
Perception & Psychophysics
1989. 46 (6), 513-527

Pitch motion with random chord sequences
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Perception of global pitch motion was studied through psychoacoustic e:weriments with random
chord sequences. Chords contained either six or eight (fixed) tone elements, being sinusoidal,
sawtooth-like, or Shepard tones, which were either on or off according to a probability controlled
by the experimenter. Sequences of 2,4, 5, or 8 chords were used. Identification by subjects of
the perceived direction of overall pitch motion (up or down) was found to be well accounted for
by a model in which the ultimate pitch motion percept is given by a sum of contributions from
selected element transitions-that is, transitions between adjoining tone elements in successive
time frames only. In its simplest form, this dipole contribution model has only one free parameter,
the perceptual noise for an element transition, which was estimated for various acoustic tone
representations and chord arrangements. Results of two experiments, which were carried out
independently in two different laboratories, are reported.
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The problem of pitch perception of sinusoidal tones has
received considerable attention in the literature on psycho
acoustics. Relations have been established between sub
jective pitch and objective acoustic variables such as the
tone's frequency (Stevens & Volkmann, 1940), its inten
sity (Stevens, 1935; Verschuure & van Meeteren, 1975),
its duration (Doughty & Garner, 1948), its temporal enve
lope (Hartmann, 1978; Rossing & Houtsma, 1986), and
the presence and strength of other interfering sounds
(Larkin, 1978; Terhardt & Fastl, 1971).

Pitch perception of complex tones has received much
attention, too, during the past few decades. The pitch of
a harmonic complex tone is determined not merely by its
fundamental frequency, but also, to a very large extent,
by its harmonics. The tones of church bells and orches
tral chimes, as well as the ftltered tones from common
musical instruments, very often produce a clear, unam
biguous pitch sensation without the presence of any acous
tic energy at the fundamental frequency. It has been es
tablished over the years that this missing fundamental

The authors, who have been listed in alphabetical order, are indebted
to Th. de long, of the Institute of Perception Research, and M. Mihkla,
of the Institute of Cybernetics in Tallinn, for invaluable technical as
sistance. Correspondence may be addressed to A. l. M. Houtsma, In
stitute for Perception Research, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands.

percept cannot be accounted for by difference-tone dis
tortion or by periodicity detection of interference patterns
in the ear; it is, rather, the result of the way in which
our brain processes the neural transformations of sounds
from our two ears. Detailed reviews of this research have
been given by de Boer (1976) and Scharf and Houtsma
(1986). When two complex tones, each comprising a few
harmonics, sound simultaneously, the pitches correspond
ing to each tone can usually be heard as well (Beerends
& Houtsma, 1986, 1989). The exact perceptual limit to
the number of simultaneous tones or pitches that can be
correctly perceived is not known, but it is probably very
dependent on training (Doehring, 1971).

The perception of pitch sequences is another problem
that has received a fair amount of attention in the past.
A temporal sequence of two tones, called a melodic inter
val, is typically perceived in a categorical manner (Bums
& Ward, 1978). Eiting (1984) showed that recognition of
three-note sequences occurs on the basis of contour (e.g.,
up-down-up), as well as on the size of successively per
ceived melodic intervals. Deutsch (1980) studied listeners'
retention capacities for longer tonal sequences and found
that they depended greatly on the degree of hierarchical
structure within each sequence. For very fast tonal se
quences (more than 15 notes per second), a stream 'bf
notes may become perceptually separated into two or
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more parallel streams, each fonning a melody (Bregman
& Campbell, 1971; Dowling, 1973; van Noorden, 1975).

Less attention has been paid to the study of sequences
of simultaneous tones. One of the few situations that has
received attention is the dichotic conflict one in which
two different melodies are simultaneously presented to a
subject, one to each ear (Butler, 1979; Deutsch, 1975;
Kimura, 1964). The limits on our auditory system's abil
ity to perceive a melody against a background of other
potentially interfering tones without dichotic separation
remains largely unknown. This is somewhat unfortunate,
because it is just this situation that is encountered most
often when we listen to music.

In research on vision, the problem of motion percep
tion for discretely changing elements against a background
of other randomly changing elements seems to have been
given more attention than the above-mentioned analog in
hearing. When a dot is presented repeatedly but each time
with a slight displacement, it appears to move (Korte,
1915; Wertheimer, 1912) in the same way as upward or
downward melodic movement is heard when a sequence
of tones is presented to the ear. In both cases, the issue
of correspondence-that is, the question of which elements
in one time frame correspond to which elements in the
next frames-is rather trivial, because there is only one
element in each time frame. When several dots are pre
sented in each time frame, however, the issue of cor
respondence can become quite complicated. Experiments
with moving random-dot patterns, or cinematograms
(Julesz, 1971; Nakayama & Silverman, 1984; van Doom
& Koenderink, 1982, 1984), have convincingly shown
that, when a directional moving-dot signal is embedded
in a background of randomly moving dots, the motion can
often be detected. This implies that the brain must have
a rather sophisticated way of solving the correspondence
problem. One can show that, on statistical grounds, the
clearer and more similar two elements in successive
frames are, the more likely it is that they will be perceived
as corresponding elements (Ullman, 1979). Much visual
behavior can be accounted for with a local correspondence
model, in which perceptual correspondence is limited to
single spatial jumps in successive time frames only (Bell
& Lappin, 1973). The acoustic experiments described in
this study also involve such a model. There are experi
mental situations, however, where local correspondence
models are clearly inadequate (Julesz & Bosche, 1966;
Pantle & Picciano, 1976).

A special case of a random-dot pattern is the circular
random cinematogram (CRC) first applied by Allik and
Dzhafarov (1984). Their CRC consisted of 12 light ele
ments grouped circularly at the 5-min marks on the face
of a clock; each light element could be either on or off.
A sequence of random circular displays often evokes an
apparent clockwise or counterclockwise rotation percept,
reflecting the phi phenomenon (Korte, 1915; Wertheimer,
1912) or reversed phi phenomenon (Anstis, 1970). Per
ceptual identification data could well be accounted for by

a strictly local and short-range model in which only jumps
between successive display elements in successive time
frames played a role.

The present study is an acoustic analogue to Allik and
Dzhafarov's (1984) random cinematogram experiment.
It deals with the perception of apparent global pitch move
ment in a random-chord sequence (RCS), the acoustic
equivalent of a CRC. An RCS is a sequence of pure- or
complex-tone clusters, in which, under certain conditions,
a global upward or downward pitch movement can be
heard. The perceptual limit to the correct identification
of pitch movement is the topic of this study.

RANDOM CHORD SEQUENCES

A single complex tone is characterized by its fundamen
tal frequency, its spectral envelope and phase function,
and its duration. One such tone is called an element. An
element can be in one of two possible states: sounding
(on) or silent (off). Several such elements grouped
together, each with a different fundamental frequency,
form a chord. Since each tone has only two states, M
different tones can form 2M differently sounding chords.
A random temporal sequence of two or more of these 2M

chords is an RCS.
The states ofelements in an RCS are detennined in the

following manner: First, a direction of frequency motion
is chosen. This can be either upward (N= 1) or downward
(N= -1). Next, the states of the M elements of the first
chord (or frame) are detennined randomly, resulting in
an average of 50% of the first-frame elements being in
the on state. The states of elements in the second frame
depend on the states in the first frame. If N = I, each
element (on or oft) of the first chord is connected with
the element of the second chord that is one frequency
step higher. IfN = -1, it is connected with the second
chord element one frequency-step lower. The connection
implies that the state of each element in the second chord
will follow the state of the element in the first chord with
which it is connected with a probability P, which is called
the state repetition probability, or SRP. If, for instance,
the states of the lowest and highest-but-one tones of the
first chord are on and N = 1 and SRP = 1, the next to
lowest and the highest notes of the second chord will be
on as well. If SRP = 0, however, the next to lowest and
the highest notes of the second chord would be off in this
example. During an RCS, the direction of motion Nand
the SRP are kept constant. States of elements in the third
chord are detennined from element states in the second
chord, and so on. To obtain a circular scheme similar to
the visual displays used by Allik and Dzhafarov (1984),
extreme chord elements are also connected: for N = 1,
the highest note of the i th frame is connected with the
lowest note of the i+1th frame, and for N = - 1, the
lowest note of the i th frame is connected with the highest
note of the i+Ith frame. Three examples of RCSs are il
lustrated in Figure 1.
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(B)

Figure 1. Three examples of random chord sequences. (A) N = I,
SRP=I, circular scheme, 6 elements, 8 frames; (8) N= -I, SRP=O,
circular scheme, 6 elements, 4 frames; (C) N=I, SRP=.8, circu
lar scheme, 6 elements, 8 frames.

EXPERIMENTS

Two series of experiments are reported. Both represent
attempts to measure the ability of subjects to identify the
direction of perceived global pitch motion in RCSs of 2,
4, 5, and 8 sequential chords. In the first series of ex
periments, the effect of the sound used to represent chord
elements was investigated. This series was carried out with
4 subjects at the Institute for Perception Research in The
Netherlands, using a P 857 minicomputer and a 12-bit
D/A converter to compute, store, synthesize, and present
stimulus sequences. In the second series of experiments,
the effect of chord composition was investigated. These
experiments were carried out at the Institute of Language
and Literature of the Estonian Academy of Sciences in
Tallinn, E.S.S.R., with 2 subjects, using an EC 1010
minicomputer with a 12-bit D/A converter. Both sets of
experiments are presented separately.

I Methods
Experiment 1

Stimuli. In this experiment, there were always six elements (tones)
in a chord, each of which could be either on or off. The tones were
pure sinusoids, sawtooth waves, or Shepard tones. Of the sawtooth
waves, only the first four harmonics were included. Shepard tones
(Shepard, 1964) are complex tones with octave harmonics and a
fixed bell-shaped spectral weight function. They have the property
that transposition by one or more octaves always yields the same
physical tone and therefore the same perceived pitch. This circular
pitch property was used to make RCSs that were perceptually com
pletely circular. Wave samples and spectra of the three sounds are
shown in Figure 2. Sequences of two, four, and eight six-element
chords were used. For sinusoidal and sawtooth-wave sounds, the
fundamental frequencies ofelements were chosen at 370,392,415,
440, 466, and 494 Hz, representing an intertone spacing of one
equally tempered semitone. Shepard tones were tuned to 262,294,
330, 370, 415, and 466 Hz, two semitones apart. The duration of
each chord was 250 msec, which included a 20-msec on-and-off
ramp. There were no interchord silent periods. The SRP varied be
tween trials from .0 to 1.0, in steps of .1.

Procedure. All sessions started with a determination of the sub
ject's hearing threshold for the chords to be used. The subject, who
was seated in a double-walled sound-insulated chamber and received
the stimuli binaurally through headphones, adjusted the intensity
of an intermittent 44O-Hz sinusoidal, sawtooth, or Shepard tone
to detection threshold. All stimuli in the experiment were presented
20 dB above this empirically established level. This rather low level
was chosen to avoid, as much as possible, any confounding effects
of aural combination tones (Goldstein, 1967; Zwicker, 1955). After
presentation of each RCS, the subject indicated, by pressing one
of two buttons on a response box, whether the perceived global
pitch motion was upward or downward. There was no response
time limit, and no feedback was provided. In the case of trial runs
with sinusoids or sawtooth waveforms, 100 trials were collected
from each subject for each sound condition (i.e., two-, four-, and
eight-frame stimuli combined with II SRP values). In the case of
the Shepard waveform, only 60 trials were collected from each
subject for each condition. Because there were no right or wrong
answers, feedback was not provided. The subject's task was to in
dicate the subjectively perceived direction of pitch motion and nm
the physical direction of frequency motion, N.

Subjects. All RCSs with sinusoidal and sawtooth-wave tones were
judged by 4 subjects, all of whom had had some musical training
and experience. RCSs with Shepard tones were judged by 3 of these
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Figure 2. Samples of waveforms and spectra for the three types of sounds used in Experiments 1 and 2: (A) sinu
soid, (B) sawtooth wave, (C) Shepard tone.

subjects. All subjects had normal hearing. They included two of
the coauthors of this paper.

Experiment 2
Stimuli. In this experiment, there were either six or eight ele

ments (tones) in a chord. The tones were always sawtooth-shaped
complex tones comprising four harmonics, as shown in Figure 2b.
In one series of trials, six chord elements were arranged in semi
tone increments with fundamental frequencies at 370, 392, 415,
440, 466, and 494 Hz, as in Experiment 1. In another series, fun
damental frequencies were arranged to form a dominant-seventh
chord of frequencies 196, 247, 294, 349, 392, and 494 Hz. In a
third and fourth series, in which eight elements per chord were used,
fundamentals were arranged in quarter tones (440, 453, 466, 480,
494,508,523, and 539 Hz) and as a dominant-seventh chord (196,
247,294,349,392,494,587, and 696 Hz). All chords had a du
ration of 250 msec, which included a 20-msec on-and-off ramp.
In the first two series of trials, RCSs of two, four, and eight chords
were used; in the last two series only RCSs of five chords were used.

Procedure. The stimuli were synthesized digitally, played through
a 12-bit D/A converter, and stored on magnetic tape. The subjects

were seated in a quiet room, where they received the stimuli through
loudspeakers. They were allowed to choose a comfortable sound
level. After presentation of each RCS, the subject indicated, by writ
ing the letters "Y" or "A" on a score sheet, whether the perceived
global pitch motion was upward or downward. The allowed response
time was 2 sec. There were 100 trials per subject in the first and
second series, and 200 trials per subject in the third and fourth se
ries for each sound condition and each SRP value. No feedback
was provided.

Subjects. All RCSs were judged by 2 subjects with normal hear
ing. Both had had musical training. One of them was a coauthor
of this study.

RESULTS

The results of Experiment 1 are summarized by the
(subject-averaged) data points shown in Figures 3a-3c.
For each of the sounds used to represent chord elements,
the fraction, Pc, of trials is shown at each SRP value for
which the direction of perceived global pitch motion
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Figure 3. Experimental and theoretical results of Experiment I, averaged over subjects: (A) Results obtained with sinusoidal tones,
V", =16.8 (x'=80.7); (8) results with sawtooth waves, V", =14.5 (x'=73.0); (e) results with Shepard tones, V", =4.17 (x'=89.5).
+, tWlM:hord; x, four-chord; 0, eight-chord sequence.

agreed with the chosen direction of frequency motion, N. •
Each data point, at which different symbols designate mea
surements with two-chord, four-chord, and eight-ehord
sequences, therefore represents 3 X 60 = 180 experimen
tal trials in the case of the Shepard wave and 4 x 100 = 400
trials otherwise. The psychometric functions fitted through
these points are model predictions that will be discussed
in the next section.

The results of Experiment 2 are shown comprehen
sively in Figures 4a-4c. Panel a shows results obtained
from 1 subject (one of the coauthors of this paper) with
sequences of two, four, and eight chords comprising up
to six sawtooth-wave tones arranged in semitone steps.
This condition was comparable to that of Experiment 1
(second series of trials), the results of which were shown
in Figure 3b. Figure 4b shows the results from the same
subject for an arrangement of chord elements according
to a dominant-seventh chord. Figure 4c shows the aver
aged results of 2 subjects obtained with five-chord se
quences of eight elements arranged either in quarter-tone
steps or in steps that form a dominant-seventh chord. Data
points in Figures 4a and 4b represent 100 trials; those in

Figure 4c represent 400 trials each. The functions shown
represent model fits td be discussed later.

Observation of the data of Figures 3 and 4 reveals the
following general tendencies:

1. Although the functions formed by the data points ap
pear to pass through the point (Pc = .5; SRP= .5), as ex
pected, the functions show a distinct lack of odd symmetry
about this point. Pc is generally closer to .5 for SRP values
smaller than .5 than it is for SRP values larger than .5.
All functions appear to satisfy the inequality

Pc(SRP) + Pc(1-SRP) > 1. (1)

The probability that this asymmetry is accidental was cal
culated to be smaller than 0.06% (p < .05) for the data
of Experiment 1.

2. For SRP values smaller than .5, subjects always per
ceive a global pitch movement opposite to the actual
direction of frequency movement. This phenomenon of
apparent pitch-direction reversal holds for all chord and
signal conditions. It is analogous to the direction-reversal
phenomenon reported by Allik and Dzhafarov (1984) and
the reversed-phi phenomenon reported by Anstis (1970).
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Figure 4. Experimental and theoretical results of Experiment 2 performed with sawtooth waves: (A) Element spacing in semitones,
Suhject J.R., V", =3.78 (x'=23.2); (8) element spacing according to a dominant-seventh chord, Subject J.R., V", =8.51 (x'=35.4); +:
twlM:hord, x: four-chord, 0: eight-chord sequence; (C) element spacing in quarter tones (+, V", =7.03, X'=21.3) and according to dominant
seventh chord (x, V",=63.2, x'=10.5), averaged over subjects J.R. and M.R., with five-chord sequences.
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3. Both the positive and the negative portions of the
psychometric functions take on more extreme values when
the number of chords in an RCS is increased or the sound
used to represent chord elements is spectrally enriched.

4. The functions obtained reach more extreme values
of Pc when chord elements are regularly spaced (whole
tones, semitones, quarter tones) than when they are ir
regularly spaced, as is the case with the dominant-seventh
chord arrangement.

voice is, even according to purely physical criteria, im
possible to determine. The data of Figure 3c, however,
clearly show that the correlation between the directions
of frequency motion (N) and perceived global pitch mo
tion is greatest precisely for this type of chord elements.
This suggests that global pitch movement is not a percep
tual feature of a few particular elements in the chord se
quence, and that it is probably a global feature to which
all elements can in principle contribute.

Figure 5. Examples of various types of dipoles. Dipole A: d=(3, I);
h ll • Dipole B: d=( -2,1); hOI' Dipole C: d=(I, I); h ll • Dipole D:
d=(4,1); hoo•
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Dipole Contribution Model

To determine which elements in an RCS contribute to
the percept of pitch motion, the RCS is separated into its
smallest elementary events for which pitch motion can be
perceived. Every two elements (tones) in two different
chords (frames) form such an elementary event. These
events are called dipoles. A dipole, D, is characterized
by (1) its displacement vector d=(f,t), where f is the
number of tone (frequency) steps within the given chord
structure, and t is the temporal distance expressed in
frames, and (2) its form, h, denoting the states of the
two dipole elements. Since there are only two possible
states for any element, there are four possible dipole
forms: on-on, on-off, off-on, and off-off, denoted as hl1 ,

h lO , hOb and hoo, respectively. An example is shown in
Figure 5.

The main idea of the dipole contribution model (DCM),
proposed by Allik and Dzhafarov (1984), is that each di
pole contributes in principle to perceived global pitch mo
tion. Some dipoles, such as the ones with displacement
vectors d=(O,O), (0,1), or (1,0), are excluded because
they cannot possibly convey such a percept. The dipole
contribution, c(D)=c(f,t,h), is a unidimensional random
variable representing the perceptual contribution of this
elementary event to apparent pitch motion. The sign of
this contribution is taken as positive if the displacement
vector d points upward (fis positive) and negative if it
points downward (fis negative). The statistics of c(D)
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MODELS

Voice-Tracing Model

When one listens to an RCS, a sequence of simultaneous
tones is heard. When a subject is asked to determine
the direction of global pitch motion heard in such a se
quence, he or she may, on the one hand, make the decision
on the basis of apparent movement of some "average"
pitch. An "average" pitch cannot be a simple frequency
average for each frame, since such an average contains
no relevant information about the imposed frequency mo
tion. The listener will have to form some list of element
pairs that define a correspondence pattern between suc
cessive chords, and then average only over those pairs.
The solving of the correspondence problem, which is not
a simple matter, will be returned to later. Alternatively,
the subject might use the much simpler strategy of trac
ing a particular set of elements in successive frames. Mu
sical practice indicates, for instance, that polyphonic dic
tation, where students have to write down the notes of
several simultaneously sounding voices, is always easiest
for the two extreme voices: soprano and bass. It there
fore seems possible that the subjects in the present ex
periments based their responses entirely on the perceived
frequency movement of ei\her upper or lower elements
of successive chords. ~

Inspection of the data for two-chord RCSs of Experi
ment 1 from this point of view, and only for those RCSs
that contained sinusoidal or sawtooth-wave tones, revealed
a definite correspondence between perceived pitch mo
tion and physical frequency motion of the highest on
elements of the two chords. Eighty percent of all trials
showed this correspondence. For those trials on which
the highest tone frequencies were identical, the lowest on
elements (bass voice) appeared to have some influence
on perceived pitch motion, but the correlation was not
very large. For RCSs of four and eight chords, the crite
rion for upward versus downward frequency motion of
the top (soprano) or bottom (bass) voice is no longer clear,
because of the randomness in the order of successive
notes. Although some criterion could possibly be defmed,
it was not attempted because of inherent arbitrariness.

The results obtained with the Shepard tones provide
perhaps the strongest evidence that simple voice-tracing
models cannot account for observed behavior. In a chord
of (up to) six Shepard tones, one cannot really tell which
tone is the highest or the lowest because of the circular
pitch property exhibited by such tones. A soprano or bass
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(3)

Figure 6. Gaussian detection model relating observed identirlca
tion performance to statistics or the dipole contribution model. The
decision criterion is assumed to be balanced-that is, placed to max
imize "correct" identifications.

I. The DCM was restricted to a local or short-range
model, in which only those dipoles contribute to the TSC
that have a displacement vector d that is either (-I, I)
or (I , I). This implies that global pitch motion is affected
only by single-tone (frequency) jumps within successive
time frames. Dipoles that span several frequency steps
and/or extend over nonsuccessive chords are ignored. This
simplification was found to work well for the visual ex
periments on motion perception in circular random
cinematograms by Allik and Dzhafarov (1984).

2. Dipoles of the form hoo (Le., off-oft) do not con
tribute to perception of global pitch motion and are there
fore ignored. This assumption is specific to the present
auditory experiments, because perception of pitch motion
for two successive tones that are both off seems highly
unlikely. Dipoles of the form hI I (Le., on-on) are the only
ones that convey a percept of pitch motion. They are
referred to as jumps.

3. Contributions by dipoles of the forms hOI and hlo ,

referred to as nonjumps, have identical distributions, with
expected values equal to zero.

Because these assumptions leave only two kinds of con
tributions, namely those of jump and nonjump dipoles,
the number of parameters of the DCM has been reduced
to only two. Allik and Dzhafarov (1984) further found
that their visual data could be well accounted for with a
model version in which the jump contributions were a
fixed, deterministic number (random variable of zero vari
ance), leaving the variance of nonjump contributions to
be estimated as the only free parameter of the model. This
simplification will be considered as well.

Although the computation of model predictions for per
ceived pitch direction with the use of Equation 3 is, in
principle, straightforward, the actual computation of the
necessary statistics E[TSC] and var[TSC] for a given
ReS can be very cumbersome and tedious. Because such
computations have been shown in detail by Allik ai\d
Dzhafarov (1984), we will present here only the highlights
for that particular form of the DCM that applies to the
present sound experiments.

4o
TSC/a[TSC]

0.5

0.0
-4

depend on the dipole's displacement vector d and form
h. Dipole contributions c(D) are assumed to have the fol
lowing general properties:

Homogeneity. All dipoles of the same displacement vec
tor d and form h contribute equally, regardless of their
position of occurrence within an RCS.

Symmetry. Contributions of any two symmetrical di
poles-that is, dipoles of the same form h but with dis
placement vectors d=(f,t) and d=( -f,t), respectively,
have symmetrical probability density functions so that the
average of their net contribution is zero.

Independence. Contributions of any two different di
poles are statistically independent, provided their types
and forms are known. (Because of the interdependence
of forms for some dipole pairs in the configuration, when
the dipole form is a random variable-which is how it
is treated in most of the remainder of this paper-contri
butions of two dipoles are not always independent.)

The contributions of all the various dipoles are arith- •
metically added to form a total sum of contributions
(TSC) , which, of course, is also a random variable. If
for a given chord sequence the TSC is positive, the per
ceived direction of global pitch motion will be upward,
and if it is negative, it will be downward. For any value
of SRP and N, the relative frequency of occurrence of
the various dipoles can be determined statistically. It is
assumed that, since the TSC is the sum of a large num
ber of relatively small contributions, most of which are
mutually independent, the TSC can be considered as ap
proximately Gaussian and specified by its two characteris
tic parameters E[TSC] and var[TSC]. The probability Pc
of a "correct" identification of global pitch motion-that
is, a perceived motion that agrees with the actual direc
tion of frequency transformation N-is:

I r00 [ (x - E[TSC])l]
Pc = ..J27rvar[TSC] Joexp - 2var[TSC] dx. (2)

This is illustrated in Figure 6, in which "correct" iden
tification of either frequency motion direction has been
indicated by the two differently shaded areas. The integral
of Equation 2 can easily be reduced to the standard
Gaussian integral:

I rE[TSC)lu[TSC) [x 1 ]
Pc = --J exp -- dx..J2i -00 2

= ~( E[TSC] )
..J var[TSC] ,

where u[TSC] = ..Jvar[TSC].
Although Equation 3 may suggest that only two free

model parameters are involved, there are, in principle,
very many, because the magnitudes of c(D)-that is, the
details of density functions-are freely chosen for each
dipole of a particular displacement vector and form. A
model with so many free parameters is not testable and
therefore not too interesting. To restrict the model fur
ther, three additional simplifications were made:
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The first term, as is shown in Appendix B, is equal to

The expected value of the TSC is given by the
expression

var[TSC] = Evar[c(di)] + 2EE cov[c(di),c(dj )].
i i j*i

(5)

2EE cov[c(di),c(dj )]
i j*i

= ~(Etl)2 . .E {P(di'dj) - i}, (7)
l,jES.. S,

length of the chord sequence. For any chord sequence,
however, P(di,dj ) ultimately depends only on the state
repetition probability SRP, as shown in Appendix C.

If we now return to Equation 3, we see with the aid
of Equations 4, 6, and 7 that its independent variable
E[TSC]!..Jvar[TSC] depends only on M, P(=SRP), ~,

and Vnj, where the latter two are free parameters.
For each of the data sets shown in Figures 3 and 4,

functions were computed in such a way that the chi-square
error between function and data values was minimized.
This was first done with two free parameters, ~ and Vnj,

and also with only one free parameter Vnj , ~ being put
to zero. The results of this last computation are shown
in Table 1. An analysis of the values obtained for ~, Vnj,
and chi-square showed that:

1. The model version with the two free parameters ~
and Vnj does not account for the data significantly better
than does the version with only ~ as a free parameter.
We therefore retained the version with ~=O.

2. Almost all individual data can be accounted for by
the model with ~=O (p < .01).

3. Although values of Vnj vary from subject to subject
and from condition to condition, overall behavior is still
best displayed by presenting model fits to the pooled data.

4. The values of v"j are particularly small in the case
of Shepard waveforms (Experiment 1), and tend to be
large when tone frequencies in a frame are irregularly
spaced (Experiment 2).

The computed functions for which the chi-square error
with the averaged data was minimal are shown as solid
curves in Figures 3 and 4. Furthermore, the experimen
tal scores Pc, expressed as the proportion of trials for
which the perceived global pitch motion agreed with the
direction of frequency motion N, were computed as a
function of the net number of short-range on-on dipoles
that were actually counted in the various stimuli. These
results are shown in Figures 7a-7c, according to the three
different sound waveforms used in Experiment 1. The
data plotted in this form provide direct support for the
basic assumption of the DCM that direction of perceived
pitch motion is determined by the net sum of frequency
jump dipoles.

DISCUSSION

(4)E[TSC] = MEtl(~ - ~),

Evar[c(di )]
i

= iM(Etl)2{(2P+ 1)~ + (2Q+ l)Vnj + P + PQ + ~},
(6)

where P is the SRP, Q equals 1- P, and ~ and Vnj are
the normalized variances of contributions by dipoles in
jump form and the nonjump form, respectively:

V = var[c(dtl)] + var[c(d~)]

J (Etl)2 ,

V. . = var[c(d61)] + var[c(dto)]
n.J (Etl)2

The second term of Equadon 5 is a sum ofcovariances,
which can be written as:

where M represents the total number of dipoles with a
displacement vector d=(l, 1) in the RCS, Etl is the mean
perceptual contribution of dipoles with that displacement
vector and form hll (on-on), and P is a simple abbrevia
tion of the state repetition probability SRP. The deriva
tion of this equation is shown in Appendix A.

The variance of TSC comprises two sets of terms:

where P(di,dj ) is the joint probability that the ith andjth
dipoles are both of the form h ll (on-on), and the summa
tion is taken over covariances of those single-step dipole
pairs d = (± 1, 1) that lie along a diagonal in the direction
of frequency motion in the RCS (set Sl) or that connect
two of those successive diagonals (set S2)' This is because
the effect of the SRP propagates along those diagonals and
causes a correlation between the forms of dipoles con
tained in or touching them. All dipole pairs not belong
ing to the sets Sl or S2 have a joint probability P(di,dj )
of being in the hll form that equals .25, which makes their
covariance zero. Unfortunately, there is no simple general
expression for P(di,dj ) for the dipoles contained in the
sets Sl and S2' since such an expression depends on the

The data of both Experiments 1 and 2 can be accounted
for with a simple version of the dipole contribution model
(DCM). "Simple version" means that (1) it is a short
range local model, in which correspondence between ele
ments is limited to adjoining elements in successive time
frames; (2) all off-offjumps do, on the average, not con
tribute (no-blank version); and (3) the noise involved in
the perception of on-on jumps is assumed to be zero
(~=O). The model accounts for the reversed direction
of perceived pitch motion, apparent from the data, for
state repetition probabilities smaller than .5 (the so-called
"reversed-phi phenomenon"), as well as the slight asym
metry of empirically obtained psychometric functions
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Table 1
Experimental Conditions for Experiments 1 and 2

Exp waveform interval frames subjects df N Vnj X2

1 sinusoid 1 2+4+8 AH 31 100 18.9 36.82

1 sinusoid 1 2+4+8 BE 31 100 69.9 37.12

1 sinusoid 1 2+4+8 JJ 31 100 13.1 31.12

1 sinusoid ! 2+4+8 NV 31 100 7.56 35.72

1 sinusoid 1 2+4+8 AH+BE+JJ+NV 31 400 16.8 80.72

1 sawtooth 1 2+4+8 AH 31 100 47.1 40.32

1 sawtooth 1 2+4+8 BE 31 100 36.5 29.82

1 sawtooth 1 2+4+8 JJ 31 100 11.7 50.42

1 sawtooth 1 2+4+8 J NV 31 10<l 4.35 41.42

1 sawtooth 1 2+4+8 AH+BE+JJ+NV 31 400 14.5 73.02

1 Shepard 1 2+4+8 AH 31 60 4.41 39.8

1 Shepard 1 2+4+8 JJ 31 60 7.99 59.5

1 Shepard 1 2+4+8 NV 31 60 2.18 62.6

1 Shepard 1 2+4+8 AH+JJ+NV 31 180 4.17 89.5

2 sawtooth 1 2+4+8 JR 10 100 3.78 23.22

2 sawtooth dom7 2+4+8 JR 10 100 8.51 35.4

2 sawtooth 1 5 JR 7 200 4.63 5.884

2 sawtooth 1 5 MR 7 200 13.1 18.64

2 sawtooth ! 5 JR+MR 7 400 7.03 21.3
4

2 sawtooth dom7 5 JR 7 200 60.9 18.6

2 sawtooth dom7 5 MR 7 200 60.7 21.7
I

2 sawtooth dom7 5 I JR+MR 7 400 63.2 10.5

Note-The values of V", and x' are calculated under the assumption that Jj=O. The degrees of
freedom (df) are the number of data points minus I minus the number of free parameters (1).
N represents the number of trials per data point.

about the point Pc= .5, SRP= .5. The chi-square test did
not allow us to discriminate unequivocally between pos
sible variants of the short-range local DeM, such as the
assumptions that ~ * V"j * 0 (two free parameters) or
that ~ = O. The former assumption, when put into the
model, yields somewhat smaller chi-square values, as is
expected with two free parameters. The implication of the
parameter values found for ~ and Vnj is that subjects prac
tically never miss on-on relationships (which causes ~
to be close to zero), whereas on-off or off-on relation
ships sometimes are mistaken for on-on ones (and cause
V"j to be nonzero). Since a chi-square test did not pro-

vide compelling evidence to reject the hypothesis of ~=O,
we chose to represent the global pitch perception process
with the rather extreme version of the DCM in which
~=O, leaving only the free parameter Vnj to be estimated,
without the intention of claiming that the percepts of short
range on-on jumps are totally noiseless.

Another potentially significant finding is that perception
of global pitch motion within the general context of these
experiments can be well accounted for with a short-range,
local form of the DCM. There remains the question, how
ever, of to what extent this finding can be generalized to
all music perception. Experiments with tone streaming
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Figure 7. Experimental result. of Experiment I, plotted against
the net number ofd=(±I,O, h ll dipoles actually counted in stimuli:
(A) sinusoid; (B) sawtooth-shaped wave; (C) Shepard tone.

tures playa negligible role (Austin, 1966), is perceived
in a short-range and local manner by most listeners. If
this conclusion is correct, a composer may have a possi
ble tool for manipulating a listener's perception of cor
respondence between notes in varying the amounts of ran
domness and structure in the music.

The local form of DCM can also account for some au
ditory pitch paradoxes reported in the literature. One of
them, actually used in this study, occurs when a Shepard
tone is followed by another Shepard tone in which all fre
quencies have been multiplied by 1.89. Instead of hear
ing the pitch go upwards a major seventh, subjects typi
cally report hearing a pitch descent of a semitone. This
is because there actually are many semitone frequency
jumps in a downward direction in this case, which ap
parently dominate the global percept. Another paradox,
recently reported by Schroeder (1986) and Risset (1986),
has a slightly stretched Shepard tone (e.g., 49.6, 102.4,
211.2, ... Hz) followed by its exact octave transposition
(i.e., 99.2, 204.8, 422.4, ... Hz). Despite the compo
nent frequency jumps ofexactly one octave upwards, sub
jects typically report hearing a slightly descending pitch
jump. Apparently, in this case too, local dipoles formed
by frequencies that are close dominate the global pitch
percept and are stronger than the central or virtual pitch,
which should have resulted in upward octave percepts.

Considering the quantitative behavior of the parameter
V..i> it is found that:

1. It appears to be rather subject-dependent. However,
since we are interested only in the global features of
the subject's behavior, we have presented only the
pooled data.

2. It seems to decrease with the harmonic richness and
complexity of signals employed to represent the tone ele
ments of the chords. The largest decrease of V..i> how
ever, occurred between the data shown in Figures 3b and
3c, representing sawtooth and Shepard tones, respectively,
whereas the change between the cases of sine and saw
tooth representation (Figures 3a and 3b) was rather small.
Unfortunately, the change from sawtooth to Shepard tones
involved not only a change in tonal spectra but also a
change of tone spacing within chords (semitone to whole
tone spacing) and, more importantly, a change to a situa
tion of true physical circularity of the chord sequence.
This covariance of parameters obscures a clear-cut con
clusion on what exactly causes the decrease in the noise
of perceived nonjumps.

3. Regularity of intertone spacing generally leads to
smaller values of v"j' This can be seen by comparing the
results in Figures 4a and 4b, and also the two sets of data
shown in Figure 4c. Despite the larger interelement tonal
distances of the dominant-seventh chord, compared with
semitones or quarter tones, the resulting estimates of v"j
are consistently and significantly larger. This, in a sense,
is logical, because with a regular interelement space, the
processor has to deal with only a single dipole size,
whereas in the dominant-seventh chord arrangement, the
physical frequency jumps of nominally identical dipoles
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have convincingly shown that in sufficiently rapid tone
sequences our auditory system may group tone elements
together that do not occur in successive time frames. It
is possible, for instance, to construct a single sequence
of tones that leads to a percept of two parallel melodies
formed by odd- and even-numbered notes, respectively
(Bregman & Campbell, 1971; van Noorden, 1975). There
are also visual analogues to those streaming experiments
(Julesz & Bosche, 1966). It is quite possible that the short
range local solution to the element-correspondence prob
lem, which the auditory system seems to employ in the
present experiments, has something to do with the large
amount of randomness in the chord sequences. Harmonic
or melodic structure, put into transitions from one chord
to the next, could cause the auditory system to use solu
tions to the correspondence problem other than a short
range local one. This implies that 20th-century serial
music, in which traditional harmonic and melodic struc-

{AI

{Bl
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are often different in size. This can only be a confound
ing factor for any processor, and it is most likely to lead
to degraded performance.

Finally, the auditory results presented in this study ap
pear to be very similar to the visual data obtained with
random circular cinematograms by Allik and Dzhafarov
(1984). Both sets of data are adequately accounted for by
very similar models. This suggests that, in both cases,
we are apparently dealing with a general cognitive brain
process that extracts information from visual and audi
tory sensory inputs in a similar manner.
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APPENDIX A
This appendix shows the computation of E[TSC]. According

to general rules,

E[TSC] = E[ ;;C(d)] = ;; E[c(d»). (AI)

Breaking down E[c(d») into its partial contributions correspond
ing to the four different dipole forms h with the associated prob

abilities Pd", we can write Equation Al as

E[TSC] = E E[c(d») = E E E[c(d"»)Pd,,. (A2)
d d h

Since only dipoles with form hll have a nonzero contributioYi,
Equation A2 can be further simplified to

E E E[c(d"»)Pd,, = E E[c(dll»)Pdll . (A3)
d h d
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= E E[c(d11)](Pd11 - Pd11). (A5)
d>O

E E[c(dl1 )]Pdl1 = E E[c(d11)]Pd11 + E E[c(d11)]Pd11
d d>O d<O

According to the symmetry principle, contributions of any two
symmetrical dipoles are identical but differ in sign:

where d 11 and d11 have displacement vectors (-J, t) and (f, t),
respectively, and are both of the hu form. We now split up the
sum of Equation A3 into two parts, one being the sum of posi
tive [(f, t)], the other the sum of negative [( -J, t)] dipoles. We
can finally rewrite the summation over only positive dipoles,
since the total number of positive dipoles equals the total number
of negative dipoles in each RCS:

(B6)
var[c(d11)] + var[c(doo)]

(E11)'

(B3)

var[c(d)] = P[c(d l1 )]Pdl1(1-Pdl1 ) + Evar[c(dh)]Pdh.
h

With the aid of the symmetry principle, we now write the sum
of variances over only the positive dipoles. If, in addition, we
only consider the shortest (I, I) dipoles, we obtain

E var[c(d)]
d

= E (E{var[C(dh+)J(Pdh++Pdn} + P[c(d::)]
d'>O h

[Pdi:(I-Pdm + Pdii(I-Pdri)]), (B4)

where the notations d++ and d+- designate dipoles with dis
placement vectors of (I, I) and ( - I, I), respectively, as defmed
in Appendix A. Regardless of whether N = I (Le., Pd:: =
tP and Pd:i = t) or N = -I (Pd:: = t and Pdii = tP),
we obtain the final result:

E var[c(d)]
d

= ~M(E11)'{(2P+I)~ + (2Q+I)V"j + P + PQ + ~},

(B5)

where M is the number of dipoles with displacement vectors
(I, I) in an RCS, E11 is a short notation for E[c(dinJ.
Q = I-P, and

(A4)E[c(d11)] = - E[c(d11)]'

Since only the shortest dipoles contribute, we simply need to
sum over all (I, I) dipoles. According to the homogeneity prin
ciple, all these contributions are equal, so that

E[TSC] = ME11(Pdr: - Pdrn, (A6)

where dri is a dipole with displacement vector (I, I) and form
hl1 , dri a dipole with displacement vector (-I, I) and form hl1 ,

and M the total number of (1, I) dipoles in an RCS. E11 is a
short notation for E[c(d11)]' The chance that a (I, I) dipole is
in hl1 form (Pdrn is either tP or t depending on the motion
direction N; Pdri, then, is t or tP, respectively. Assuming
that N = I, we get for E[TSC]:

E[TSC] = ME11(~P - ~). (A7)

This equation corresponds to Equation 4 in the text. ForN = - I,
the same expression is obtained for E[TSC] except for an op
posite sign.

var[c(d1o)] + var[c(dri,)]v. -
nj - (E1,)' . (B7)

In order to calculate var[TSC], we need to find an expression
for the covariance. This will be done in Appendix C. Var[TSC],

APPE:rImIX B then, is the sum of B5 and two times C38.

This appendix shows the calculation of var[TSC]. According
to general rules, APPENDIX C

var[TSC] = var[7C(d)]

= E var[c(d)] + 2E E cov[c;(d), c#)] (BI)
d i j*i

This appendix contains the computation ofcov[TSC]. Accord
ing to general rules,

cov[TSC] = EE cov[ci(d),cAd)]
i j*i

P[c(d)] = {f E[c(d")]Pd,,r-
Pd" is the probability that the dipole is of form h, and the sum
mation is done over all four possible forms h. Using the fact
that only E[c(d l1 )] is nonzero, we can write Equation B2 as

and

where

var[c(d)] = E[c'(d)] - P[c(d)] ,

E[c'(d)] = E E[c'(dh)]Pdh
h

(B2)

= EE {E[c;(d) . cAd)] - E[Ci(d)] . E[cj(d)J}.
, '*'
I) , (CI)

Again, breaking up E[c(d)] into partial contributions associated
with the four different dipole forms, we obtain:

cov[ci(d) ,cj(d)]

= E E {E[c;{d",)cj(d",)]Pijd - E[c;{d,,)]E[c;d,,)]PidP;d} ,
h, h,

(C2)

where Pijd means the joint probability that the ith dipole is in
one form hI andthejth dipole in some other form h,. Pidmeans
that dipole i is in form h,. According to the independence
principle,
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We now use the fact that only E[c(dl1 )] is nonzero, which gives
us:

cov[ci(d) ,cAd)] = E[Ci(dl1)]E[cj(dl1)](Pijdl1-Pidl1P;dl1)'

(C5)

(C7)

(C8)

in Figure CI). A chain is a diagonal in an RCS into the direc
tion of motion (N). Two elements lying (sf, st) apart from each
other on a chain have the same states with probability 1'.:

COV(ali) = ~ p1E1,E1,EMali)(2P.-I), (C9)
s

s = 0: P, = I

s = 1: P1 = P(=SRP)

s = 3: P3 = p1+Ql

S = 4: p. = P1 +3PQ1, etc.

The four terms in Equation C6 give rise to eight different ways
in which two dipoles can be connected by a chain: The aligned
version results from the first term of Equation C6, the 'Y' and
'Y2 versions from the second term, the 'Y3 and 'Y. versions from
the third, and the parallellogram, z" and Z2 versions from the
fourth. The eight versions are discussed below, where for sim
plicity we take N = + 1:

1. The aligned version is shown in Figure C2.
We can see that Pij+d:: (the probability that both dipoles

have form hl1) has the value tp·p'·p = tP2Ps • We also no
tice that P;d:: = P;d:: = tp, so the covariance term for
the aligned version will be (obtained by the substitution in
Equation C6)

So for

where N~ali) is the frequency of occurrence of an aligned dipole
pair with a connecting chain of length s in an RCS. Mali) de
pends on the size of an RCS (number of frames and elements)
and on the way in which the RCS is constructed (i.e., circular
or noncircular), because this determines values of s in the sum.
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C9

E[cMh,) . cj(dh,)] = E[cMh,)]E[cAdh1)], (C3)

so that Equation C2 becomes

cov[ci(d), cj(d)]

= EE E[cMh,)]E[cAdhl)](Pijd-PidP;d). (C4)
h, h,

As in the previous appendices, we now restrict ourselves to sum
mation over only the (1, 1) and (- 1, 1) dipoles, which yields
four different ways in which the two dipoles can be grouped
namely (1) both dipoles are (1, 1) dipoles; (2) one (1, 1) dipole
is grouped with one (-1, 1) dipole; (3) one (-I, 1) dipole is
grouped with one (1, 1) dipole; and (4) both dipoles are (- 1, I)
dipoles. So we may write cov[TSC] as

2. The 'Y' version is shown in Figure C3.
As can be seen,

+ E EE1,E.,(Pij-d:: -PidUp;d:n
i' r 1

=-P
2 '

(ClO)

(CIl)

+ E EE.,E1,(Pi/d :,+ -Pid:.p;d:t)
i- j'

4' (CI2)

(C6)

so

1
covh ,) = -PE+ E- ~Nh')(2P' -1)8 11 11~ s s •

s

3. The 'Y2 version is shown in Figure C4.
As can be seen,

(CI3)

(CI5)

(CI4)

(CI6)4'

I
=ZP,

P;d:.

+ E E E.,E.,(PiTd:,+-Pid:.p;d:n,
i- r'i'i-

where i+ and r apply to all positive shortest dipole pairs with
form h l1 , i- andj- to the negative ones. Pij-d::, for instance,
is the joint probability that the ith dipole is of form h l1 with
displacement vector (1,1) and thejth dipole is ofform h l1 with
displacement vector (- I, 1). E1, and E., are the short notations
for E[Ci(d1,)] and E[Ci(d.,)], respectively. We observe that
E., = -E1, and that Pij-d:,- = Pi/d::.

What we obviously have to do is to search for those dipole
pairs where P;jd:,+ "* Pid:,P;d:,. This appears to be the case
only when the two dipoles can be connected by a "chain" (shown
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7. The Z, version is shown in Figure C8.
As can be seen,

so

1
cov(~z) = - PE+ E- ~N(~z)(2P. -1)8 11 IlLoi s s .,

4. The 'YJ version is shown in Figure C5.
As can be seen,

4'

(Cl7)

(CI8)

(CI9) so

4'

4'

(C30)

(C3I)

(C32)

so

5. The 'Yo version is shown in Figure C6.
As can be seen,

4'

(C20)

(C22)

(C23)

1
COV(Z2) = -E- E- EN(Z2)(2P. -1) (C33)

16 11 ",' • .

8. The parallellogram version is shown in Figure C9.
As can be seen,

1 1
Pi:/dr: = 2P, . 2P" (C34)

1
Pidr. =4' (C35)

~dr. 4'
(C36)

so

(C24)
1

cov(Par) = -E- E- EN(Par)(4p'-I)
16 11 ",' •.

(C37)

(C38)

so

1
covh .> = - PE- E+ ENh'>(2P' -1)8"",' •.

6. The Z. version is shown in Figure C7.
As can be seen,

III
= 2 . 2P. . 2'

1

4'

4'

so

(C25)

(C26)

(C27)

(C28)

(C29)

We observe that all except the 'Y versions have a positive value
(since E,• .E1. is negative). All eight subcovariances now sum
to the total covariance term:

8
cov[TSC] = E COV(k).

k=\

The variance of the total sum of contribution is the sum of Equa
tion B5 and two times Equation C38. We see that cov[TSC] de
pends only on the SRP, on the number of frames and elements
in an RCS, and on its construction (circular or noncircular).

(Manuscript received October 19, 1988;
revision accepted for publication June 26, 1989.)




