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On the nature of implicit categorization

F. GREGORY ASHBY and ELLIOTI M. WALDRON
University ofCalifornia, Santa Barbara, California

Current categorization models disagree about whether people make a priori assumptions about the
structure of unfamiliar categories. Data from two experiments provided strong evidence that people
do not make such assumptions. These results rule out prototype models and many decision bound
models of categorization. We review previously published neuropsychological results that favor the as
sumption that category learning relies on a procedural-memory-based system, rather than on an in
stance-based system (as is assumed by exemplar models). On the basis ofthese results, a new category
learning model is proposed that makes no a priori assumptions about category structure and that relies
on procedural learning and memory.

There is much recent evidence that human category
learning relies on multiple systems (e.g., Ashby, Alfonso
Reese, Turken, & Waldron, 1998; Erickson & Kruschke,
1998; Smith, Patalano, & Jonides, 1998; Smith, Patalano,
Jonides, & Koeppe, 1996). The consensus is that one sys
tem is rule or theory based and one involves some form
of implicit learning. There is little agreement, however,
about the nature of the implicit learning system. One pos
sibility is that the implicit system computes some form of
decision function. In most cases, this is equivalent to
constructing a decision boundary that separates the con
trasting categories (Ashby, 1992a; Ashby & Lee, 1991,
1992; Ashby & Maddox, 1990, 1992, 1993; Maddox &
Ashby, 1993). A second possibility, however, is that the
implicit system compares the stimulus with the memory
traces of past category exemplars (see, e.g., Brooks,
1978; Estes, 1986; Medin & Schaffer, 1978; Nosofsky,
1986) or simply learns to associate responses (or response
labels) with different regions of perceptual space (Ashby
& Maddox, 1989). In both of these cases, one could still
define a decision boundary as the function that separates
regions assigned to contrasting categories. Even so, this
type of "decision boundary" would only be a mathemati
cal convenience, since it would not correspond to any real
computation performed within the brain.

In this article, we test between these two general alter
natives. We present data that provide strong evidence that
people do not construct decision boundaries or compute
decision functions, no matter how complex. Rather, our
data are consistent with the general notion that the implicit
system accesses exemplar memories or that it gradually
learns to associate response labels with clumps of cells
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in some high-level visual representation area, such as the
inferotemporal cortex. We will also review previously
published neuropsychological results that favor the latter
ofthese two possibilities. Finally,we identify a class ofim
plicit category-learning models that are consistent with
all these results.

PARAMETRIC VERSUS
NONPARAMETRIC CLASSIFICATION

To better understand the issues addressed in this article,
consider an experiment in which observers are trying to
learn two categories of lines that vary in length and ori
entation. Examples of two separate such experiments are
described in Figure 1. Each point in Figures IA and IB
describes a different stimulus from such an experiment.
The "+" signs indicate the lengths and orientations of the
exemplars of category A and the "0" signs describe the
exemplars ofcategory B. On each trial, one of these stim
uli is sampled randomly and presented to the observer,
whose task is to assign it to category A or B. Feedback
about response accuracy is given on every trial. The line
in Figure IA and the curve in Figure 1B are called the op
timal decision bounds, because they describe the optimal
response strategy-in both cases, accuracy is maximized
if the observer responds A to any stimulus that falls above
the optimal bound and B to any stimulus that falls below.

An extensive literature shows that healthy young adults
often eventually learn to respond in a nearly optimal
fashion in experiments like those shown in Figure I (e.g.,
Ashby & Maddox, 1990, 1992; Maddox & Ashby, 1993).
In such cases, however, observers are virtually never able
to describe their behavior. For example, in Figure 1A, an
explicit analogue of the optimal rule is: Respond A if the
orientation ofthe line is greater than the length; otherwise,
respond B. However, because orientation and length are
expressed in different units, this is like comparing apples
and oranges. Wehave collected extensive amounts ofdata
in the tasks shown in Figure 1. After the last experimental
session, we typically ask observers for a verbal descrip-
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eral different ways. First, the observer might experiment
with many different decision bounds until eventually dis
covering the one that is optimal. Second, the observer
might gradually learn which parts of the (orientation,
length) space are associated with category A and which
parts are associated with category B. In this case, the de
cision bound has no psychological meaning, although it
could be defined mathematically as the set of points that
partitions the region associated with category A from the
region associated with category B. One of the main goals
of this article is to test between these two general alter
natives.

The issue of whether the implicit system computes a
decision boundary during category learning or just grad
ually associates response labels with different regions of
perceptual space is fundamentally a question of whether
a priori assumptions are made about the structure of the
categories to be learned. For if a decision boundary is used,
some functional form of the boundary must be chosen.
For example, in Figure IA, the optimal bound is linear
(i.e., a straight line), and several studies have shown that,
in such cases, the responses ofpracticed observers are well
separated by a linear decision boundary (Ashby & Gott,
1988; Ashby & Maddox, 1990). In Figure IB, the optimal
bound is quadratic (i.e., a quadratic curve), and in such
cases, the responses of practiced observers are well sep
arated by a quadratic decision boundary (Ashby & Mad
dox, 1992). Toaccount for data such as these, a model that
assumes that category learning is a process of adjusting
the parameters of a decision boundary (e.g., either linear or
quadratic) must assume that observers sometimes choose
a linear form for the decision boundary and sometimes a
quadratic form .

How could an observer know which form to choose?
Without making extra assumptions about the form ofthe
unknown categories, there is no way for an observer to
answer this question, However, if the categories are as
sumed to be of a certain type, straightforward solutions
to this problem are known to exist. For example, ifit were
known that the exemplars were normally distributed
across the various stimulus dimensions within each cat
egory, then it is well known that the decision boundary
that maximizes categorization accuracy is always linear or
quadratic (see, e.g., Ashby, 1992a; Ashby & Gott, 1988).
For example, the four categories depicted in Figures IA
and IB all satisfy this property. In every case, the lengths
of the lines in each category are normally distributed, as
are the orientations of the lines, and the correlation be
tween length and orientation (if one exists) is linear (as
measured, e.g., by the Pearson correlation coefficient).
Thus, the optimal bound in Figures IA and 18 must be
linear or quadratic. Furthermore, whether the optimal
boundary is linear or quadratic in such cases depends only
on the within-category variances on each stimulus dimen
sion and on the correlation between each pair of dimen
sions. When there are two categories to learn, a linear
boundary is optimal if and only if each of these param
eters has exactly the same value in each category. In this
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Figure 1. Category structure of two hypothetical experiments.
A plus sign indicates an exemplar from category A, and a circle
indicates an exemplar from category B. The solid curves are the
decision boundaries that maximize response accuracy (i.e., the
optimal boundary). The optimal bound is linear in Figure lA and
quadratic in Figure 1B.

tion of their response strategy. None of the observers in
these experiments has ever described the optimal rule,
even when his or her performance was well described by
this rule. Frequently, observers simply say that their re
sponses were just a "gut reaction." On the basis ofthis and
other evidence, Ashby et al. (1998) argued that people
learn the category structures shown in Figure I by some
form of implicit Iearning.'

An ideal observer in the Figure 1experiments, who uses
the optimal bound perfectly, could learn to do so in sev-



case, we say that the categories have the same variance
correlation structure. If the categories have a different
variance-correlation structure-that is, if any of the
variances or correlations have a different value in the two
categories-a quadratic boundary is optimaJ.2 For ex
ample, in Figure IA, the exemplars in categories A and B
have equal variability in length, they have equal variability
in orientation, and the degree to which length and orien
tation are correlated is the same. As a consequence, the
optimal bound in Figure IA is linear. In Figure IB, how
ever, the correlations are different in the two categories
(i.e., negative in B and positive in A), so the optimal bound
in this experiment is quadratic.

Ashby and Alfonso-Reese (1995) showed that virtually
all of the currently popular models of categorization are
equivalent to a process in which the observer estimates
the likelihood that the stimulus is a member ofeach con
trasting category. The models differ according to the type
of estimator assumed. In statistics, there are two broad
classes ofestimators. Parametric estimators make strong
assumptions about the distribution of the sample data,
whereas nonparametric estimators make only weak distri
butional assumptions. For example, a parametric estima
tor might assume that the sample data are from a normal
distribution. In this case, to estimate the distribution ofthe
data, one needs only estimate the mean and the variance
and then insert these estimates into the equation that spec
ifies the normal distribution. This method works well if
the data distribution is normal, but ofcourse, if the under
lying distribution is skewed, for example, this parametric
estimator will be badly biased. In contrast, a popular non
parametric estimator of a data distribution is the relative
frequency histogram. The critical distinction is that rel
ative frequency histograms can mimic the shape ofany un
derlying distribution, whereas parametric estimators can
only mimic the shape of distributions from the assumed
family (e.g., normal).

In accord with this popular distinction in statistics,
Ashby and Alfonso-Reese (1995) defined parametric
classifiers as those classifiers that make strong assump
tions about the form ofthe contrasting categories and non
parametric classifiers as those that make almost no as
sumptions about category form. For example, a parametric
classifier might assume that the exemplars have a multi
variate normal distribution within each category. In this
case, the optimal boundary is always linear or quadratic,
so this type of parametric classifier would always use a
linear or quadratic decision bound. If some other distrib
utional family were assumed, the optimal boundary might
be of some different functional form. The important point,
however, is that the decision boundary used by a paramet
ric classifier must always be of the same functional form
as that of the optimal boundary, given the distributions
assumed by that classifier. As such, parametric classifiers
always predict decision bounds ofonly a limited type (e.g.,
linear or quadratic). In contrast, nonparametric classi
fiers can mimic any type ofoptimal bound. For example,
a simple nonparametric classifier might estimate the dis-
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tribution ofthe contrasting categories with a relative fre
quency histogram and then, when a stimulus is presented,
give the response associated with the highest histogram.
In summary, parametric classifiers can be identified as
those that make strong assumptions about the structure
of the underlying categories or, equivalently, that can
mimic only a limited set ofdecision bounds. Nonparamet
ric classifiers make weak assumptions about category
structure and can mimic virtually any decision bound.

Prototype models of categorization assume that the
observer gives the response associated with the nearest
category prototype (Ashby & Maddox, 1998; Reed, 1972;
Smith & Medin, 1981). This strategy is optimal only ifthe
category structures are simple enough that the variance
correlation structure can be ignored.! Thus, prototype
models make strong assumptions about category struc
ture. Alternatively, it is straightforward to show that the
prototype decision strategy is always equivalent to using
a linear decision bound (i.e., with two categories; Ashby
& Gott, 1988), so for either reason, prototype models are
parametric classifiers (Ashby & Alfonso-Reese, 1995).
In fact, any model that assumes that the observer operates
directly on a decision boundary is equivalent to some
parametric classifier (Ashby & Alfonso-Reese, 1995), be
cause to specify a decision bound, or a family ofdecision
bounds, one must specify a functional form. In contrast,
Ashby and Alfonso-Reese showed that exemplar models
are nonparametric classifiers, because they are equivalent
to a process in which the observer estimates the category
distributions with a nonparametric estimator (i.e., the
Parzen kernel estimator), which is essentially a sophisti
cated relative frequency histogram. Similarly, models
that assume that the observer learns to associate response
labels with different regions ofperceptual space are equiv
alent to some nonparametric classifier, because such a
process could conceivably mimic any decision bound.

All parametric models of categorization assume that
the category distributions are of some specific family.
For example, a model that assumes that observers always
use a linear or quadratic boundary is equivalent to a para
metric classifier that assumes that the category distribu
tions are multivariate normal. Many investigators have
suggested the possibility that subjects enter a classification
task with the expectation that categories are normally
distributed (or at least unimodal and symmetric; e.g.,
Ashby, 1992a; Ashby & Alfonso-Reese, 1995; Ashby &
Maddox, 1992; Flannagan, Fried, & Holyoak, 1986;
Fried & Holyoak, 1984; Myung, 1994). The origin of
this expectation may arise from the belief that normal
distributions provide good approximations to the distribu
tions ofmany natural perceptual categories, because they
assume a dense region of typical members surrounded
by a sparse region of less typical members (Rosch &
Mervis, 1975). A few studies have investigated the nor
mality assumption empirically. For example, Flannagan
et al. found that normal distributions yielded more veridi
cal learning than did bimodal distributions. Furthermore,
no transfer effects were obtained for learning normal dis-



Medin, Wattenmaker, & Hampson, 1987), so they cer
tainly have access to enough information to estimate cat
egory likelihoods under the assumption ofnormality. On
the other hand, some studies have shown that observers
can respond optimally (or nearly so) in tasks in which the
categories are not normally distributed (McKinley &
Nosofsky, 1995; Neumann, 1977), which might be taken
as evidence that humans are nonparametric classifiers.

This article reports the results from two experiments
designed to test whether human perceptual categorization
is parametric or nonparametric. The idea was to design
the contrasting categories in such a way that virtually any
parametric classifier would fail to respond optimally.
In Experiment 1, the stimulus categories were highly
nonnormal, yet they were unimodal and had the same
variance-correlation structure. Thus, a parametric classi
fier that assumed normality would use a decision bound
ary that was linear, whereas the optimal boundary was
highly quadratic. In Experiment 2, the stimulus categories
were again unimodal and nonnormal, but now the optimal
decision boundary was linear, whereas the parametric de
cision boundary was highly quadratic (i.e., the variance
correlation structure differed across the two categories).

As in Figure 1, the stimuli in both experiments were
lines that varied in length and orientation. The design of
the contrasting categories used in the two experiments is
illustrated in Figure 2. As in Figure 1, each symbol rep
resents a unique stimulus; the exemplars ofcategory A are
denoted by the "+" signs, and the exemplars ofcategory B
are denoted by the "0" signs. In both experiments, the dis
tribution ofexemplars in each category was unimodal. In
both cases, the decision boundary that maximized re
sponse accuracy (i.e., the optimal boundary) is depicted
by the solid curve, whereas the boundary that would be
used by a parametric classifier that assumed normality is
broken. Note that, in both experiments, the categories over
lap somewhat, so that perfect accuracy is impossible. In
fact, in both experiments, the maximum possible accu
racy is 90%. This is the accuracy that would be achieved
by an observer who responded A to any stimulus falling
below the optimal boundary and B to any stimulus falling
above. An observer using the broken line parametric
boundary would achieve 83.2% correct in Experiment 1
and 89% correct in Experiment 2. Because the optimal and
parametric classifiers made such similar accuracy predic
tions in Experiment 2, four transfer stimuli were added
to the Experiment 2 design (denoted by the asterisks in
Figure 2B). These were presented five times each with
out feedback during the last experimental session.

Although no studies have looked specifically at the
question ofwhether human category learning is paramet
ric or nonparametric, many studies have used nonnormal
categories with the same variance-correlation structure
(e.g., Homa, 1978; Homa & Cultice, 1984; Homa, Ster
ling, & Trepel, 1981; Hyman & Frost, 1975; McKinley
& Nosofsky, 1995). McKinley and Nosofsky even re
ported the results of such a study in which the optimal
bound was nonlinear. Observers in this experiment did not
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tributions, whereas strong transfer effects were observed
when the distributions were bimodal. Flannegan et al. sug
gested that this latter finding indicates that the classifica
tion system might use the normal distribution as a promi
nent null model, along with a repertoire ofother, less likely,
distributional assumptions.

Furthermore, normality is an attractive choice because,
ifobservers are estimating category means, variances, and
correlations, normality is the optimal assumption, because
extra assumptions must be added to infer any other dis
tribution (technically, under these conditions, normality
is the maximum entropy inference; see Myung, 1994, for
details). In addition, it is known that people are extremely
sensitive to category means, variances, and correlations
(see, e.g., Ashby & Gott, 1988; Ashby & Maddox, 1992,
1993; Fried & Holyoak, 1984; Medin & Schaffer, 1978;

Figure 2. Category structure of Experiments 1 (Figure 2A) and
2 (Figure 2B). A plus sign indicates an exemplar from category A,
and a circle indicates an exemplar from category B. The solid
curve is the decision bound that maximizes response accuracy
(i.e., the optimal boundary), whereas the boundary that would be
used by a parametric classifier that assumed normality is dotted.
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Table 1
Parameters of Bivariate Normal Distributions Used

in the First Step of the Stimulus Generation Procedure

Experiment I Experiment2

Parameter Category A Category B Category A.. Category B

o 0 0 0
o I I -1.897
I I 0.25 0.05
0.1521 0.1521 0.25 0.9
o 0 0 0

use a linear bound, so the results of the McKinley and
Nosofsky study support the nonparametric assumption.
However, several factors make it difficult to draw strong
conclusions from the McKinley and Nosofsky study. First,
the McKinley and Nosofsky categories were bimodal,
which provided observers with an easy method of dis
covering the nonnormality. This is especially problematic
because Flannagan et al. (1986) showed that people are
quite sensitive to bimodality. The categories used in the
experiments reported in this article were all unimodal,
and the only distributional information that signaled non
normality was in third and higher moments (e.g., skew
ness and kurtosis). As will be discussed later in this ar
ticle, the standard error ofestimation of such statistics is
so large that, for all practical purposes, they can be con
sidered unestimable. Second, the optimal bound in the
McKinley and Nosofsky experiments was neither linear
nor quadratic. Thus, the form ofthe optimal bound could
have informed observers that the category distributions
were nonnormal.' In contrast, in the experiments reported
here, the form of the optimal bound provided no infor
mation about the nonnormality of the categories. Third,
the McKinley and Nosofsky categories were constructed
from two subordinate categories that were themselves
each normally distributed, and McKinley and Nosofsky
acknowledged that they could not rule out the possibility
that observers used a parametric classifier ofthe type that
was appropriate, given such a structure (although McKin
ley & Nosofsky did show that observers had no such ex
plicit knowledge).

GENERAL METHOD

Observers
Five different graduate students at the University of California,

Santa Barbara, participated in each experiment. All observers were
paid $7 for each 50-min experimental session. All of the observers
in Experiment I and 3 of the observers in Experiment 2 completed
one experimental session on 4 consecutive days. Two of the 5 ob
servers in Experiment 2 completed a session on 5 consecutive days.

Stimuli and Apparatus
The stimuli were lines that varied in length and orientation. In

both experiments, the exemplars making up each category were se
lected by a two-step process. First, random samples were drawn
from a bivariate normal distribution, and then each sample was sub
jected to a nonlinear transformation. The parameters of the bivari
ate normal distributions are listed in Table I. Let the vector [x y]'

IMPLICIT CATEGORIZATION 367

denote a random sample from these distributions. In Experiment 1,
the value y was transformed to a new value w via the transforma
tion w = y - 0.7xl. In Experiment 2, this transformation was w = y
+ 0.6x 2 Finally, in Experiment I, the vector [x w] was transformed
to length and orientation via

Because this same transformation was used for categories A and B,
and because the original category A and B variance-correlation
structures were equal (see Table I), the variance-correlation struc
tures for the final A and B categories were equal (i.e., the two cate
gories were related via a simple translation). In Experiment 2, the
vector [x w] was transformed to length and orientation via

[
length ] = 50[ cos(i) sin(i)] [x]+ [285].

orientation -sin(i) cos(i) w 235

After these transformations, the optimal bound was quadratic in
Experiment I and linear in Experiment 2 (shown in Figure 2), even
though the category A and B variance-correlation structures were
identical in Experiment I and different in Experiment 2. In addi
tion, the transformations were chosen so that, except for a transla
tion, the optimal bound in Experiment I nearly equaled the para
metric bound in Experiment 2 and the parametric bound in
Experiment I equaled the optimal bound in Experiment 2. The dis
tributions were also selected so that an ideal observer using the op
timal bound would achieve 90% accuracy in both experiments. An
observer using the parametric bound would achieve 83.2% correct
in Experiment I and 89% correct in Experiment 2. Because the op
timal and parametric accuracies were so similar in Experiment 2,
four transfer stimuli were added on the last day without feedback
(shown as asterisks in Figure 2B). The transfer stimuli were chosen
to be between the optimal and the parametric bounds. This would
allow an alternative form of evidence, in order to discriminate be
tween the best-fitting decision bounds used by the observers.

Each (line, orientation) pair was converted into a physical stim
ulus by creating a line representing length in line pixels and orien
tation of(n X orientation)/550 radians. For example, the sample
(150,160) was used to create a line 150 pixels long, oriented at
160(n/550) radians. The orientation of stimuli in the optimal qua
dratic condition varied from 1.18 to 5.833 radians, and the visual
angle varied from 3.4° to 7.9°. The orientation of stimuli in the op
timallinear condition varied from 1.74 to 5.83 radians, and the vi
sual angle varied from 3.6° to 10.2°. The stimuli were displayed on
a Mitsubishi Electric Color Display Monitor Model C-9918NB in
a dimly lit room.

Procedure
The observer's task was to assign each presented stimulus to a

category by pressing one of two buttons labeled A and B. Accuracy
was stressed more than speed. The display was either response ter
minated or terminated after 5 sec. After each response, auditory
feedback was presented in the form ofa sinusoidal tone. A 500-Hz
tone indicated a correct response, and a 200-Hz tone indicated an
incorrect response. The time between the response and the presen
tation of the next stimulus was 3 sec. Between each consecutive 50
trial block, the observers were allowed to rest for an amount oftime
that was observer controlled. An experimental session included 10
blocks of 50 trials (500 trials per session). The observers were in
structed that about half the stimuli came from category A and half
from category B and that the categories overlapped so that the best
accuracy anyone could achieve would be 90%.
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across all four sessions, whereas in Experiment 2, it had
mostly asymptoted by the end of Session 2. Although not
conclusive, such differences favor models that assume a
nonparametric classifier, because in general, quadratic
bounds (i.e., the optimal bound in Experiment 1) are more
difficult to learn than linear bounds (i.e., the optimal
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parametric classifiers should find Experiment I easier, in
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Figure 3. The accuracy of each observer during every experi
mental session ofExperiments 1 and 2. The accuracy ofthe opti
mal classifier is denoted by the horizontal broken line, and the ac
curacy of the parametric classifier is denoted by the horizontal
solid line.

Model-Based Analyses
To get a more detailed picture of how observers cate

gorized the stimuli, a number ofdifferent models derived
from decision bound theory (Ashby, 1992a; Maddox &
Ashby, 1993) were fit to each observer's responses. Deci
sion bound theory assumes that each observer partitions
the perceptual space into response regions by construct
ing a decision bound. On each trial, the observer deter
mines which region the percept is in and then emits the
associated response. Despite this deterministic decision
rule, decision bound models predict probabilistic respond
ing, because of trial-by-trial perceptual and criterial noise.
We fit seven different versions of decision bound theory
to the data collected in Experiments I and 2. All of the
models were described in detail by Ashby (1992a).

The goal of the analyses reported in this section is to
obtain the best possible description of the data from each
individual observer. For example, this analysis will allow
us to determine whether the data are better described by
the optimal or the parametric boundary. It is important to
note, however, that a good fit of any specific model pro
vides only limited information about psychological pro
cess. In particular, it is likely that some model that makes
very different process assumptions (e.g., a nonparametric
classifier, such as an exemplar-based model) might fit as
well as the best of these seven decision bound models.
With this caveat in mind, we proceed with a description
of the seven decision bound models.

1. Optimal classifier. This model assumes that ob
servers use the decision bound that maximizes accuracy
(the solid line bounds shown in Figure 2). With the cat
egory structures shown in Figure 2, the optimal decision
bound is quadratic in Experiment 1 and linear in Exper
iment 2. The only free parameter of this model is the vari
ance of internal (perceptual and criteria!) noise (i.e., 0'2).

2. Parametric classifier. The parametric classifier as
sumes that observers use the parametric decision bound
(the broken line curves in Figure 2). As was described
above, the parametric bound is linear in Experiment 1and
quadratic in Experiment 2. This model, which is identical
to the optimal classifier model, except for the decision
bound, has one free parameter (i.e., 0'2).

3. General linear classifier. The general linear classi
fier (GLC) assumes that the decision bound is linear. In
the present applications, the GLC has three free param-
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Accuracy-Based Analyses
The accuracy of each observer during every experi

mental session is shown in Figure 3. The horizontal bro
ken line denotes the accuracy of the optimal classifier,
and the horizontal solid line denotes the accuracy of the
parametric classifier. The observers in Experiment I grad
ually increased their accuracy from about 60% to about
70% over the course of the four experimental sessions,
but even at their best, all 5 observers were significantly
less accurate than the parametric classifier. In contrast,
in Experiment 2, accuracy was high even during the first
session, and at least some observers outperformed the
parametric classifier at some point in the experiment.

Figure 3 indicates that, relative to the accuracy ofeither
the optimal or the parametric classifiers, performance was
much worse in Experiment 1 than in Experiment 2. In
addition, in Experiment I, accuracy tended to improve



eters: the slope and the intercept of the linear decision
bound and the variance of internal noise (i.e., (j2).

4. General quadratic classifier. The general qua
dratic classifier (GQC) assumes that the decision bound
is quadratic. The GQC has seven free parameters in the
present application: six parameters that define the qua
dratic bound and the variance of internal noise.

Sand 6. Unidimensional classifiers. The unidimen
sional classifiers assume that observers use a unidimen
sional rule (i.e., a vertical or horizontal decision bound).
These models each have two free parameters: the intercept
of the decision bound and (j2.

7. Independent decisions classifier. This model as
sumes that observers use a conjunctive rule of the form
(Ashby, 1992a)

respond A if length > xI AND if orientation < Yo;

otherwise, respond B,

where xI andYo are free parameters. Twodifferent versions
of this model were created. In one, the noise was assumed
to be equal on the two dimensions (so this version had
three free parameters: xI' Yo' and (j2), and in the other,
different noise variances were allowed on the two dimen
sions (resulting in four free parameters: XI' Yo' (j~, and
(j~ ). The independent decisions classifier is more simi
lar to the unidimensional classifier than to the GLC, be
cause, with a conjunctive rule, observers never integrate
information from the two stimulus dimensions. Rather,
they make separate decisions about the two dimensions
and then select a response on the basis of the outcomes
of these decisions (Ashby & Gott, 1988; Shaw, 1982). In
contrast, in the GLC, the stimulus information is inte
grated (via some linear combination rule), and a response
is made on the basis of this integrated value.

Using an iterative maximum likelihood parameter esti
mation procedure, each ofthese models was fit separately
to the data from the last response block ofevery observer.
To select the best-fitting model, we used the A informa
tion criterion (AIC) of Akaike (1974; see, also, Takane &
Shibayama, 1992):

AIC = -2L + 2v,

where v is the number offree parameters and L is the log
likelihood of the data, given the model (see, e.g., Ashby,
1992b, p. 32). The AIC statistic penalizes a model for
extra free parameters in such a way that the smaller the
AIC, the closer a model is to the "true model," regardless
of the number of free parameters. As a result, to find the
best model among a given set ofcompetitors, one simply
computes an AIC value for each model and chooses the
model associated with the smallest Ale. Table 2 lists the
AIC scores for the best-fitting version of each model in
both experiments. The score of the model that provided
the best overall fit for each observer is marked in bold. Fig
ure 4 shows the bounds from each of these best-fitting
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models, together with a few ofthe stimuli from the exper
iment and the optimal bound (dotted line).

In Experiment I, the parametric classifier fits better
than the optimal classifier for every observer. On the other
hand, the GQC fits substantially better than the GLC for
every observer. In fact, the GQC provides the best over
all fit to the data from 4 of the 5 observers (an indepen
dent decisions classifier fit slightly better than the GQC
for Observer 5). These results strongly indicate that all
the observers in Experiment I used a nonlinear bound but
that the bound they used was suboptimal. This latter re
sult is consistent with the results of Ashby and Maddox
(1992), who found that the GQC provided much better
fits than the optimal classifier to data from several ex
periments with normally distributed categories, in which
the optimal classifier was quadratic. Even so, Figure 4A
shows that, for 3 observers, the best-fitting GQC bounds,
although suboptimal, closely approximated the optimal
bound.>Although the model fits described in Table2 allow
us to reject the assumption that the observers responded
optimally, these same fits, together with the response ac
curacies shown in Figure 3, strongly support the class of
nonparametric classifiers over the class of parametric clas
sifiers. If the observers had been using a parametric clas
sifier, the GLC should have fit better than the GQe. In
stead, the GQC fit substantially better in every case.

In Experiment 2, the optimal classifier fits much better
than the parametric classifier. Of these two models, note
that the linear model fits better than the quadratic model
in both experiments (i.e., in Experiment I, the paramet
ric classifier is linear, and in Experiment 2, the optimal
classifier is linear). However, the advantage of the linear
model over the quadratic model is much larger in Exper
iment 2 than in Experiment I. Table 2 also indicates that
the GLC fits better than the GQC in four offive cases and
that the two best models were the GLC and the indepen
dent decisions classifier. The overall good performance
of this latter model, however, is due primarily to its success
with a single observer (i.e., Observer 4). For example, the
median AIC score for the GLC is lower than that for the
best independent decisions classifier. The superior per
formance of the GLC, relative to the GQC, and of the op
timal classifier, relative to the parametric classifier, sup
ports the class ofnonparametric classifiers over the class
of parametric classifiers.

In Experiment 2, a further test was provided by the
transfer stimuli, which were positioned in the regions of
stimulus space for which the parametric and optimal clas
sifiers predicted contrasting responses. Call the response
an observer makes to a transfer stimulus a transfer re
sponse. Table 3 lists the percentage oftransfer responses
that were correctly predicted by the best-fitting version
of each model (assuming no noise)." For example, for
Observer 5, the linear bound of the best-fitting GLC cor
rectly partitioned 90% of the responses to the transfer
stimuli, but the quadratic bound of the best-fitting GQC
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Figure 4. Decision bounds of best-fitting models for Experiments 1 (Fig
ure 4A) and 2 (Figure 48). Plus signs denote some ofthe exemplars from cate
gory A, and small circles denote some of the exemplars from category B. The
optimal bound is dotted.

correctly partitioned only half of these responses. The
transfer responses clearly favor the GLC and the GQC
over the best unidimensional and independent decisions
classifiers. They also slightly favor the GLC over the GQC.
For example, the GLC is the only model that accounts for

the transfer responses at least as well as all the other
models for every observer.

Taken together, the superiority of the GLC over the
GQC, both in goodness of fit and in accounting for the
transfer responses, supports a nonparametric account of
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Table 2
Goodness-of-Fit (Ale) Scores for Each Model When Fit
to the Data From the Last Session of Each Experiment

Experiment Observer Optimal Parametric GLC GQC BestUDC Best IDC

I 696.8 544.3 487.3 384.7 509.0 397.7
2 697.6 550.4 562.4 439.4 574.5 452.8
3 683.4 548.3 518.4 383.7 535.4 471.5
4 686.1 578.1 579.6 395.5 597.6 398.0
5 697.6 596.9 549.9 498.4 551.0 495.0
M 692.3 563.6 539.5 420.3 553.5 443.0

2 I 178.6 665.0 106.8 114.3 120.2 121.0
2 187.9 667.2 189.1 196.9 199.0 190.5
3 278.2 666.0 273.0 279.4 273.2 271.5
4 188.0 674.0 156.5 150.6 155.6 137.6
5 356.3 664.4 309.1 314.2 307.5 309.6
M 237.8 667.3 206.9 211.3 211.1 206.0

Note-AIC scores ofthe best-fitting model are in bold. GLC, general linear classifier;
GQC, general quadratic classifier; UDC, unidimensional classifier; IDC, independent
decisions classifier.

performance in Experiment 2 over a parametric account.
Thus, together, the results ofExperiments I and 2 strongly
suggest that human pattern classification is nonparamet
ric, rather than parametric.

POSSIBLE PARAMETRIC ACCOUNTS
OF OUR RESULTS

The results from both experiments support the assump
tion that implicit category learning is a nonparametric
process. However, before committing to this notion, it is
important to ask whether any parametric categorization
scheme could produce the data described above. We can
imagine two possibilities. The first is that people always
begin with linear bounds, and if there is no linear bound
that achieves adequate accuracy, they then try quadratic
bounds. According to this hypothesis, the Experiment I
observers searched through the set of linear bounds, dis
covered that none achieved adequate accuracy, and then
began experimenting with quadratic bounds. In Experi
ment 2, a linear bound was optimal, so the initial search
through the set of linear bounds was successful. Unfor
tunately, there are several problems with this hypothesis.
First, no observer in Experiment I exceeded 73.2% cor
rect during his or her last experimental session. Yet the
most accurate linear bound (i.e., the parametric bound)
achieved 83.2% correct. The analyses described above
strongly support the hypothesis that none ofthe observers
in Experiment I was using a linear bound by the end of
the experiment, even though some linear bound would
have significantly improved his or her accuracy. There
fore, it seems unlikely that the observers in Experiment I
had rejected the entire class of linear bounds because of
some dissatisfaction with their response accuracy. Sec
ond, Ashby and Maddox (1992) specifically tested this
hypothesis in an experiment in which the optimal bound
was quadratic. If the hypothesis is correct, the GLC should
provide a better account of the data from the first few tri
als of the first experimental session than the GQC. How-

ever, Ashby and Maddox (1992) found that, for every
observer, the GQC provided better fits than the GLC to
the data from the first 100 trials (although neither model
fit very well). Finally, there is a logical problem with this
hypothesis-namely, that it would take an inordinate
number of trials to reject every possible linear bound.
For example, just to decide that the parametric bound in
Experiment I is suboptimal requires about 222 trials (i.e.,
using a binomial test, with a = .05, I - f3 = .80, and an
alternative hypothesis that accuracy equals 85%), and to
decide that the parametric bound is the best linear bound
would require testing and rejecting many other linear
bounds. Thus, it appears that, if observers tried quadratic
bounds only after all the possible linear bounds were ex
plicitly rejected, only extremely experienced observers
would use quadratic bounds.

A second possible parametric explanation of our data
is that observers estimate moments? higher than the vari
ance. A parametric classifier can respond optimally in Ex
periments I and 2 only if it recognizes that the category
distributions in these studies are nonnormal. Since the
distributions are all unimodal and continuous valued, the
only way a parametric classifier could infer nonnormal
ity is to estimate moments higher than the variance. For
example, in normal distributions, the third central mo
ment is always zero [i.e., E(X -)1)3 = 0], whereas it is not

Table 3
Percent Agreement Between Observed Responses
to Transfer Stimuli and Responses Predicted by

the Best-Fitting Decision Bound Models

Observer GLC GQC Best UDC Best IDC

I 95 95 55 30
2 60 60 30 40
3 55 50 30 55
4 100 100 100 100
5 90 50 75 75

Note-The highest percentages are in bold. GLC, general linear clas
sifier; GQC, general quadratic classifier; UDC, unidimensional classi
fier; IDC, independent decisions classifier.
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zero on either dimension in any of the categories used in
Experiments I and 2. Of course, knowledge of nonnor
mality is not enough to infer the correct parametric form
ofthe optimal decision boundary, and the unusual method
by which we constructed the categories in Experiments I
and 2 makes it virtually impossible that observers could
correctly guess the form ofthe distributions. Thus, to re
spond optimally in Experiments I and 2, a parametric clas
sifier would have to estimate, not only the first, second,
and third moments, but also moments considerably higher
than the third. In addition, these estimates would have to
be quite accurate. Unfortunately, this latter requirement is
virtually impossible to satisfy, because even the best es
timators (e.g., maximum likelihood) of higher moments
have extremely large standard errors (see, e.g., Kendall
& Stuart, 1977; Ratcliff, 1979). For example, whereas the
standard error of the sample mean is aj.y n (where n is
sample size and o is the population standard deviation),
the standard error of the sample variance is 1.414a2 j.yn,
and the standard error of the third sample moment is
2.45a3 j.yn (i.e., these are the standard errors when the
parent distribution is normal). Thus, even with perfect
memory, accurate estimation of the variance requires such
a large sample size that it is probably unrealistic to expect
it of human observers, and estimation of the third and
higher moments will usually be at least an order of mag
nitude more difficult.

Because of these arguments, we believe it is extremely
unlikely that any plausible model ofcategory learning that
assumes, or is equivalent to, a parametric classifier could
account for the results of Experiments I and 2. The only
plausible account ofour data is that human category learn
ing is nonparametric. Even so, many alternative catego
rization models are equivalent to some nonparametric
classifier. As was mentioned above, this includes models
that assume that observers learn to associate responses
with regions ofperceptual space (e.g., Ashby & Maddox,
1989) and models that assume that observers access
the memory traces ofpreviously seen exemplars from the
contrasting categories (i.e., so-called exemplar models;
e.g., Brooks, 1978; Estes, 1986; Medin & Schaffer,
1978; Nosofsky, 1986). The critical distinction here is
whether implicit category learning uses a form of proce
dural memory, as is assumed by models of the former
type, or an instance-based memory system (e.g., either
episodic or semantic), as is assumed by the exemplar
models. Our data do not allow a test between these al
ternatives. However, a number of recent neuropsycho
logical results raise problems for instance-based memory
accounts of category learning, so we believe that, at pre
sent, the most parsimonious theory is that a major compo
nent ofhuman category learning is a procedural-memory
based system that gradually associates response labels
with regions in stimulus space. Before developing this
idea more formally, we will briefly review the relevant
neuropsychological evidence.

NEUROPSYCHOLOGICAL EVIDENCE
AGAINST INSTANCE-BASED ACCOUNTS

OF HUMAN CATEGORY LEARNING

As was mentioned above, exemplar theory assumes
that people assign objects to categories by accessing
memory traces (perhaps subconsciously) of exemplars
from the relevant categories (see, e.g., Brooks, 1978;
Estes, 1986; Medin & Schaffer, 1978; Nosofsky, 1986).
As such, exemplar theory hypothesizes that categorization
depends on instance-based or exemplar-based memory.
Thus, if exemplar theory is correct, people with an im
paired ability to store (or consolidate) the memory ofpre
viously seen exemplars should also be impaired in cate
gory learning.

Although this seems a straightforward prediction, a
complication arises because exemplar theorists have not
taken a strong position about the details of their hypoth
esized instance-based memory. The critical issue seems to
be whether the associated trial-dependent context is stored
along with the instance (i.e., the exemplar). Context-rich
memory ofan instance is frequently called episodic mem
my, whereas memory ofan instance without the associated
context is often called semantic memory (Tulving, 1972).

There is strong evidence that episodic memory is rel
atively unimportant in normal human category learning.
For example, patients with medial temporal lobe amnesia,
who have impaired episodic memory, have been found
to perform normally on a variety of different category
learning tasks" (Knowlton,Ramus, & Squire, 1992;Knowl
ton & Squire, 1993; Kolodny, 1994). To account for this
result, some exemplar theorists have argued that exem
plar memory is intact in amnesic patients and that their
only problem is that they have lost conscious access to
those memories (e.g., Higham & Vokey, 1994), or that
"amnesiacs may have more difficulty than normals in
discriminating among distinct exemplars in memory"
(Nosofsky & Zaki, 1998, p. 249). However, if either of
these hypotheses were correct, it would seem that medial
temporal lobe amnesiacs should have equal trouble with
the recall ofall exemplar memories, whereas the data show
that anterograde amnesia is more likely and generally more
severe than retrograde amnesia (see, e.g., Zola, 1997).

This latter result is consistent with a common view of
medial temporal lobe amnesia in which damage to hip
pocampal structures impairs memory consolidation,
rather than retrieval or the ability to discriminate among
distinct memory traces (e.g., Gluck & Myers, 1997; Me
Clelland, McNaughton, & O'Reilly, 1995; Polster, Nadel,
& Schacter, 1991; Squire & Alvarez, 1995).

Another problem for episodic-memory-based accounts
of category learning comes from several neuropsycho
logical studies that have demonstrated a double dissoci
ation between category learning and recognition mem
ory. There is strong agreement that recognition memory
requires intact episodic memory, so if category learning



also uses episodic memory, performance on these two
tasks should be highly correlated. In contrast to this pre
diction, as was mentioned above, amnesic patients, with
impaired episodic memory, perform normally on a vari
ety of different category-learning tasks, even though
their recognition memory is severely impaired (Knowl
ton et aI., 1992; Knowlton & Squire, 1993; Kolodny,
1994; Squire & Knowlton, 1995). The opposite dissoci
ation has also been shown. Knowlton, Mangels, and
Squire (1996) reported that patients with Parkinson's
disease have normal recognition memory but have im
paired category learning. Filoteo, Maddox, and Davis
(1998) also reported category-learning deficits in Parkin
son's disease patients. To date, there are no exemplar
based accounts of this latter dissociation. A number of
studies have established a related double dissociation with
nonhuman animals (e.g., Malamut, Saunders, & Mish
kin, 1984; McDonald & White, 1993, 1994; Packard,
Hirsch, & White, 1989; Packard & McGaugh, 1992;
Packard & White, 1991).

A possibility that is more difficult to refute is that the
instance-based memory assumed by exemplar theory is
a context-free semantic memory. For example, according
to this hypothesis, double dissociations between category
learning and recognition memory are possible because
recognition memory tasks require intact episodic memory,
whereas category-learning tasks only require intact se
mantic memory. Therefore, if semantic memory is intact
in medial temporal lobe amnesia, recognition memory
would be impaired, but not category learning. It also makes
sense that, to learn the structure of a category, it is not
necessary to store all the contextual cues associated with
the presentation of the category exemplars.

Despite its appeal, there are also problems with this
semantic-memory-based account of category learning.
For example, a number ofstudies have reported that medial
temporal lobe damage often results in both episodic and
semantic memory deficits (e.g., Ostergaard, 1987; Shi
mamura & Squire, 1987, 1991), so medial temporal lobe
amnesiacs with intact semantic memory and impaired
episodic memory may be rare. Recently, however, some
researchers have argued that damage restricted to the hip
pocampus proper impairs context-rich episodic memory,
but not context-free semantic memory, whereas more
widespread medial temporal lobe damage that includes
the parahippocampal region impairs both forms of mem
ory (Eichenbaum, 1997; Vargha-Khadem et aI., 1997). If
this hypothesis is correct, then, according to semantic
memory-based accounts of category learning, amnesic
patients with damage restricted to the hippocampus should
be impaired in recognition memory, but not in category
learning, whereas amnesic patients with damage to the
hippocampus and the parahippocampal region should be
impaired in both tasks. Few published studies have ex
amined this issue specifically. However, several studies
have reported results from patients with massive medial
temporal lobe damage, which included damage to the
parahippocampal region, who learned normally in com-
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plex categorization tasks (Filoteo, Maddox, Davis, & Hop
kins, 1996; Squire & Knowlton, 1995). In fact, the Filoteo
et al. (1996) study used a task that was virtually identical
to the one shown in Figure IB. Thus, although more data
are needed to answer this question completely, the early
results raise problems for the hypothesis that an intact
context-free semantic memory system is crucial for nor
mal category learning.

As presently formulated, it is difficult to see how
instance-based theories of category learning (e.g., ex
emplar theory) can account for these results. It may be pos
sible, however, that a reformulation or elaboration of some
instance-based theory might prove more successful. For
example, Nosofsky and Zaki (1998) provided an impor
tant first step in such a reformulation. Thus, the point of
this section is not to argue that the neuropsychological
evidence falsifies exemplar models. Such a conclusion
would be premature. Rather, the purpose of this section
is to argue that the neuropsychological data provide a sig
nificant challenge to current exemplar models. For this
reason, we believe it is prudent to investigate alternative
nonparametric theories of category learning. In particu
lar, the neuropsychological data are easily and intuitively
accounted for by the notion that category learning in
volves a process ofassociating responses with regions of
perceptual space. According to this idea, category learn
ing is a form of procedural learning that uses procedural
memories, not instance-based memories. In contrast,
recognition memory does require accessing exemplar
memory traces. Thus, amnesic patients, with impaired
episodic memory but intact procedural learning, are im
paired in recognition memory but relatively normal in
category learning. At the same time, Parkinson's patients,
with impaired procedural learning but relatively normal
episodic memory, are impaired in category learning and
relatively normal in recognition memory.

A NONPARAMETRIC
PROCEDURAL-LEARNING-BASED MODEL

Recently, there has been a surge ofinterest in the neural
mechanisms and processes that mediate human category
learning (e.g., Ashby et aI., 1998; Knowlton, Mangels, &
Squire, 1996; Smith et aI., 1996; Squire, 1992). Much of
the evidence indicates an important role for the striatum
a region of the basal ganglia that includes the caudate nu
cleus and the putamen. For example, there are recent re
ports that patients with striatal dysfunction (including
those with either Parkinson's or Huntington's disease) are
impaired in category learning (e.g., Filoteo et aI., 1998;
Knowlton, Mangels, & Squire, 1996; Knowlton, Squire,
et aI., 1996). In one such report, Filoteo et al. (1998) found
that Parkinson's patients were impaired (as were Hunt
ington's disease patients) relative to age-matched con
trols, in a study using a design that was essentially the same
as the one shown in Figure IB (i.e., normally distributed
categories, quadratic optimal bound). In addition, lesions
of the caudate nucleus in rats and monkeys have been
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Figure 5. A simplified version of the striatal pattern classifier.
The dots represent four different striatal units, and the solid line
is the "boundary" that separates the regions of perceptual space
assigned to the two category responses.

shown to disrupt simple forms of category learning (see,
e.g., Buerger, Gross, & Rocha-Miranda, 1974; Divac,Ros
vold, & Szwarcbart, 1967; McDonald & White, 1993,
1994; Packard, Hirsch, & White, 1989; Packard & Me
Gaugh, 1992; Wang, Ainger, & Mishkin, 1991, cited by
Petri & Mishkin, 1994). There is also substantial evidence
that the striatum plays a key role in procedural learning
(e.g., Jahanshahi, Brown, & Marsden, 1992; Mishkin,
Malamut,& Bachevalier, 1984; Saint-Cyr, Taylor,& Lang,
1988;Willingham, Nissen, & Bullemer, 1989),so it is plau
sible that the striatum is mediating the procedural learning
that we have argued is operating during categorization.

Neuroanatomical data suggest that the striatum, which
is the input structure within the basal ganglia, is particu
larly well suited for such pattern association. First, the
striatum receives projections from virtually all areas of
the neocortex, including extrastriate visual cortical areas
(Saint-Cyr, Ungerleider, & Desimone, 1990). These pro
jections are known to be both diffuse and highly conver
gent, in the sense that many cortical afferents converge
on relatively few striatal units and any single cortical af
ferent makes contact with many striatal units. Second, the
striatum is an area with a high degree of synaptic plastic
ity, much of which is mediated by dopaminergic projec
tions from the substantia nigra (pars compacta) that fire
selectively in the presence of reward (Schultz, Apicella,
& Ljungberg, 1993; Stein & Belluzi, 1989; Wickens,
1993). Furthermore, the basal ganglia is known to have
prominent projections to the prefrontal cortex and motor
output areas (i.e., via the thalamus; see, e.g., Alexander,
DeLong, & Strick, 1986). On the basis of the above evi
dence, it has been suggested that the basal ganglia func
tions to associate a particular pattern ofcortical activation
with a motor response (e.g., Rolls, 1994; Wickens, 1993).
Together, the neuropsychological and anatomical data
suggest that the cortical-striatal-cortical system may be
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a good candidate for the neural substrate of perceptual
classification (see Ashby et al., 1998, for a much more
thorough discussion of these data).

A relatively simple model of visual pattern classifica
tion emerges from a consideration of this architecture.
First, it is assumed that stimuli are represented in a per
ceptual space somewhere in higher level visual areas, such
as the inferotemporal cortex. Because ofthe convergence
ofafferents from the cortex to the basal ganglia, it is pro
posed that a low-resolution map of perceptual space is
represented among the striatal units. The information
loss from this mapping could account for the suboptimal
performance sometimes observed with complex category
bounds (e.g., as in Experiment 2 of McKinley & Nosof
sky, 1995). Through learning, the striatal units become
associated with one of the category labels, so that, after
learning is complete, a category response label is asso
ciated with each of a number of different regions of per
ceptual space. In effect, the striatum has associated a re
sponse with clumps of cells in the visual cortex. We call
this model the striatal pattern classifier (SPC).

A simplified version of the SPC is illustrated in Fig
ure 5. The two-dimensional length-orientation space de
picts the perceptual representation of the lines used in
our experiments. Thus, each point in this space is asso
ciated with a distinct cell in some extrastriate visual area
(i.e., the cell maximally stimulated when a particular stim
ulus is shown). The four large dots represent four differ
ent striatal units. Each striatal unit is associated with one
ofthe two category responses, which creates four distinct
regions in perceptual space. In Figure 5, two of those re
gions are associated with category A, and two are asso
ciated with category B.

A number of authors have proposed models that are
highly similar to the SPC. This includes the grid model
of Ashby and Maddox (1989), the covering version of
Kruschke's (1992) ALCOVE model (but not the more
widely used exemplar-based version of ALCOVE), and
Anderson's (1991) rational model. In all ofthese models,
a low-resolution grid is mapped onto perceptual space, and
a decision is made on the basis of which grid points are
activated by the stimulus.

Note that, with only two striatal units, the SPC always
predicts linear decision boundaries. In fact, by moving the

Table 4
Goodness-of-Fit (SSE) Scores When the

General Quadratic Classifier, General Linear Classifier,
and Striatal Pattern Classifier Are Fit to the Data

From the Last Session of Experiment 1

Observer GQC GLC SPC

I 52.3 56.5 52.6
2 67.8 74.7 68.9
3 79.4 83.0 79.7
4 59.4 67.9 61.9
5 76.9 78.6 77.3
M 67.2 72.1 68.1

Note-GQC, general quadratic classifier; GLC, general linear classi
fier; SPC, striatal pattern classifier.



two units around, the SPC can reproduce any linear bound.
Thus, with two striatal units, the SPC is equivalent to the
GLC (both models have three free parameters). As such,
a two-unit version of the SPC can account for the data of
Experiment 2 as well as can the GLe. Because the bound
separating any two striatal units is linear, for any finite
number ofstriatal units, the SPC predicts that the bound
ary separating the category A and category B regions of
perceptual space is piecewise linear. Therefore, the SPC
is never equivalent to the GQe. However, by varying the
number and response assignments ofthe striatal units, the
SPC "boundary" can provide an arbitrarily close approx
imation to the GQC boundary (or to virtually any decision
bound). Because of this, one important difference between
the SPC and the GQC is that the SPC is a nonparametric
classifier, whereas, as was already mentioned, the GQC is
parametric. However, because of its ability to mimic the
GQC, some version of the SPC can account for the Exper
iment 1 data as well as can the GQe. 9

The model described in Figure 5 is incomplete. To ac
count for learning data, algorithms must be incorporated
that specify how the striatal units become associated with
the various categories (one possibility was proposed by
Ashby & Maddox, 1989), how the number of units is se
lected, and how the visual units are mapped onto the stri
atal units. For example, these latter problems might be
solved by Kohonen learning (e.g., Haykin, 1994; Kohonen,
1982). Once such details are added, the SPC would pro
vide a model of the implicit system of the recent competi
tion between verbal and implicit systems (COVIS) model
of category learning (Ashby et aI., 1998). COVIS assumes
there are multiple category-learning systems but that the
two most important are an explicit hypothesis- or theory
testing system (i.e., the verbal system) and an implicit
procedural-learning-based system. Ashby et a1. (1998) hy
pothesized, however, that an exemplar-based system and
a perceptual priming system might also contribute to cat
egory learning under certain specialized conditions. 10

The SPC is a procedural-learning-based account of
categorization that we propose is valid under conditions
in which the observer is not using some explicit rule. II

It is a procedural-learning-based model because the stri
atal units learn to associate percepts with actions (i.e.,
category responses) in an incremental and implicit fashion
(in a manner specified by COVIS). Note that instance- or
exemplar-based memories are never accessed in this
model and the hippocampus is never activated (or any
other medial temporal lobe structure). For these reasons,
when incorporated into COVIS, the SPC accounts for the
neuropsychological data discussed in the previous sec
tion in a natural and intuitive fashion. According to this
account, medial temporal lobe amnesic patients are rela
tively normal in category learning because instance-based
memories are generally not accessed during categoriza
tion (but see note 10). Parkinson's patients are frequently
impaired because the loss of dopamine in the striatum
impairs the incremental learning process through which
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the striatal units become associated with category re
sponses. A much more thorough discussion of these issues
can be found in Ashby et a1. (1998), who also show that
the predictions of COVIS are generally consistent with
category-learning data from other special neuropsycho
logical populations (Huntington's disease, major depres
sion, patients with frontal lesions, elderly people, children,
and nonhuman animals).

CONCLUSIONS

The validity of categorization models can be evaluated
either by goodness-of-fit testing or by testing the axioms
that are used to build the models. Although the categoriza
tion literature has been dominated by the former approach,
this article attempts to use the latter. Specifically, we at
tempted to determine whether the process through which
people learn the structure of new categories is paramet
ric or nonparametric. Ashby and Alfonso-Reese (1995)
showed that current categorization models sharply dis
agree about this assumption.

The data from the two experiments strongly supported
the assumption that human pattern classification is non
parametric. In fact, it would be extremely difficult for a
parametric model to account for the results presented
here. Thus, our results rule out prototype models and
many decision bound models. They also rule out any
model that assumes that observers compute a decision
function of any specific functional form. On the other
hand, our results do not allow us to discriminate among
a variety of different nonparametric models. One way to
reduce the set of candidate models further is to examine
a different basic assumption that divides the nonpara
metric models into two classes. In this article, we fo
cused on the assumption that category learning relies on
an instance-based memory system (as is assumed by ex
emplar models) versus the assumption that it relies on a
procedural-memory-based system. Although more work
needs to be done on this problem, the present evidence fa
vors procedural memory over instance-based memory. On
the basis ofthese results, we proposed a category-learning
model, called the SPC, that is nonparametric and relies on
procedural learning and memory.
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NOTES

I. The critical feature that makes the task implicit is not the use of
normally distributed categories, but the precise nature of the optimal
bound. If the optimal bound were linear and orthogonal to either of the
stimulus dimensions, the task would be explicit. For example, if the op
timal bound is orthogonal to the length dimension, the optimal rule is:
Respond A if the line is short, and B ifit is long.

2. Of course, even if the population variances and correlations all
have identical values in the two categories, the sample variances and
correlations will not be exactly equal. Presumably, an observer who as
sumes that the category distributions are normal would use a statistical
criterion for equality of variance-correlation structure.

3. It is important to note that we are not claiming that prototype the
ory makes any optimality assumptions. Rather, the claim is only that
the prototype model is mathematicallyequivalent to a model that makes
strong distributional assumptions and that assumes that the observer re
sponds optimally (under the constraints imposed by those distributional
assumptions). For a more thorough discussion of this point, see Ashby
and Alfonso-Reese (1995).

4. For example, consider a parametric classifier that assumes that
the optimal bound is quadratic. Since the optimal bound in the McKin
ley and Nosofsky (1995) experiments was more complex than a qua
dratic bound, such a classifier might discover that no quadratic bound
was adequate. This would inform the classifier that the category distri
butions were nonnormal.

5. Although it appears in Figure 4 that the best-fitting bound for one
observer (i.e., Observer 5) is unidimensional, Table 2 indicates that the
IDC fit the Observer 5 data substantially better than the best unidimen
sional classifier. The best-fitting version of the IDC for this observer
had a different noise variance on each dimension, and with a large
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enough variance on the length dimension, the vertical segment of the
IDC bound improves goodness offit (relative to a unidimensional clas
sifier with a horizontal bound), even though all the stimuli from both
categories fell on its right-hand side. This same scenario occurred for I
observer in Experiment 2 (i.e., see Figure 48).

6. The transfer data were not used in the model-fitting procedure
(since no feedback was provided to transfer responses). Although the
GLC can never provide a better absolute fit to the training data than the
GQC (since the GLC is a special case of the GQC), there is no logical
reason that the GLC bound that best fits the training data cannot predict
the transfer responses better than does the GQC bound that best fits the
training data.

7. The nth central moment of a random variable X is defined as
E(X - J.1)n, where E denotes expected value and J.1 is the distribution
mean.

8. One study reported that amnesic patients performed as well as
controls during the first 50 trials of category learning, but thereafter
showed a deficit (Knowlton, Squire, & Gluck, 1994). This study used
14 highly distinct stimuli, so it is possible that the amnesic deficit oc
curred because the control participants began memorizing the responses
to some of the stimuli. This hypothesis is supported by the results of a
study that used randomly configured dot patterns as stimuli (Kolodny,
1994). With confusable stimuli of this type, memorization is a more dif
ficult strategy. In the Kolodny (1994) study, amnesiacs and controls
each categorized several hundred dot patterns, yet there was no accu
racy difference between the two groups, even during the last test block.

9. For example, we fit a version of the SPC with four striatal units
to the data from the last experimental session of each observer in Ex
periment I. This version of the model (shown in Figure 5) has the same
number of free parameters as the GQC (i.e., seven). The fits ofthe GQC
and SPC were virtually identical (see Table 4), which indicates that a
version of the SPC with at most four grid points can account for the data
from Experiments I and 2 about as well as can the best decision bound
models.

10. For example, when there are only a few exemplars in each cate
gory, observers might actively memorize responses. Such a strategy
would almost certainly depend heavily on medial temporal lobe struc
tures.

II. COYIS assumes that the separate explicit and implicit category
learning systems compete throughout training (Ashby et al., 1998). Of
the decision bound models tested in this article, the unidimensional and
independent decisions classifiers assume that observers always use ex
plicit rules (since unidimensional and independent decisions rules are
easy to verbalize), whereas the optimal and parametric classifiers and
the GLC and GQC all assume that observers use implicit rules (since
these rules are almost always extremely difficult to verbalize). The good
fits of the GQC in Experiment I and of the GLC in Experiment 2 indi
cate that most (but perhaps not all) of the observers were responding im
plicitly by the end of the experiment.
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