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A study of pure-tone intensity discrimination is presented in
which amplitude changes are detected in 1000 Hz tone bursts
15-20 msec in duration. The masking function (log detectable
increment vs log background intensity) is found to have a slope of
9/10 when calculations are carried out via energy measurements.
This near-miss to Weber’s law is in agreement with other data
reported in the literature. The masking slope proves to be
essentially independent of stimulus duration between 15 msec and
1.5 sec. Our stable slope parameter is interpreted as a detectability
restriction generated by ‘“mass-flow” phenomena in the auditory
channel. These phenomena are thought to be similar to the
fluctuations accompanying a noisy or turbulent stream of events.
Pure-tone intensity discrimination is then analyzed as a special
case of energy detection.

Two pure tones at the same frequency must exhibit a certain
minimum intensity difference in order to be detectably different
to the ear. The intensity difference may then be expressed in ratio
with a baseline provided by either of the two bounding tones, to
form a Weber-fraction. Weber-fractions determined in this way at
successively higher intensities, outline a curve described here as a
“Weber-function.” When the curve is flat, the function is said to
be following Weber’s law, as every student knows. Classical data
show the Weber-function for pure tones as falling off, rapidly at
first then slowly, with increasing intensity (Riesz, 1928). This
observation is often summoned to service in textbooks in order to
show what every student is also expected to know: i.e., that
Weber’s law fails for pure tones (see, for example, Woodworth &
Schlosberg, 1954, pp. 222-225).

Recently, pure-tone intensity discrimination has attracted re-
newed attention. It has been discovered that while Weber’s law
does not hold in the strict sense, it misses connections in a most
interesting way. The masking function (log detectable increment
vs log baseline intensity) is found to be remarkably linear above 25
dB sensation level. The slope of this linear function is not,
however, unity as Weber’s law would decree. Instead, the
pure-tone masking slope measures at approximately 9/10. This
slope figure is observed whenever increment energy is added
coherently to background energy using 1000 Hz pure tones
(Dimmick & Olson, 1941; Campbell & Lasky, 1967; Green, 1967:
McGill & Goldberg, 1968). Slope does not seem to change with
frequency, but exploration is still incomplete.

The near-miss to Weber’s law must be deemed important
because an analogous slope parameter computed for sinusoids
detected in wideband noise, turns out to be almost exactly unity
(Hawkins & Stevens, 1950). Moreover, unit slope also charac-
terizes intensity discrimination in pure noise (Miller, 1947; Raab
et al, 1963). Why then should the masking function for pure tones
display a characteristic slope depression in comparison with noise:
The question is essentially unanswered.

This paper presents a new pure-tone masking curve. Our tone
frequency is 1000 Hz and our stimulus durations are 15 and 20
msec. The slope of the masking function is found to be 9/10 in
good agreement with other data. These results are first compared
with an carlicr study of the masking slope obtained with 1000 Hz
stimuli 150 msec in duration (McGill & Goldberg, 1968). Similar
comparisons are then developed for masking data in the literature.
We show that at 1000 Hz the masking slope is approximately 9/10
and is essentially independent of stimulus duration from 15 msec
to 1.5 sec.

What might such a stable slope parameter signify? It is
interpreted here as suggesting mass-flow phenomenon in the
auditory system, similar in character to loudness. We seek to build
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a bridge between pure tones and noise by applying the idea of
mass information-flow to both in order to generate an explanation
of masking phenomena. “Mass information-flow” is a term used
here to describe a communication system having major informa-
tion losses. The latter are attributable to collapsing or smearing a
volume of information-bearing elements together, and dealing with
them en masse instead of in detail. We show that this approach can
predict both the unit slope observed with noise, and the slightly
depressed slope characteristic of pure tones.

It is perhaps proper to speak of intensity discrimination instead
of masking in describing our data. The data are based on loud-soft
judgments of single, gated tones. There is no need, however, to be
too fastidious about the distinction. The functions we study turn
out to be very similar to masking functions. Single tone intensity
discrimination and masking are evidently closely related.

PROCEDURE

The experimental format is a Yes-No detection task with
feedback. A sine wave oscillator (HP-200CD), set for 1000 Hz, was
gated on at the positive-going zero crossing of the waveform. The
gate remained open for 15 or 20 msec as determined by a preset
counter and interval timer. Rise and decay times were fixed at 2.5
msec. This single, gated pure-tone was then switched by a
probability programmer (BRS-PP1) into one of two attenuators
set for intensity differences ranging from 0 dB to 5.0dB in .1 dB
steps. The output of the live attenuator was patched into a
soundproof chamber to a single Telefonix TDH-39 earphone
mounted in a MX/41-AR cushion.

Experimental sessions consisted of sequences of such tones.
Each tone was at one of two intensities and intensities were
presented in random order. A green warning light terminated with
the onset of the stimulus tone. S pushed his response key to the
left or right according as the tone he heard seemed to be the
softer or the louder member of the pair. A red feedback light then
flashed on at the left or right of a panel immediately in front of S
indicating which stimulus was actually presented. This concluded a
trial and the program recycled, repeating itself every 8.4 sec. The
trial sequence was as follows:

Warning (700 msec)
Tone (20 msec)
Response Interval (2.1 sec)
Feedback (2.1 sec)
Intertrial Interval (3.5 sec)

Timing was established by Tektronix 160 series pulse and
waveform generators. Switching and recording were controlled by
a Digibit network. Stimuli and responses were printed out on
adding machine tape.

Listeners were three college students (two male; one female).
They were given from 4 to 25 h of preliminary training in the
detection task. Ss were run in 2-h test sessions. Approximately 20
such sessions were required in order to generate psychometric
functions at nine different intensities. Blocks of 70-80 trials were
run with brief rest intervals between blocks. Points on the
psychometric functions are computed from some 150-250 mea-
surements.

The more intense member of each pair of alternatives was kept
constant and the intensity of the weaker stimulus was changed in
order to measure the discriminability of a given decibel difference.
The stronger alternative thus forms our reference level. We study
what may be called “just-detectable decrements,” although
symmetry in the task makes an increment and a decrement
essentially equivalent. When the decibel difference between
alternatives was sufficiently large, they could be discriminated

Copyright 1968, Psychonomic Journals, Santa Barbara, Calif. 105



with perfect accuracy (provided they were audible). As the
intensity difference decreased, the percentage of correct responses
dropped to chance performance (50 percent correct).

RESULTS

Psychometric functions governing pure-tone intensity discrimi-
nation were obtained at various reference levels between 0 dB and
70 dB sensation level. The stimuli were 1000 Hz tones, phase
locked, and either 15 or 20 msec in duration. Our functions trace
the percentage of correct discriminations corresponding to increas-
ing intensity differences between two alternatives having the same
frequency and duration but differing slightly in loudness. These
psychometric functions resemble curves obtained in an earlier
study of tones 150 msec in duration (McGill & Goldberg, 1968).
Their most salient feature is an evident failure to produce the same
Weber-fraction at different reference levels. Thus Weber’s law fails.
The functions are found to be roughly parallel but displaced from
one another (see Fig. 1). In this respect they are quite different
from psychometric functions seen in noise masking. The latter
nearly superimpose. The pure-tone functions display a strong
tendency to shift toward increasing sensitivity as reference level
increases.

Taken together, such considerations imply that our pure-tone
masking function (or intensity discrimination curve) must exhibit
less than unit slope as suggested earlier. Figure 2 shows this to be
the case. The upper limb of the function, extending from 20 dB
sensation level to at least 70 dB sensation level, is quite linear. Its
slope calculates out at .905 via least squares, and there are no
serious differences among the three Ss. Unit slope is shown for
comparison. Campbell and Lasky (1967) have published Weber
functions at the same frequency and stimulus duration (1000 Hz;
20 msec). Their data (recomputed) show very nearly the same
slope as our own. They also suggest that linearity extends at least
10 dB beyond our observations at 70 dB sensation level.

An intensity discrimination curve such as the one illustrated in
Fig. 2 may be computed very simply. We first measure the
observed threshold decibel difference at a given reference level.
This is the point at which the psychometric function crosses 75%
correct in Fig. 1. For example, when measurements were made at
a reference point of 33 dB sensation level, the just detectable
decrement was found to be 3.57 dB, using our procedure. Label
the energy level at 33 dB as E,. The energy corresponding to 3.57
dB below 33 dB is then indicated as E, - E,. We have for the
decibel difference:
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Fig. 1. Psychometric functions for pure-tone intensity discrimination. Tone
are phase-locked 1000 Hz sinusoids, 15 msec in duration. Two intensities are
presented in random order. One intensity is reference sensation level shown as
the curve parameter. The other is attenuated by an amount shown on
abscissa. Listener judges which of the two alternatives (soft-loud) he hears
and feedback tells him which was actually presented. Psychometric functions
depict changing discriminability as dB difference increases. Data of one
listener.
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Fig. 2. Pure tone intensity discrimination curve. Abscissa is reference level
of test pure tone (1000 Hz). Ordinate is sensation level of energy decrement
just detectably different from test tone as determined by 75% discrimin-
ability points in Fig. 1 and related data. Unit slope depicts Weber’s law.
Actual slope fitted by least squares is .905. Data of three listeners shown
[dark squares (15 msec), dark circles (15 msec), dark triangles (20 msec)].
Open circles are 20 msec gated masker data of Campbell and Lasky (1967,
Fig. 1). The Campbell-Lasky data are adjusted for best match to current data.

A Weber-fraction is then computed from:
E

s

Eo - Es Eo
1.28

Now a routine computation can be set up using the Weber
fraction, the decibel difference, and the reference level:

E, E,
10log E;= 10log{ —— }-10 log{ ————— }+ 10log E
E, - E, / E, - Es .

=1.06 -3.57 +33.00

= 30.49 dB.

The outcome is plotted in Fig. 2 as the just detectable decrement
corresponding to 33 dB sensation level.

An important difference exists between slope calculations
obtained from energy measurements and amplitude measurements.
The latter generate a slope of approximately .85 instead of the
figure of .90 governing the data reported in Fig. 2. This dis-
crepancy occurs because our sine wave decrements were sub-
tracted in phase. It is easy to show that points on the ordinate
(Fig. 2) obtained via energy computations differ from analogous
computations based on amplitude measurements by a factor

amounting to:
Po - Ps ]
P,

The term in square brackets is the reciprocal of the Weber-fraction
when the latter is formulated as an amplitude ratio. Since our
psychometric functions fail to superimpose at different reference
levels, this correction factor cannot be constant at different
reference levels. Hence the slope of pure-tone intensity dis-
crimination will depend on whether the data are construed to be
amplitude measurements or energy measurements.

Weber fractions obtained via our methods seem to be fairly
large. The threshold difference of 3.57 dB cited in earlier
calculations is equivalent to E,/E, = .56 at 33 dB sensation level.
This, of course, would not be the most sensitive measurement we
have. At 60-70 dB sensation level E /E, is found to be

10logfl +2 [
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Fig. 3. Slopes of pure tone (1000 Hz) energy discrimination curves plotted
as a function of stimulus duration. Data in this paper shown as open triangles.
Campbell and Lasky (1967) data recomputed from Weber functions. Masking
slope is seen to be essentially independent of duration between 15 msec and
1.5 sec.

approximately .20; still quite large. The magnitude of the
Weber-fraction is evidently related to the single stimulus technique
used here. Our method cannot be considered to be very sensitive.
The size of the Weber ratio appears, however, to have little effect
on the shape of the intensity discrimination curve. Figure 2 shows
discrimination data obtained by Campbell and Lasky (1967) using
the method of forced choice with pure tone stimuli identical to
those studied here. The shape of the function is practically
indistinguishable from ours.

These results suggest that the slope of pure tone intensity
discrimination (beyond 20 dB sensation level) must be relatively
impervious to two of the most prominent frustrations encountered
in psychophysical analysis: method variance, and individual
differences. Hence we have felt it possible to go to the literature
on intensity discrimination in order to compute other slopes. Data
are taken from a number of different experiments and we have
used them to study the relation governing the slope of 1000 Hz
intensity discrimination and stimulus duration. Figure 3 displays
the outcome for durations from 15 msec to 1.5 sec. It is apparent
that no important slope changes occur in this range.

Dimmick and Olson (1941) offer power measurements anal-
ogous to those in Fig. 2. The slope figure of .90 reported in Fig. 3
is as given by the original authors. This excellent early paper does
not seem to have received the attention it merits. Data observed
by Campbell and Lasky (1967) at 20 msec and 1000 msec were
recomputed from the original Weber functions using a table
provided by D. Ronkin (personal communication).

It should be stressed that the linear functions under discussion
here may be said to characterize pure-tone intensity discrimination
only above 20-25 dB sensation level. The region below 20 dB in
Fig. 2 exhibits a more steeply rising curve which might also be
linear but with a slope very near unity. On the other hand,
Campbell and Lasky (1967) describe certain of their Weber
functions as having the appearance of an ‘“‘inverted N.” These
abrupt changes in sensitivity are largely confined to the intensity
region below 20-25 dB sensation level. Their sharpness is some-
what softened by an intensity discrimination plot, but we have
also seen the inverted-N appearance with pure tones 150 msec in
duration. There may then be a systematic relation between
stimulus duration and the shape of the intensity discrimination
curve in the region below 20-25 dB sensation level. The explana-
tion of this effect, if it is real, is not abundantly clear.

DISCUSSION

Discussion here is restricted to pure tone intensity discrimina-
tion (Fig. 2) extending some 60 dB above 20 dB sensation level.
As we have observed, the data in this region may be characterized
as a linear function having a slope of approximately 9/10.

In an carlier paper (McGill & Goldberg, 1968) attention was
drawn to the argument that a statistical process akin to spontan-
cous cnergy fluctuations can produce a linear pure-tone intensity
discrimination curve. The obscrved slope then reflects a simple
relation between information flow in the auditory channel and
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energy input to the ear. The same statistical process driven by a
wideband noise generates unit slope for the intensity discrimina-
tion curve. We now propose to develop this argument.

How can energy fluctuation phenomena arise when pure tone
stimuli are phase-locked and controlled in duration? This is a
problem that has always frustrated applications of detection
theory to pure tone masking. Two sine waves, fixed in frequency
and phase, and differing slightly in amplitude, are unambiguously
different. Accordingly, they should be discriminably different.
Tanner (1961) sought to reintroduce stimulus ambiguity by
suggesting that spontaneous fluctuations in sine-wave oscillators
would be proportional to the output gain setting, thus producing
masking effects similar to those observed with noise. Efforts to
measure such fluctuations have generally led to the conclusion
that they are much too small to account for the amount of pure
tone masking typically observed (see, for example, D. M. Green,
1967, p. 1518). Moreover, output fluctuations seem to predict
unit slope for the pure-tone masking function, and this is not what
we see.

It is perhaps more useful to locate the noisy process accounting
for confusions between pure tones, somewhere inside the observer.
The difficulty in that instance is evident from Fig. 2. Observer
noise somehow manages to match itself to the stimulus intensity.
They are in fact linearly related. How then can the noise be inside
the observer?

There is an easy way out of this dilemma. We need only assume

. that internal noise arises directly out of the detection process. It is

at this point that an understanding of the losses associated with
mass-flow of information can help. Mass-flow phenomena are an
important source of noise. In our problem the “noise” measures a
characteristic loss of information associated with ignoring certain
details of the stimulus representation in the auditory channel.

Suppose the effects of the gated pure tone are spread over a
number of independent neural pathways due to relatively poor
analytical action in the cochlea, and suppose this activity is
monitored in undifferentiated form as suggested by the concept of
critical bands. The effect is equivalent to superimposing the
information channels within the monitored band. This in turn
generates spontaneous fluctuations in short segments of the
mass-flow. More particularly, when independent point-like renewal
processes are superposed, and labels identifying the individual
sequences are removed, brief observations of the total number of
events tend toward a Poisson limiting distribution (Cox & Smith,
1953; Drenick, 1960; Ten Hoopen, 1967).

The phenomenon is similar to the normal limit which occurs
when random magnitudes are added, except that here random (or
even nonrandom) intervals are interlaced. Intuitively, the Poisson
limit occurs when a mechanism counting impulses from many
different input channels becomes uniformly uncertain as to which
input channel will generate the next impulse. Thus even though
each channel may deliever a nonrandom impulse sequence, short
observation periods, together with an inability to keep elaborate
records, will produce the uniform uncertainty which we require.
This uniform uncertainty is the hallmark of a Poisson process. A
detection process that smears information together and counts it
en masse, will generate an internal noise via concurrent loss of
information. Moreover, the level of this noise will be tied to the
Poisson mean, i.e., the rate of flow of events in the channel. This
rate is determined by stimulus intensity. The detection process
then will have an internal noise that increases with stimulus
intensity. .

This is only one of a variety of mechanisms that might be called

“upon to explain pure-tone masking. It is a particularly simple one,

however, and it allows us to move smoothly back and forth
between pure tone masking and noise masking. Tonal analysis
plays no critical role in the assumed operation of the mechanism
governing intensity discrimination.

We now consider how the observed pure-tone masking effects
might arise. Assume that the orderly information flow back from
the cochlea is focussed and counted en masse, introducing
fluctuations typical of c¢nergy detection. Reference intensity
generates a Poisson distribution of counts in repeated observation
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intervals. The mean value of this number is labeled n,. Similarly,
when an increment (or decrement) is added to the energy of the
reference signal, the Poisson mean shifts to ng + n, where n is the
count attributable to the energy increment.

A device such as this obeys a characteristic detection law:

M

where k is fixed when detectability is fixed. The law prescribes a
square root form for intensity discrimination in the channel. It
was originally presented by de Vries (1943) as a rationale for
visual intensity discrimination, and is easily proved (see
Appendix). We do not find a square root law (see Fig. 2) with pure
tones. The curve is linear but its slope is 9/10 instead of 1/2. This
means that if the model is presumed to be basically satisfactory,
the count in the channel cannot be proportional to input energy.
Proportional counting would also have to be rejected on super-
ficial arguments. The range of audible energy spans some 13 log
units, whereas neural firing is compressed into approximately 3 log
units. There is thus no easy way in which proportionality can be
established.

Let us then take the following to be our assumed energy

relation:
ng+n, =a(Eg+E)°,0<c< L. 2)
The parameters a and c reflect the operation of the sensory
process in matching the counting rate to the energy input. When
the parameter ¢ is set to zero, we have proportional counting as
before. When c= 1, there is perfect AVC action. The sensory
channel somehow compensates for the input energy level and the
counting rate is essentially the same for each stimulus intensity.
These boundary conditions allow us to estimate the exponent in
Equation 2 from the slope of the intensity discrimination curve.
The Appendix shows that Equation 2 inserted into the Poisson
detection process produces as the observed discrimination law:
2a% (1-b)E;

=~ k, 3)

(1 +E{/E,) % E b

where E; and E_ are increment and background energy re-
spectively, and

1+c¢

b= ,h<b<1.

The square root term in the denominator of Equation 3 is
generally small and changes slowly in the linear region of pure
tone intensity discrimination. Hence we may approximate Equa-
tion 3 as follows:

logE, = K+blogE, 4,
where K absorbs all constants. Equation 4 furnishes a suitable
approximation of the law governing pure tone intensity dis-
crimination if the latter is taken to be an information-loss
phenomenon in the channel, and Equation 2 is taken to be the
expression governing growth of the mass-flow of information as
stimulus intensity increases.

We have now managed to generalize Weber’s law in a manner
reminiscent of Guilford’s nth power law (1936, pp. 138-139).
Guilford, of course, worked on the problem long before ideas on
information-flow were as well established as they are now.

Our estimated slope of 9/10 acquires an important significance
in this picture of intensity discrimination. It depicts a specific
form for the relation between the count in the auditory channel
and the input energy level, namely:

n = aE-20 %).
Thirteen log units of pure-tone stimulus intensity would be
compressed into 2.6 log units of counting. The ratio between
maximum and minimum counts would then be about 400/1. Thus
it is possible to interpret the outcome in Equation S as being a
primitive loudness function. The form of Equation 2 was chosen
with this possibility in mind, but the estimated slope was in no
way predetermined. As it works out, the estimated slope proves to
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be somewhat smaller than the cube root law typically seen with
judgments of loudness, but it is not widely at variance with the
latter. We may then have found a way of relating two phenomena
(loudness and intensity discrimination) which superficial analysis
suggests should be related, but for which no vehicle of mutual
translation has existed previously.

The arguments used to construct the intensity discrimination
law in Equation 3 can also be made to produce a simple expression
for the psychometric function. In our Appendix we show that a
Poisson detection process in conjunction with the energy relation
in Equation 2 generates a detection formula having approximately
the following form: E

S

E,

2(1-b)n¥ log, |1+ , (6)

where d’ is the familiar standard normal measure of detectability.
Equation 6 tells us that the psychometric function should increase
as a cumulative normal variable corresponding to the decibel
difference between pure tone alternatives. Moreover, if d’ is fixed
and n, increases (it must increase when the reference level
increases), the threshold decibel difference must then decrease in
order to counter this change. It follows that the psychometric
functions will shift toward increasing sensitivity as reference level
increases, and this is in fact what we observe.

We should note that our arguments restrict the slope of pure
tone intensity discrimination between lower and upper bounds of
1/2 and unity respectively. Unit slope is seen only in the unlikely
circumstance of nearly perfect AVC action. The lower bound
(slope = 1/2) is attained in the equally unlikely case of propor-
tional counting. Our investigation of duration effects was under-
taken with the hypothesis in mind that the burst of neural activity
following a gated pure tone, might change its overall rate
characteristics as stimulus duration lengthened. This change might
then be reflected as a change in the slope parameter governing
intensity discrimination if our basic ideas proved to be sound. It
does not seem to happen, at least with 1000 Hz stimuli between
15 msec and 1.5 sec.

Suppose we apply the line of reasoning we have used in
analyzing pure-tone intensity discrimination, and attempt now to
analyze bursts of pure noise. The stimulus energy may no longer
be treated as fixed from trial to trial. It has a probability
distribution closely related to chi-square (see Green, 1960). This
random variation of the stimulus is then imposed on the mean of
the Poisson counting distribution with extremely interesting
results. McGill (1967, p. 362) shows that proportional counting of
a pure noise stimulus transforms the Poisson distribution into a
negative binomial. The variance of the latter contains a Poisson
variance component as well as a component due to the energy
distribution of the noise stimulus. On the basis of this expanded
variance, McGill (p. 364-5) establishes that the negative binomial
generates an intensity discrimination curve having unit slope.
Equation 5 with an exponent of the order of .20 is a slowly
changing function, the proportional counting assumption is then
approximately true over the range of stimulus fluctuations in the
energy distribution associated with a given noise level. The
proportionality ‘“‘constant” changes, of course, in different parts
of the energy range, but since the constant cancels out of the
detection formula (McGill, 1967, Equation 32, p. 368), the slope
of the intensity discrimination law is found to be unity. In pure
noise, the unit slope of intensity discrimination indicates that the
variance of the counting distribution is much larger than is the
case with pure tones. Proportionality with the input noise level is
thereby established. Accordingly, an energy detection process
explains both the unit slope of noise masking and the slightly
depressed slope observed with pure tones. The changing variance
of the counting distribution accounts for the difference.
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APPENDIX
Consider two Poisson distributions, one with mean value n,, and the
second with mean value ng + n,. In order to discriminate between them a
critical number ¢ is chosen. An observation is assigned to one or the other of
the two possible source distributions according as the observation is or is not
less than the critical number. If the latter is chosen sufficiently large, the
chance that it is exceeded by observations from the background distribution,
can be made arbitrarily small. In that circumstance ng must be made fairly
large before there is appreciable probability that an observation from the
incremental distribution will exceed the critical number. We seck a rule
relating the size of the increment ng to the background level n, given a
detection. criterion of this sort.
First suppose that ng is large enough to permit normal.approximations.
The probability of a false alarm is then fixed when
c-n,
=k, [Al]

s
Ng

provided, of course, that k is constant. This critical number may be inserted
into the analogous normal deviate constructed for the increment distribution,
c-{ng+ny)
=0, (A2]
(ng + ngy)*
where n_ is taken to be large enough to ensure that the increment is
detectable with probabitity 1/2. Accordingly:
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n,+knf -(ng+n,)=0,
"S
=k.

This is de Vries’ square root formula cited in the text. The constant k is
determined by the false-alarm probability, and when the latter is fixed, a
square root discrimination law emerges.

The expression in [A3] may be generalized by going to the square root
transform:

{A3)

Ang + 0 )2 -2 )12 =d', [A4]
where d' i$ the standard normal distance used to measure detectability in
signal detection theory. The square root transform is an important normal
approximation to the Poisson distribution. It is discussed in many sources
(see, for example, Rao, 1952, pp. 209-210). 1t is also quite easy to prove the
square root law in Equation [A3] via the square root transform (see McGill,
1966).

In any event, to obtain the pure-tone detection formulae used in this
paper, we now assume the energy relation,
n=aEl-c,
Insert the latter into the square root transform Equation [A4}:

244 [(Eo +E)(-02 g (1 -c)/2] =d,

,' E\ (-on
2a” Eo(l'c)/2 1+ =,
A

To reduce this further note that (1-¢)/2 is small and that
lim (1 +x)™ =1 + mlog,(l +x)
m—>0

Hence we write:

1-¢ E,
2a% E(l-9)/2 loge {1+ =d,
2 E,

and finally
2(1-b)n% . log, (1 +E,/E,)=d",

(A5]

where b = (1 + ¢)/2. This is the form of the psychometric function studied in
Equation 6 in the text of the paper.

To find our intensity discrimination law, we begin with Equation [A5] and
proceed as follows:

2% (1-b)E,! P [log, (1+E/E)] =d',

E, 1 /E \2 1 E, \3
22% (1-b)EQP _— - — s =d
l:‘o 2 E, 3 Eo
E, 1 E, 1 E, \?
2a%(1-b)  E—— -
Eb 2 E, | 3 Eq

1 E, \3
- —_— oo=d.
4 E,

The term in square brackets is very close to

E, \ % 1 E, 3 E, \ 2
1+ =1 — L S
E, 2 E 8 E,

Accordingly we have the following approximation for the detectability of
pure tones.
2a% (1-b) E

4

d [Ao6)
(1+E/Eg)* EP

This is the intensity discrimination law given as Equation 3 in the text of the

paper.
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