
COMPUTER TECHNOLOGY
Computerized process control
in behavioral science research*

Behav. Res. Meth. & Instru., 1972, Vol. 4 (4)

KARL W. SCHOLZ
Indiana University, Bloomington, Indiana 47401

A general approach to the design and development of real-time operating
systems is discussed. Operating system design for small to medium scale
laboratory computers is described at a moderately elementary level. Analysis of
system design as a supervisory control hierarchy is presented in an attempt to
bridge the gap between an elementary general understanding of computer
operation and the more sophisticated understanding assumed by the writers of
most computer systems operator's manuals. PROSS, a programming language
developed at Indiana University, is presented as an example of the highest level
of supervisory control.

Recent technological advances in
computer design and manufacture
have brought the possibility of
compu terized laboratory control
within the realm of even modestly
endowed research establishments. Yet,
despite the spectacular increase in
hardware sophistication and decrease
in price, development of adequate
software has, at best, proceeded at a
moderate pace. The behavioral science
investigator who adds computerized
equipment to his laboratory is
frequently forced either to hire a
programming expert or to devote the
time necessary to become an expert
himself. Recognition of this
unfortunate situation has prompted
our group at Indiana University to
devote considerable effort to the
development of techniques allowing
the nonsophisticated programmer to
benefit maximally from a
computerized laboratory. Our
investigation has led to a definition of
the major problem areas in process
control computation and to the
development of a programming
language which limits the
consideration of these problems to the
implementers of the language, allowing
the user of the language to focus
attention on his research rather than
on the techniques required for its
study.

The following pages describe the
major problems encountered in the
implementation of a
computer-controlled laboratory and
outline methods for their solution.
Fir st, general system design
considerations will be discussed in
order to clarify the distinction
between conventional numerical
analysis programming and process
control programming. An analysis of

*This work was partially supported by
PHS Grant No. MH16817.

system design in the context of levels
of supervisory control will be
described. Secondly, a computer
language designed to facilitate
man-machine interface will be
described in detail.

THE PROCESS CONTROL
COMPUTER

The major differences between
conventional numeric computation
and process control computation fall
into two categories. The first category
concerns specialized input/output,
which in a typical laboratory setting
consists of either digital switching
circuits which are responded to or
controlled by the computer or analog
input/output (I/O) devices used for
physiological or acoustic research. The
second category concerns the timing
of events in real time.

Input/Output
Digital analog output (DAO). DAO

from the computer is typically
effected by transferring the contents
of an entire word or byte of computer
memory to the appropriate output
register. More sophisticated systems
generally provide data-channel or
direct-memory-access channel control
of DAO, allowing the computer to
issue a single "start output"
instruction which initiates
hardware-controlled transfer of entire
blocks of memory to the output
register. On the other hand, simpler
hardware configurations or unique
applications require precise control of
single digital switching circuits which
operate relays or stimulus lights. Such
independent switching is easily
managed if the output-controlling
program maintains in memory a copy
of each output register's current
status. Such a practice permits
modification of an arbitrary number
of output bits in any register while

insuring that the remammg bits,
possibly assigned to a totally unrelated
function, are left undisturbed.

Analog output from digital
computers is generally controlled by a
digital-to-analog converter (DAC), an
inexpensive device consisting of little
more than a network of resistors, and
a small voltage amplifier. DACs
convert the configuration of on and
off bits present at their input to a
corresponding discrete output voltage.
Effectively continuous voltage change
at the output of a DAC is achieved by
outputting a continuous series of
computer words or bytes from the
CPU to the DAC at high data rates.
Thus, although it would be possible to
control a DAC with discrete
program-controlled outputs, typical
configurations drive a DAC with a
direct-memory-access channel.

Digital input (DINP). Digital input
to a computer generally presents more
of a problem than DAO, since
asynchronous external events will
frequently demand immediate
attention by the CPU which is
currently involved in unrelated
activities. Two techniques are
commonly used to manage DINP in a
manner designed to insure rapid
response to external events. First, on
computers equipped with priority
interrupt hardware (see discussion of
interrupt servicing below), arbitrary
groups of input bits are assigned via
interrupt request circuitry to
subroutines which are automatically
entered each time an external circuit
becomes active. Secondly, computers
lacking sophisticated
interrupt-servicing hardware may be
programmed to poll periodically all
possible input registers and to branch
to appropriate service routines if the
status of any register has been altered
by some external event. In the latter
case, response time is limited to the
polling frequency and may therefore
be subject to objectionable variation.

Several methods are used to input
analog information to digital
computers. An inexpensive approach is
to use a comparator, a device which
monitors an analog voltage and
outputs a digital warning signal if the
voltage exceeds or drops below preset
limits. However, the simple
comparator is inadequate for most
applications in the behavioral sciences,
especially in psychoacoustics and

203

INTERRUPT SERVICING
At this point, this discussion will

shift from a general description of
process control computation to a
specific analysis of interrupt servicing.
After a brief discussion of hardware
interrupt circuitry, the programming
problems which face the system
designer will be discussed in detail.

Hardware Interrupt Circuitry
Most modem computers include an

instruction such as a "return jump" to
facilitate communication with
subroutines. Return jump procedures
typically operate by preceding an
unconditional branch with storage of
the program counter in a readily
accessible location. Saving the program
counter at the time the branch is
executed allows the branched-to
program to return to the instruction
following the return jump. Hardware
interrupt circuitry operates by forcing
the execution of a return jump
instruction to a specific memory
location. A routine designed to service
the interrupt will generally begin at
this location. At the termination of
interrupt servicing, the routine will
return to the interrupted program
using the stored value of the program
counter.

the address of the program to be
executed at the end of the interval,
and the indicator bit to "on,"
indicating that a programmed timer is
in use. The single hardware timer is set
to interrupt to the timing service
routine at an installation-determined
frequency by loading the timing
register with the appropriate value. At
each timer interrupt, the timer is
restarted to time the next interval,
then all the indicator bits (frequently
placed in a single word) are
sequentially polled. For each bit set to
"on," the associated time delay
register is decremented by one and
tested for zero, and if zero, the return
address is entered into a queue for
transfer back to the user's program.
The number of programmed timers in
such a system is limited only by
available memory and consideration of
instruction execution delay in the
polling/queuing procedure.

Interrupt Servicing Software
An interrupt service subroutine

(ISS) will generally be divided into
three parts: a prologue, a body, and an
epilogue. The prologue, executed
immediately upon entry to the ISS,
saves active central processor registers.
The body of the ISS analyzes the
appropriate input devices and takes
whatever action the analysis dictates.
The epilogue restores all active
registers and returns to the interrupted
program.

programmable hardware timer which is
wired by the manufacturer to operate
at a particular user-selected frequency.
Such timers operate by incrementing a
particular program-accessible register
(often a location in main memory)
until it reaches zero, at which time an
interrupt is forced, transferring control
to a user-written timer servicing
routine. Most real-time applications
require simultaneous timing of several
independent events, yet the CPU may
contain only a single hardware timer.
Multiple event timing is usually
achieved by providing several
programmed timers driven by a single
hardware clock. Programmed timers
generally use two memory registers
and an indicator bit for each timer (see
Fig. 1). A user initiates a time interval
by setting one register to the time he
wishes to delay, a second register to

DECREMENT Ali,ll

+

81TliNF.-1

A(I,O n
AO.2l Il£1'IIW ADDlIESS

RESET TNER to TIME NEXT, SECONDS ,

+

A" VECTOR IN COIt£
lIlMB8lNED IlIlaI BY 2

F" CELL IN COR£ WITH
ICr LEAST IlIlaI IITS

Event Timing
The second major difference

between numeric computation and
process control lies in the area of event
timing. Many computers designed for
process control include at least one

physiological psychology, where a
continuous record of a varying analog
signal is required. Such input is
provided by a device known as an
analog-to-digital converter (ADC), or
digitizer, which periodically samples a
varying input voltage and produces the
digital representation of the voltage at
its output. Depending on price, ADCs
vary in sampling frequency from a few
thousand to over 100,000 samples per
second. Like analog output, analog
input typically requires a
direct-memory-access channel to
adequately handle the high data rates.

Fig. 1. An abbreviated algorithm for implementing several programmed timers
using a single hardware timer. Seetext for explanation.

204 Behav. Res. Meth. & Instru.,1972, Vol. 4 (4)

IL-

1551

Fig. 2. Interrupt serviemg by the resident monitor. In the operation
summarized above, time starts at a point where the Idle Loop is in control.
External Interrupt 1 occurs and transfers control to ISS1, which queues program
PR1 before returning. While ISS1 is in execution, a second interrupt occurs and
control is transferred to ISS2, which queues program PR2. ISS2 then exits,
allowing ISS1 to complete and return control to the Idle Loop. The loop then
interrogates the Communication Queue and finds and executes the call to PR1.
While PR1 is in execution, a third interrupt occurs and control is transferred to
ISSl. ISS1 queues PR3, then returns to PRI (which it had interrupted). When
PR1 finishes, control returns to the Idle Loop which calls PR2 and PR3 in turn.
At this point, the queue is empty, so control remains in the Idle Loop until the
next interrupt occurs.

INT3

set on top of the Interrupt Save Stack,
and then unmasking and returning to
the interrupted program.

The resident monitor Utility
Functions consist of frequently used
subroutines which perform common
functions such as bit manipulation,
I/O character conversion, or queue and
stack pointer handling.

Once the function of each unit in
the operating system is understood,
operation of the system as a whole
should become clear. At system
deadstart (powering up the computer
after it has been off), the queues and
stacks are cleared, their pointers are
initialized, the interrupt system is
enabled, the first clock interval is
initiated, and control passes to the Idle
Loop. As is shown in Fig. 2,
occurrence of an interrupt results in
transfer of control to the appropriate
ISS. Active registers are stacked, and

TIME

INT2

- ...,
RTN

IL - IOLE LOOP
ISSn -INTERRlPT SERVICING 9AROUTlNE n
PRn - QUEUED PROGRAM n
RTN- RETURN OR EXIT
INTn - EXTERNAL INTEflAUPT n

INTI

PR3

body sections of the ISSs when
interrupt interrogation indicates the
necessity for communication to some
program. When the Idle Loop finds an
entry in the queue, the execution
address at the front of the queue is
removed and control is transferred to
it.

The prologue of each ISS performs
two functions. Immediately upon
entry to an ISS, the interrupt system is
temporarily disabled, or "masked,"2
preventing all interrupts. The contents
of all active registers are then placed
on top of the Interrupt Save Stack.
The interrupt system is then unmasked
and control passes to the ISS body. If
interrupt analysis indicates the need
for some program, its execution
address is obtained and stored in the
Communication Queue. The ISS
epilogue operates by again masking the
interrupt system, removing the register

SUPERVISORY CONTROL 1:
THE RESIDENT MONITOR

At the nucleus of a real-time
operating system is the resident
monitor, a group of subroutines and
communication tables which are, by
virtue of their frequent use,
permanen tly core resident. The
resident monitor can be conceptually
divided into five units: the Idle Loop,
the ISSs, the Interrupt Save Stack, the
Communication Queue, and the
System Utility Functions. These units
will be treated in tum.

The Idle Loop consists of a
sequence of instructions which
continually test pointers in the
Communication Queue (see below)
and branch out of the sequence only if
pointer interrogation indicates that the
queue is not empty. The Idle Loop is
entered unconditionally by the exit
statement of any program.

The Communication Queue, in the
simplest case.! consists of a first-in,
first-out queue of program or
subroutine execution addresses.
Entries into the queue are made by the

Several important considerations
must be borne in mind when designing
an ISS. Foremost is the issue of
reentrancy: the fact that an ISS may
itself be interrupted. The nature of the
reentrancy problem should be clear in
the following example. Suppose that
program PROG is executing and an
interrupt occurs which transfers
control via the forced return jump to
subroutine ISS. ISS begins by saving
the active registers and the program
counter (all of which represent the
machine environment of PROG) in
location SAVE. As the ISS is
attempting to analyze the interrupt, a
second external event occurs, forcing a
second return jump to the beginning
of the ISS. Again, the ISS obediently
saves the active registers in SAVE,
overlaying the previous register values
for PROG. Thus, when the epilogue in
ISS restores the registers, control is
transferred back to the location within
ISS which was in execution when the
second interrupt occurred. ISS will
then proceed to the second execution
of its epilogue, and the system will
loop indefinitely.

A second problem occurs when the
interrupt analysis in the body of ISS
indicates the necessity for the
execution of some sequence of
programs which is excessively time
consuming or one which requires the
same core storage locations currently
in use by the interrupted program. In
either case, it is often desirable to
postpone program execution at least
until the interrupted program
completes execution. The scheme
outlined below provides solutions to
such problems.

Behav. Res. Meth. & Instru., 1972, Vol. 4 (4) 205

program starting addresses are placed
into the Communication Queue if
necessary. Even if ISSs themselves are
interrupted, control will eventually be
returned to the Idle Loop, at which
point the oldest entry in the queue
will be removed and executed. The
nucleus of such a system (1) can be
implemented on most small computers
using only several hundred words of
storage, and (2) permits effective
utilization of all the system's
resources, both hardware and
software.

SUPERVISORY CONTROL 2:
SPECIAL FUNCTION

SUBPROGRAMS
The resident monitor which

supervises I/O interrupts and event
timing may be considered as the
lowest or most basic level in a
complete process control supervisory
system. At the next higher level,
special function subprograms may be
provided which serve to interface the
basic CPU hardware and specialized
I/O equipment to the needs of the
user. These subprograms, generally
coded as user-callable subroutines,
often reside in secondary storage and
are loaded for execution only as
needed. The routines are typically
designed to control a particular I/O
device by operating the appropriate
output lines or sensing input lines
associated with the device. For
example, a call to one routine might
result in advancing the paper in a
memory drum or other stimulus
presentation device, while a second
call interrogates the status of input
lines associated with response keys
operated by the S who is viewing the
drum. Such routines effectively isolate
the programmer from detailed
machine language bit-oriented I/O
programming, thus freeing him to
focus attention on the general
organization of the controlled process.

At this same level, programs will
frequently be provided which do not
actually interrogate or operate I/O
lines, but rather modify various status
flags associated with general I/O
operations. For example, it may
become necessary to place the
input-detection apparatus of the
computer in a masked mode for some
period of time, then subsequently
restore the unmasked status. Simple
routines which permit ignoring or
accepting external inputs may be
provided, which operate by setting or
resetting bits in appropriate mask
words which are sensed by other I/O
routines.

SUPERVISORY CONTROL 3:
THE PROCESS CONTROL

LANGUAGE
At the third level of supervisory

control are the programs which
supervise the scheduling of events in
real time and the collection and
storage of data. Programs at this level
are normally written in a high-level,
user-oriented language and serve to
integrate the elements of the system
described in the preceding pages into a
single functional entity. Unlike
lower-level routines which form the
permanent operating system, such
user-written programs are temporary
and become part of the system only
long enough to perform a particular
function, such as a single experiment
in the behavioral sciences. A program
package of this type may be
conveniently divided into two parts.
The first part consists of the actual
process programming package,
containing small subroutines which
remain in storage at all times
supervising timing functions and
response acquisition. In addition, this
part may contain secondary-storage
residen programs which manage data
transfer between small in-core buffers
andlarger secondary storage files. The
second part of each package contains
support routines used to generate
storage files containing stimulus
information and to dump response
files to cards or printer for subsequent
analysis.

This third level of control
supervision is exceedingly important
from the view of system design, since
it is at this level that the user is
interfaced to the computer and
through the computer to the
programmed task. The system designer
is thus obliged to establish a vehicle
for communication of information
between CPU and user which is, on the
one hand, versatile enough to allow
implementation of the most esoteric
programming needs and, on the other
hand, is conceptually straightforward
to even the most naive user. The
choice and design of a programming
language thus becomes a critical issue
in system design, an issue worthy of
careful scrutiny.

Programming languages group
themselves into several categories. The
first category is the traditional
sequential statement approach,
represented by languages such as
FORTRAN and BASIC for which the
conceptual organization is similar to
that of an Assembly language program.
The second category includes
languages organized by paragraphs or
"blocks," such as ALGOL or PL/t. A
third category includes languages
designed to operate on abstract data
structures, such as list-processing
languages like SNOBOL or LISP.
Consideration of these language types
in the context of process control
requirements leads to several
conclusions. Process control in real

time is essentially a repetitive,
sequentially organized series of events
which operate on a linear data base. In
psychological research, "events"
consist of stimulus presentations and
response acquisition serially ordered in
time, while the "data base" consists of
ordered vectors of stimulus and
response information. As such,
languages designed to manipulate
complex data structures such as lists or
networks are clearly inappropriate.
Language features such as nesting of
blocks and recursion are superfluous
and tend to appear complex and
confusing to the beginning
programmer. Although complex
arithmetic processing is rarely needed
in process control, the repetitive,
sequential logic flow in process
programs suggests the need for
language features which facilitate
control of iteration and conditional
branching. At first glance, then,
FORTRAN or BASIC might seem to
be the logical choice for a control
language. But consideration of
FORTRAN-like languages in the
context of the previous description of
interrupt, process I/O, and timer
servicing tend to suggest its
inadequacy. In FORTRAN, a main
program or its subroutines are
typically handled as units, entered
with their first executable statement,
and allowed to run until execution of
the appropriate CALL EXIT or
RETURN state ment. Thus,
termination of a timed delay results in
transfer of control to a program's
entry address, at which point the
programmer must determine what
section of code is to be executed next,
then transfer to it. The programming
of timed delays, coupled with the
necessity for complex bit
manipulations for process I/O, tend to
burden the programmer with complex
yet petty bookkeeping which has
nothing to do with the actual logic of
the controlled process. At best, a
FORTRAN-written process program
degenerates into little more than a list
of subroutine calls, where the
subroutines do all the work. Years of
struggling with cumbersome
FORTRAN process programs and the
burden of laboriously teaching the
system to new programmers has led us
to a rejection of FORTRAN in favor
of a process language of our own
design. At present, a year's experience
with our language, PROSS, has shown
it capable of effectively eliminating
most of the FORTRAN language
problems, especially in the area of new
programmer instruction.3

THE PROSS PROGRAMMING
LANGUAGE

PROSS is intended to be a
system-independent language, readily

206 Behav. Res. Meth. & Instru., 1972, Vol. 4 (4)

Summary of PROSS Non-I/O Statements

Table 1
Detailed Description of an Implementation of the PROSS Language for an IBM 1800

Proeess Controller Used for Research in Experimental Psychology

Sample PROSS 110 Statements
*READFILE filename INTO VAR I Disk read
*PRINT VAR I Fixed format print
*ALLOW Permit subject responses
*SEARCH I Slide projector operate
*FINISH Finalize experimental session
*SAMPLE VAR I Monitor analog input point

C Integer Constant
LAB Statement Label, Numeric or Alphanumeric
VAR Subscripted or Nonsubscripted Integer Variable
I Nonsubscripted Integer Variable
PROG Program Name (an External Symbol)
M Nonsubscripted Formal Argument
LO Logical Operator (GT, LT. EQ. NE, GE, LE)
o Arithmetic Operator (+, -r-, *. I. **)

COMMON VAR1(C), VAR2(C), etc. Array declaration
CONSTANT 11 =C, 12 =C, 13 = 'literal string" etc.

Constant declaration
LAB IF (VAR .LO. VAR) LAB1, LAB2 Conditional branch
LAB IF (VAR .LO. VAR) any statement Conditional branch
LAB IF (VAR .LO. VAR) any nonconditional statement ELSE any statement

Conditional branch
LAB GO TO (LAB1, LAB2, ...), I Conditional branch
LAB GO TO LAB1 Unconditional branch
LAB DO LAB WHILE VAR .LO. VAR Iteration control
LAB INCREMENT VAR, VAR Loop index control
LAB DECREMENT VAR, VAR Loop index control
LAB DELA Y VAR Programmed delay
LAB DEPART Indefinite programmed delay
LAB QUEUE PROG Queue out-of-core eoreload
LAB LET VAR = arithmetie expression Arithmetic operation

(LET is optional; expression in infix as in FORTRAN)
LAB FETCH VAR Load to aeeumulator
LAB STORE VAR Deposit from aecumulator
LAB MOVE VAR TO VAR1 I Array transfer
LAB ZERO VAR I Array initialize
LAB CALL PROG (M, M1, etc.) Subroutine call

END

DECREMENT statements which
replace the familiar I 1+ 1
construction of FORTRAN.

Delay in program execution is
effected by DELAY and DEPART
statements. The DELA Y statement
introduces a timed delay in program
execution, and a DEPART statement
introduces an untimed or indefinite
delay. In either case, resumption of
program execution may be made
response-contingent through prior
execution of an *ALLOW statement
(see I/O statement discussion below).

Three statements are provided to
allow the direction of program
control. Unconditional transfer is
directed by the GO TO statement as in
FORTRAN, ALGOL, or PL/l.
Conditional transfer may be controlled
by a computed GO TO as in
FORTRAN or by an IF statement.
Since event-contingent transfer is
frequently required in process control,
special emphasis has been placed on
the PROSS IF statement, and three
distinct types are provided. All IF
statements begin with a logical
expression, which is followed by
(1) two labels separated by a comma,
(2) any statement in the language, or
(3) any two statements in the language
separated by ELSE. Iterative program
control is directed by a statement of
the form " DO label WHILE logical
expression." The PROSS DO-loop
construction allows the programmer to
specify both the index type
(subscripted or nonsubscripted
variable) and the nature of the index
manipulation used for loop control.
INCREMENT and DECREMENT
statements are typically used to
manipulate the loop index; thus, for
example, iteration count might be
determined by decrementing a
subscripted variable by a second
subscripted variable until smaller than
a third subscripted variable. The
flexibility which PROSS IF and DO
statements provide for the
programmer are to a large extent
responsible for the acceptance which
the language has received.

PROSS provides two statements to
direct interprogram communication.
CALL statements operate identically
to their FORTRAN namesake.
QUEUE statements are used to
transfer control to a non core resident
program. QUEUE statements would be
omitted in an implementation of
PROSS for a smaller computer lacking
secondary storage.

PROSS facilitates array
manipulation through MOVE and
ZERO statements. MOVE statements
are used to transfer an entire array, or
any portion of an array, to some other
location. ZERO statements are used to
zero an array or portion thereof.
MOVE and ZERO are provided

Processing Statements
Processing statements provide

arithmetic processing and program
control which may be either
time-contingent or response-contin
gent. Arithmetic operations are
expressed in arbitrarily complex, fully
parenthesized notation, as in
FORTRAN. The frequently used
operations of incrementing or
decrementing a single variable (such as
the index or counter in a loop) are
facilitated by INCREMENT and

Declarations
PROSS includes two statements for

the declaration of data. COMMON
statements are used to allocate storage
areas used both for data disposition
and for interprogram communication.
Common storage is placed in specific
installation-determined data buffering
areas rather than within a user's
program. CONSTANT statements are
used to declare variable or array
storage within a user's program and to
preassign specific values to variable
names. Both integer values and
alphanumeric strings may be
preassigned.

implemented on any system which
provides a macroassembler.f The
primary purpose of the language is to
facilitate the integration of the
programming elements of Supervisory
Control Levels 1 and 2 into functional
process-control packages. A discussion
of the structure of the language is
included here as an illustration of a
method for organizing a complex
system into an easily understood
command sequence.P

PROSS is designed to provide a
convenient means for coding any
experimental procedure which is
organized as a sequence of discrete
events ordered in time. The language
contains three statement categories,
concerned respectively with
declaration, processing, and I/O
control. In order to facilitate learning
the language, similarity to FORTRAN
has been maintained wherever
appropriate. The three statement
categories, and the PROSS statements
within each category, will be discussed
in turn. (Table 1 details an
implementation of the PROSS
language for an IBM 1800 process
controller.)6

Behav. Res. Metb. & lnatru., 1972, Vol. 4 (4) 207

Table 2
Sample PROSS ProlJam

The fonowiDg prolRlll in PROSS performs the lIIIDle function as the FORTRAN program
described by Reatle and Brown (1969) for a computeM:Ontroned laboratory using a
siDcle Kodak rando_acce. slide projector and four six-button S response boxes. The
comments in parentheses are for clarification aDd are not part of the PROSS lanauage.

Note that the "COMMON BLOCK control stGtement, in conjunction with the COMMON
statement, specifies the communication linkage from the program into installation-defined
core data buffers. SAMPL and PROGM are arbitrury external symbols (program names).
The lJariables in COMMON, excluding the JRESP array, are initialized by program
PROGM, which is automatically called on experimental session initialisation as the
result of compiler-generated coding.

execution, each entered by the
resident monitor upon recognition of
the appropriate interrupts.

NOTES
1. A more complex communication

queue might include additional words or
bits for coding execution priority. The
priority would be set by the program which
inserted the program name or address into
the queue (tYPically an ISS). The system
loop would then be required to interrogate
the entire queue each time through the loop
and would transfer to the routine having the
higher priority. regardless of its position in
tbe queue.

2. On small computers having only a
single interrupt input, the system is
effectivelY masked by simply disabling the
interrupt system. On larger multiple
interrupt systems, hardware instructions are
typically provided to set or reset bits in an
interrupt mask register, thus effectively
disabling only selected interrupts. In the
case of the latter (multiple interrupt)
system. the ISS need only mask interrupts
which transfer to itself; other interrupts can
be left active without fear of interference.

3. The FORTRAN system in use in our
laboratory is IBM 1800 FORTRAN II. It
should be noted that a FORTRAN IV
system allowing multiple entry points to a
process program would be far less
cumbersome.

4. Our compiler compiles PROSS source
statements to macro calls hosted in IBM
1800 Assembly language. The macro output
approach greatly simplifies the programming
of the compiler and allows modification of
object code by simply altering the PROSS
macro library.

5. It should be noted that PROSS is
superficially similar to PSYCHOL (McLean,
1969). PROSS has at least two advantages
over PSYCHOL: first, its ease of
implementation. and. secondly, its
structural simplicity. We have taught naive
programmers the PROSS language with less
than 2 weeks of informal instruction.

6. A subset of this system has been
implemented on a 4K PDP/8E with no
secondary storage. The resident
monitor-delay time portion of the system
has been implemented on a 4K-bYte Micro
810.

REFERENCES
McLEAN, R. S. PSYCHOL: A computer

language for experimentation. Behavioral
Research Methods & Instrumentation.
1969. I, 323-328.

RESTLE, F.. & BROWN. T. V. A computer
running several psychological
laboratories. Behavioral Research
Methods & Instrumentation, 1969, 1.
312-317.

SUMMARY
I have attempted to outline the

general structure of an operating
system designed to provide
user-oriented process control for a
computer installation used for
behavioral science research. Three
conceptually distinct levels of control
supervision were discussed, and special
emphasis was placed on the interface
between the user and the system at the
highest level. A process-control
language designed specifically to
facilitate the user-system interface was
described in general and is specified in
detail in Tables 1 and 2.

(Tum off feedback light)

(Open shutter on slide projector)
(Ready to accept response interrupts)

(Close shutter)
(Stop accepting response interrupts)
(Initiate search for given slide in
random-access slide projector)

(Transfer responses into user array)

(Tum on feedback light)

provided by a macro assembler is
brought into the reach of the
beginning programmer instead of
remaining accessible to only the
sophisticated machine-language
programmer.

The general structure of a PROSS
program (see Table 2) resembles a
FORTRAN program in external
appearance. Each program begins with
several compiler control statements,
indicating program type (e.g., program
vs subroutine) and data
communication area. The
communication area is one of several
defined by the installation as being
accessible to process programs and, as
such, is analogous to FORTRAN
labeled COMMON. The control
statements are followed by
conventional program declaration
statements which allow the
programmer to define variables and
arrays. As the example in Table 2
suggests, executable statements consist
of a temporally ordered sequence of
events spaced appropriately in time by
DELA Y statements. The exit and
reentry coding which is required for
effective time sharing in an
interrupt-oriented time-sharing system
is automatically inserted by the
compiler. The user thus creates his
program with the idea that he is in
control of the entire system while his
program is in execution, while, in
actuality, his and several other
programs may be simultaneously in

"COMMON BLOCK 2
"LIST SOURCE PROGRAM
"PROCEDURE SAMPL

COMMON NMAX. TIME1. TIME2. TIME3. TIME4. ISLID(50). JRESP(50)
CONSTANT N =1
DO LOOP1 WHILE N .LT. NMAX

"OPEN
"ALLOW

DELAY TIME1
"CLOSE
"IGNOR

"SEARCH ISLID(N)

"RESPONSES INTO JRESP(N)
DELAYTIME2

"CUELITE ON JRESP(N)
DELAY TIME3

"CUELITE OFF JRESP(N)
DELAYTIME4
INCREMENTN

LOOP1 CONTINUE
QUEUEPROGM
END

Input/Output
PROSS uses a unique and highly

general input/output facility. As
discussed above, installations will
typically develop a series of
special-purpose input/output control
subroutines, each designed to control
or monitor some specific process. The
appropriate calls to such subroutines
can easily be generated using the
facilities of a macro assembler, which
are now available as standard
supported software for most small- to
medium-sized computers. The PROSS
compiler generates calls to I/O
subroutines through direct
transliteration of the source statement,
thus allowing each installation to
establish its own macro library which
is accessible to the PROSS
programmer without compiler
modification. PROSS I/O statements
contain one or more words, separated
by blanks, commas, or parentheses.
The compiler interprets the first word
as a macro name and interprets all
remaining words as parameters to that
call. The resulting macro call is then
expanded by the assembler into either
the appropriate subroutine call or into
the actual code necessary to control
the I/O operation. Effectively, the
programming power normally

primarily to facilitate transfer and
manipulation of blocks of stimulus or
response information such as character
strings used in CRT display devices.

208 Behav. Res. Meth. & Instru., 1972, Vol. 4 (4)

