shape index
value, the subjects adjusted a test shape in such a way that it most
resembled a reference shape. They were shown a reference and a
test object (in this order), each for 3 seconds. Again, the display
time could be shortened by the subjects if desired. Adjustments to
the test shape could then be made by increasing or decreasing the
shape index of the test shape by three different step sizes (0.2, 0.02,
and 0.004). After each alteration, the test object was shown again.
The reference image could be presented again by pressing a but
ton. The subjects were allowed to see the reference and test shapes
as often as they liked and could make as many adjustments as they
considered necessary. The value of the shape index of the test shape
was not known to them. The curvedness of the reference shape was
not necessarily the same as that of the test shape. In this way, in
dependence of curvedness and shape recognition could be tested.
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Figure 8. Responded shape index values against stimulus shape index for Subjects L.B.
(top) and S.D.V. (bottom). Due to the number of stimuli (S.D.V. has 550, L.B., 400), all
curvedness values are represented here with the smallest possible plot symbol. Nevertheless,
in the regions around the straight line (perfect score), overlap is considerable.
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Table 1
Absolute Deviations (D) From the Perfect Response

and the Standard Deviation (SD) Therein

Subject S.D.V. Subject L. B.
C = 0.5 cm- I C = 0.8 cm-' C = 1.0 cm- I C = 0.5 cm- I C = 1.0 cm- I

Reference shape index values were -0.9, -0.7, -0.5, -0.3,
-0.1,0.1,0.3,0.5,0.7, and 0.9. The initial value of the test shape
was randomized, but was within a distance of 0.5 of the reference
shape to prevent superfluous buttonpresses. Because we had a fixed
set of reference shapes, it was important that the subjects not know
the exact shape index value of the test object that they were manip
ulating, otherwise they could have set it to any exact value they
liked just by counting buttonpresses.

Of course, the ends of the scale offered the opportunity to gauge
the shape index value of the test object. Pressing one of the "in
crease shape index" buttons when the object's shape was at the posi
tive end of the scale would not result in a different shape and the
subjects would then know the exact value of the test object. In order
to prevent this, we allowed the variable representing the current
test shape index value to exceed the boundary values, instead of
setting it to ± I when the subjects reached the scale ends. So, all
that the subjects would know at that moment (when the object was
not changing anymore) is that they had reached the end of the scale;
they had not set the variable to a specific value. The test shape started
changing when the shape index value in the variable was adjusted
to fall between -I and +1 again. It was not known to the subjects
precisely where on the scale this was, because it depended on the
initial "overshoot," which was also unknown. So, gauging was
only possible when the subjects chose to use the smallest adjust
ment steps around the bounds. Responses with shape index values
out of bounds were registered as ± 1.

We used two curvedness values for the reference shape, 0.5 and
1.25 em-I. For each curvedness setting of the reference shape, we
used the following curvedness values for the test shapes: 0.3,0.5,
0.75, 1.0, 1.25, or 1.5 cm- I

. In one session, the curvedness of the
reference and test shapes remained constant. Each of the above
mentioned reference shapes was shown five times, in random order;
therefore, the subjects had to adjust 50 test shapes for a total of
600 test shapes. Each adjustment took 1-2 min; hence, the entire
experiment took about 15 h for each SUbject. A mean and a stan
dard deviation were calculated from the five settings.

Results
A regression analysis performed on the final settings

of the test shape index versus reference shape index re
veals that there is an almost perfect linear relationship be
tween these values. The constant term is low (it ranges
from -0.04 to 0.01) and the linear coefficient is close
to 1 (it ranges from 0.93 to 1.08). Coefficients of deter
mination range from .977 to .995. Because of this, plots
of the results tend to be very cluttered; so, to obtain bet
ter visualization of the data, we parametrize plots here

by reference shape index instead of test curvedness. Fig
ure 9 shows the results for 1 subject (S.D. V.) and the two
reference curvedness values used (0.5 and 1.25 cm- I for
9a and 9b, respectively). The vertical axis depicts re
sponse, and the horizontal axis denotes the curvedness
value of the test shape. For example, when the reference
shape has S = 0.5 and shape recognition is independent
of curvedness, we expect a straight line at S = 0.5.

Clearly, the influence ofcurvedness is small again. Only
13 out of 40 responses correlate significantly with curved
ness. The responses of the 2 subjects do not correlate (only
2 out of 20 correlations surpass the level of significance).
The pattern of errors is different for the subjects. The cor
relations of error and curvedness are predominantly nega
tive (31 out of 40), indicating that errors decrease with
increasing curvedness. However, only 9 out of 40 are
significant.

We calculated the mean value of the absolute deviation
(response shape index minus reference shape index) for
the four surface types (negative elliptic, etc.) for each
combination of reference and test curvedness. We found
almost no statistical difference in deviations between them.
An ANOVA (with four categories and lOx5 responses
for each combination) shows that the means of only 4 cases
out of 24 (number of curvedness values of the test ob
jects x number of subjects x number of curvedness
values of the reference object) differ significantly
(S.D.V., Cref = 0.5 cm-t, C test = 1.5 cm-t,p = .0099;
S.D.V., Cref = 1.25 cm-t, C test = 0.75 cm-t,p = .0084;
L.B., Cref = 0.5 cm-t, C test = 0.3 cm-t, p = .0266;
L.B., Cref = 1.25 cm-t, C test = 1.5 cm-t, p = .0099).
In half of these cases we find that elliptic surfaces score
best, and in the other half hyperbolic surfaces perform
best. But in only 5 out of 24 cases do we find the lowest
deviation value in the hyperbolic region; the highest value
is found there in 12 cases.

Discussion
The influence of curvedness on shape matching seems

to be small. There is some evidence that accuracy im
proves with increasing curvedness, but the dichotomy re
sulting from Experiments 1 and 2 concerning the depen-
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Figure 9. Value of the shape index of the adjustable test shape that was matched to a refer·
ence shape, as a function of the test shapes' curvedness, parametrized by the shape index of
the reference shape. Reference C = 0.5 cm- I (a), and Reference C = 1.25 cm- I (b). Both
panels show the results of Subject S.D.V.

dence of shape recognition on curvedness could not be
resolved. Also, the question of the influence of surface
type on shape recognition remains undecided.

Overall, performance was good and was somewhat bet
ter than in the case of the numerical responses, as could
be expected (mean absolute deviations are 0.05 and 0.065,
respectively). Although there appears to be an influence
of surface type, this was shown to be not significant.

GENERAL DISCUSSION

Our results show that shape index and curvedness are
convenient measures. Our subjects learned to use them
quickly, so they seem to be valuable tools for shape rec
ognition tasks. We should stress here that we used second
order shapes only. Local and global shapes are self-similar
in these kinds of surfaces and the subjects might have as-
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sessed the local shape measures by means of the global
shape only. As a matter of fact, local shape does not ex
ist in these kinds of discrete images (see General Method).
Only when some sort of surface reconstruction, as pro
posed by Stevens and Brookes (1987), is done by the
visual system will there be local shape, built up from in
terpolation or fitting. We intend to address the problem
of local shape recognition by considering recognition of
local shape in higher order (third-order or higher)
surfaces.

Another problem connected with using second-order
shapes is that they are symmetric. The symmetry axes lie
in the same normal sections as the principal curvatures,
which makes it easier to find them and to use them to cal
culate local shape measures. Again, the use of higher
order surfaces will prevent this.

Other experiments that use the SIC paradigm on qua
dratic surfaces in combination with categorization tasks
to investigate shape from shading (Erens, Kappers, &
Koenderink, 1991) show that-in this very restricted
case-the visual system is better at processing shape from
stereo than shape from shading (using diffuse shading).
Of course, one must be cautious about drawing such a
conclusion from these rather dissimilar experiments.

The confusion of the parabolic arch with the paraboloid
of rotation and the saddle, as reported in Uttal (1987) and
Uttal et al. (1988), was not found. All the experiments
show that confusion appears only with shapes close to each
other on the shape index scale and diminishes with dis
tance. This difference in results is probably due to a dif
ference in dot density. Uttal et al. used 2-64 dots per
stereogram, whereas we used approximately 4,000 dots.
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