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Detecting nonlinearity in psychological data:
Techniques and applications

RICHARD A. HEATH, ALICE KELLY, and MITCHELL LONGSTAFF
University ofNewcastle, Callaghan, New South Wales, Australia

Moderngraphical and computational techniques for detecting nonlinearity in psychological data sets
are presented. These procedures allow researchers to determine the information complexity of tem­
poral data, using physiological and psychological measurements, and to provide evidence for chaos in
time series contaminated by measurement noise. Problems with noise reduction and appropriate ex­
perimental control, using surrogate time series, are discussed, and applications of the technology are
illustrated, using response time, handwriting, and typing data sets. In an experimental application of
appropriate nonlinear analysis procedures, the results of a time series prediction experiment confirm
that some subjects are sensitive to chaos. In contrast to previous attempts demonstrating sensitivity to
chaos, the experiment reported here employs surrogate series to control for linear stochastic aspects
of the stimulus sequences, such as autocorrelation. Recommendations for the selection of appropriate
software for performing nonlinear analyses are presented, including a comprehensive list of World­
WideWebsites offering such software.

Most statistical analysis procedures used by psychol­
ogists, such as analysis ofvariance and discriminant anal­
ysis, are based on the general linear model or one of its
multivariate generalizations. Except for repeated measures
designs, with their attendant constraints, such as com­
pound symmetry (Howell, 1997), most of these conven­
tional analyses do not incorporate an important temporal
element. Most people would intuit that human behavior
is observed in a spatiotemporal environment in which the
primary measurements are multivariate and temporal. It is
surprising, therefore, that very little psychological research
employs the interesting and challenging methodology of
time series analysis.

Conventional time series analysis represents time ei­
ther as essentially continuous, as in the record traces for
physiological measures, such as heart rate and EEG, or as
discrete events, evenly or, frequently, unevenly spaced in
time. The primary measurement tools include autocorre­
lations that relate behavior sampled at different time lags.
Intuitively, behavior is more highly related (i.e., corre­
lated) the more temporally contiguous it is. This principle,
ofcourse, is the mainstay of numerous theories of learn­
ing, conditioning, and memorization. As the temporal sep­
aration between events increases, the autocorrelation fre­
quently decreases, leading to a violation of the compound
symmetry assumption.
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It is worthwhile noting that spectral analysis, a com­
monly used measurement procedure in physiological psy­
chology, encapsulates temporal information by transform­
ing time into frequency. A related technique regresses the
current observation in a behavioral time series on previ­
ous values from the same series to predict future behav­
ior. This process yields linear autoregression equations
(Gottman, 1981) that have mathematical properties sim­
ilar to those of the more familiar multiple linear regres­
sion equations derived from the general linear model. In
the temporal case, we predict the next observation from
the same (hence, auto) observation set, whereas in mul­
tiple linear regression, the criterion is generally quite dif­
ferent from any of the predictors.

Most psychologists are familiar with the general linear
statistical model in the guise of multiple linear regression
and its special case, analysis of variance and covariance.
However, many psychological phenomena deviate some­
what from the linear model's predictable, gradual change
over time. What is frequently significant to both casual
and professional observers ofhuman behavior, whether it
be normal or psychopathological, is the sudden and almost
unpredictable changes that can occur. Any quantitative
analysis of such changes requires the consideration of a
nonlinear model, one that does not follow the steady pre­
dictable change that characterizes linear representations.

Many scientists, psychologists included, have become
increasingly intrigued by the rich behavior representa­
tions that are possible with nonlinear methods. By sim­
ply changing the value of a single parameter in an equa­
tion, such as the logistic recursion (Kaplan & Glass, 1995),
we can generate behavior sequences that converge on ei­
ther one state or an ordered sequence of stable states.
These are known as fixed-point and limit cycle attractors,
respectively. Under other conditions we can generate
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fits the data adequately, for sections of the data that are
stationary-that is, the autoregression parameters do not
change over time. When the data are nonstationary, it may
be necessary to fit different autoregression equations to
stationary nonoverlapping partitions of the time series.

Evidence for nonlinear determinism in the detrended
IKT time series can be obtained by controlling for all of
the linear dynamics present in the time series. Thanks to
modern nonlinear data analysis technology, this appar­
ently impossible process is less difficult than it may seem
at first. Physicists, such as Abarbanel (1996) and Kantz
and Schreiber (1997), who have at hand long time series

chaotic behavior that appears noiselike but is actually de­
terministic and predictable in the short term. Even more
intriguing is the prospect of estimating a precise param­
eter range where the nonlinear system spontaneously
self-organizes and exhibits lifelike behavior. This; of
course, is the controversial edge-of-chaos phenomenon
(Heath, 1998; Kauffman, 1993).

This paper is designed to familiarize psychologists with
a selection of up-to-date methods for evaluating nonlin­
ear dynamics in behavior sequences. Basic computation
procedures will be accompanied by specialized techniques
for detecting nonlinear determinism in noisy experimen­
tal data, together with hypothesis-testing procedures that
use surrogate data sequences. The paper concludes with
some illustrative applications of the techniques in a va­
riety of behavioral tasks, including a unique procedure
for evaluating human sensitivity to chaos.

Estimating Nonlinear Determinism
From Behavior Sequences

Data suitable for nonlinear analysis consist of the se­
quential observation ofa behavior characteristic, such as
a mood, at regular intervals or as a series oftime measures,
such as response time (RT) or typing interkeypress time
(IKT). The latter can be converted into a response rate
and then interpolated so that the sampling over time is
regular. Otherwise the actual time delays can be simply
mapped onto the integers so that the nth RT, RT(n), is
treated as if it were observed at equally spaced points in
time, roughly equal to the total observation period divided
by the total number of observations, N.

Other possibilities exist when there are simultaneous
recordings, as with a multichannel EEG. In such a case,
there can be nonlinear processes within a recording chan­
nel, as well as complex interactions between channels.
Linear methods that include commonly employed spectral
analyses are not designed to cater to such complexities.

Consider a sequence ofseveral thousand IKTs recorded
during a single typing session lasting at least 30 min. First,
any linear (or possibly, second-order polynomial or above)
trend is removed from the data sequence, and the result­
ing residuals are analyzed. A preliminary linear analysis
reveals that an autoregression equation of the form

r

IKT(n + 1)= I,a;IKT(n + 1- i)
i=l

(1)

from possibly chaotic stationary sources, have devised
techniques for transforming data sequences into samples
containing all of the linear information-that is, autocor­
relation and corresponding power spectra-in the original
data set. These samples are known as phase-randomized
Gaussian-scaled surrogate series. They are created by ap­
plying Fourier analysis, randomly scrambling the phase
spectrum, and then reconstructing the time series, using
both the original power spectrum and the new phase spec­
trum. The resulting time series is then rescaled so that it
conforms with a Gaussian distribution. This means that
samples from a null hypothesis population ofequivalent
linear processes are available so that a nonlinear quantifier,
computed from the experimental series, can be evaluated.
Ifthe experimental value lies outside ofthe (1 - a)lOO%
confidence interval for this same statistic under the null
hypothesis, we can reject the latter and conclude that the
time series dynamics are not entirely linear. Various con­
verging analyses can then be implemented to determine
the exact nature of the nonlinear dynamics.

The decision process can be summarized as follows.
Decide on a nonlinear quantifier, such as the time rever­
sal index or the correlation dimension (Heath, 2000),
and then determine its distribution for surrogate series
that have all of the linear properties of the experimental
time series but none of the nonlinear dynamics. If the
same statistic computed for the experimental series is not
contained in this confidence interval, reject the null hy­
pothesis and conclude that the experimental series has
nonlinear determinism. In the next section, we will exam­
ine the results of several such analyses, using IKT time
series (N = 2,480; Heath & Willcox, 1990), sequential
RTs recorded in a four-choice task (N = 4,800; Kelly,
Heathcote, Heath, & Longstaff, in press), and a horizon­
tal handwriting velocity time series (N = 3,338; Long­
staff & Heath, 1999).

Linear Properties of the Experimental Time Series
The linear properties of the experimental time series,

X(t), t = 1,N, can be best represented by lagged phase
plots, which suggest the presence of autocorrelation in
the data set, as well as power spectra. On such plots, X(t)
is plotted againstX(t - L), when the lag is L, or alterna­
tively, an estimate of the derivative of the time series at
time t. All the surrogate series are constructed so that
everyone of these linear properties is preserved.

The lag one phase plots presented in Figures lA, 2A,
and 3A, for the IKT, RT, and handwriting velocity time
series, respectively, do not clearly indicate nonlinear de­
terminism, although the plot for the handwriting veloc­
ity data appears to be the most highly structured of the
three. The general positive slopes for both the RT and the
handwriting velocity time series indicate significantly
positive lag one autocorrelation for these series. The cor­
responding power spectra, shown in Figures lB, 2B, and
3B, are reasonably structured, with most energy being
located at the lower frequencies. It is noteworthy that the
spectra for both the experimental and a sample surrogate
series, constructed using phase randomization, are iden-
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(2)

then reconstructs the happy situation that existed prior to
the accident. To the observer, this time reversal is bizarre
and, of course, impossible in real life. So a useful non­
linear measure involves computing a time asymmetry
index, using (Schreiber, 1999)

N 3
L [X(n)-X(n-r)]

tfJrev(r) = -----'n-'--=_!_+_l _

Uy<n)- X(n-f)j' }~
Since the time asymmetry index requires a reversible
sign, it is computed as the cube of the difference between
time series observations with a lag of rtime units divided
by the cube of the root sum of squares of the same dif­
ference. This procedure yields an appropriate scalar time
asymmetry index.

The results ofthis analysis, pooled over the various val­
ues oflag, 't', can be computed with the TISEAN (Hegger,
Kantz, & Schreiber, 19(9) timerev command. The strategy
involves estimating the time asymmetry index, tfJrev' for
the experimental series and then computing the same index
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Figure 1. (A) IKT Lag 1 phase plot for interkeypress time
(IKT) data for Subject 10. All IKTs greater than 1,000 msec have
been omitted. (B) Power spectrum for IKT data for Subject 10.
The spectra for the experimental (continuous line) and a repre­
sentative surrogate series (broken line) are superimposed.

tical. This observation confirms that each surrogate series
contains all of the linear structure contained in the cor­
responding experimental time series. So, the distribution
of indices for the surrogates enables the null hypothesis
of linearity to be evaluated, using a resampling scheme
that provides an estimate of the sampling distribution
when the null hypothesis is true.
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Figure 2. (A) Lag 1 phase plot for sequential response time (RT)
data for Subject 3. (B) Power spectrum for RT data for Subject 3.
The spectra for the experimental series (continuous line) and a
representative surrogate series (broken line) are superimposed.
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Testing the Null Hypothesis of Linearity
for a Time Series Sample

A linear system, such as an undeformable elastic ob­
ject dropping within a vacuum under the force of grav­
ity and then bouncing up to reach the same height above
ground level, has the interesting property that its dy­
namics remain invariant under reversal of the time di­
mension. In other words, a video of the phenomenon will
look identical to the observer whether it is played forward
or backward. The same cannot be reported for irrevers­
ible, possibly nonlinear systems, for which the dynamics
are distinctly time irreversible. An example of this time
reversibility is an Australian road safety advertisement
that shows a car accident in which a car rolls over several
times and. apparently kills the driver. A reversed video
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Figure 3. (A) Lag 1 phase plot for handwriting velocity data
for Subject II. (8) Power spectrum for handwriting velocity data
for Subject II. The spectra for the experimental series (continu­
ous line) and a representative surrogate series (broken line) are
superimposed. -20 -15 -10 -5 -0 5 10 15 20
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estimate ofthe corresponding parameter for the surrogate
series. E[ lPsurr] and Var[lPsurr] are the mean and variance of
lPsurp respectively.

As is shown in Figures 4, 5, and 6, the time asymmetry
index for the experimental data series was not significantly
different from the index computed for the corresponding
surrogate series for the IKT data (z = - 1.25,p > .05), but
it was significantly different for both the RT sequence data
(z = 6.67, p < .001) and the handwriting velocity data
(z = 5.71,p < .001). This result suggested that, whereas
the IKT series had no discernible nonlinear determinism,
the other two series did.

A Reevaluation of Nonlinear Determinism,
Using Noise Reduction

Experimental data are frequently affected by both mea­
surement noise and noise from other sources, such as sto­
chastic aspects of the process dynamics. Consequently,
any nonlinear determinism can frequently be difficult to
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for a moderately large number ofsurrogate series, gener­
ated using the TISEAN surrogates command. These lat­
ter series are generated from the experimental series and
have all of the linear properties ofthat series, including the
mean, variance, autocorrelation, and power spectrum.

The TISEAN surrogates command can also ensure that
the distribution ofdata values remains invariant between
the experimental and the surrogate series, although some
compromise between equality ofdistributions and equal­
ity of power spectra needs to be considered. All that is
missing from the surrogate series is the nonlinear deter­
minism, which is removed by randomizing the phase spec­
trum prior to reconstruction of the surrogate series. So
the null hypothesis of linearity can be evaluated, using
the distribution of the «: statistic for all of the surrogate
series. Provided the sample size exceeds, say, 30, the test
statistic

Figure 4. Time asymmetry test distribution for the surrogate
series generated from the interkeypress time data for Subject 10.
The index for the experimental series is indicated by the arrow.
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is distributed approximately as a standardized normal dis­
tribution. lPexp is the sample estimate of the time asymme­
try parameter for the experimental series, and lPsurr is the
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Figure 5. Time asymmetry test distribution for surrogate se­
ries generated from the response time sequence data for Sub­
ject 3, using a four-choice task. The index for the experimental se­
ries is indicated by the arrow.



284 HEATH, KELLY, AND LONGSTAFF

·2.0·1.5,'.0-0.15-0.00.51.01.52.0

Surrogate Time Asymmetry

Figure 6. Time asymmetry test distribution for surrogate se­
ries generated from the handwriting velocity data for Subject 11.
The index for the experimental series is indicated by the arrow.
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Using Recurrence Plots to Detect
Nonlinear Determinism

A recurrence plot prints a series of colored points on
a graph containing identical x- and y-axes, each axis rep­
resenting the numerical sequence of the N data values in
the time series. The color of the point (i,j), i.j = 1, N, is
proportional to the distance between these points when
they are embedded in an appropriate embedding space.

a greater level of structure than is evident in the plot of
the original data.

A similar revelation ofstructure following noise reduc­
tion is evident in Figures 8A and 8B for the handwriting
velocity data for Subject 11. Using the TISEAN project
command and the same parameters as those used for the
RT sequence data, the standard deviation was reduced
from 11.02 to 9.23. When compared with the RT data, the
handwriting phase plots became more highly structured
following noise reduction.

In the following analyses, the noise-reduced series are
used, on the basis of the assumption that the nonlinear
determinism, ifpresent, serves as a signal to be detected
in the presence of stochastic noise. By reducing the lat­
ter, there is a greater opportunity to quantify the nonlin­
ear structure.

Figure 7. Original (A) and noise-reduced (B) phase plots for
the response time (RT) sequence data for Subject 3.
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detect without some form of noise reduction. The tech­
niques for reducing noise in experimental time series in­
volve first transforming the unidimensional time series
into points located in a suitably determined multidimen­
sional space, so that (1) each dimension ofthe space is in­
dependent and (2) the number ofdimensions is sufficiently
large that interpoint distances are consistent throughout
the series. Once the first condition is satisfied, we have
an embedding, and the second condition ensures that the
number of dimensions is sufficiently large that the pro­
portion offalsely located nearest neighbors is negligible.
For example, if a sphere is collapsed from three to two
dimensions, points at the poles will become nearest neigh­
bors, whereas in an adequate number ofdimensions (three
in this case), they are maximally distant.

Noise reduction was effected by using the TISEAN pro­
gram project, which assumes that the experimental data
are represented by a low-dimensional system containing
the nonlinear deterministic signal and a high-dimensional
component representing noise (Grassberger, Hegger,
Kantz, Schaffrath, & Schreiber, 1993). The algorithm em­
ploys orthogonal projections of the original data set onto
the lower dimensional space to enhance the signal- noise
ratio over several iterations ofthe procedure. This process
tends to reduce the data variability over successive appli­
cations of the algorithm in a fashion similar to principal
components analysis-that is, the first component ac­
counts for most of the variability, and successive com­
ponents account for decreasing proportions ofthe remain­
ing variability.

The RT sequence data were embedded in four dimen­
sions, projected along a single phase space dimension,
with averaging occurring over 100 nearest neighbors, us­
ing a minimum nearest neighbor radius of 0.1. Five iter­
ations were performed to reduce the standard deviation
from 43.8 for the original data to 23.9 following noise
reduction. The effect of noise reduction can be seen in
Figures 7A.and 7B, where the noise-reduced graph reveals
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0.91%). The experimental series was also more highly
structured than the surrogate series, with entropy of2.19
and 0.65 bits, respectively. Altogether, these quantitative
indices, derived from the recurrence analysis, suggest
that there is nonlinear determinism in the RT time series.

Figures lOA and lOB depict the recurrence plots for
the handwriting velocity data for the noise-reduced and
surrogate series, respectively. The quantitative indices
were quite similar for the experimental and surrogate se­
ries (%recurr = 3.6% and 3.8%, %deter = 69.4% and
60.6%, and entropy = 3.16 and 2.52). There was just a
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Figure 8. Original (A) and noise-reduced (B) phase plots for
the handwriting velocity sequence data for Subject 1I.
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Figure 9. Recurrence plot for response time sequence data (A)
and the corresponding surrogate series (B) for Subject 3. Both
series were embedded in 10 dimensions, with a delay of nine. The
minimum length ofdiagonal lines was three.
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The coordinates of the embedded points are selected so
that each successive coordinate is uncorrelated. The di­
mensionality of the space is determined by ensuring that
the proportion of false nearest neighbors is small.

The recurrence quantification analysis indices were
computed with a minimum diagonal line of contiguous
recurrent points (suggestive of nonlinear determinism)
being set equal to 3, a Euclidean metric being used to com­
pute interpoint distances. The minimum radius for recur­
rence of neighboring points was set equal to 10. These
plots were obtained with the Visual Recurrence Analysis
program written by Eugene Kononov and based on the
procedures outlined in Webber and Zbilut (1996).

Both the noise-reduced RT series and its surrogate were
embedded in 10 dimensions with a delay, or lag, of9. The
recurrence plots for these series are depicted in Figures
9A and 9B, respectively. The values of%recurr, the per­
centage ofpoints that are recurrent-that is, sufficiently
close (less than 10 units) to each other in the plot-of
%deter, the percentage oflines that contain 3 contiguous
points, and of entropy, a measure ofhow structured the re­
currence plot is, were computed. There was scarcelyany dif­
ference between the %recurr (.03% and .04%, respectively)
for the experimental and surrogate series, but %deter
was much larger for the experimental series (41.8% vs.
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hint that there might be nonlinear determinism, but the
evidence was not as strong as it was for the RT series.

Nonlinear Prediction
Chaos in experimental time series can be detected by

comparing the prediction plots for the experimental and
the corresponding surrogate data sets. When autocorre­
lation is present in the time series, the prediction accu­
racy decreases steadily over future time. A similar result
also applies when chaos is present, since sensitive depen­
dence on initial conditions, a fundamental property of a
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Figure 10. Recurrence plot for handwriting velocity data (A) and
the corresponding surrogate series (B) for Subject 11. Both se­
ries were enfbedded in three dimensions, with a delay of 10. The
minimum length of diagonal lines was three.

chaotic system, implies that prediction error should in­
crease steadily over time. In view of the similar effects
generated by autocorrelation and chaos, appropriate sur­
rogate series are needed to control for linear aspects of
the data set.

Figure II shows the relative prediction error (RPE)­
that is, the mean square prediction error divided by the
standard deviation-for the RT series. The TISEAN pro­
gram predict was used for these analyses. This program
simply averages the future observations within a small set
of nearest neighbor points and uses this average as the
prediction one step ahead in time. This process is contin­
ued one step at a time to predict the time series for larger
temporal windows. It is clear from the figure that RPE
increases steadily with prediction lag for both the exper­
imental and the surrogate series but is greater for the sur­
rogate series. In this case, the delay was set equal to one,
the number of embedding dimensions was four, and the
neighborhood radius was five. This result is consistent
with the proposition that the RT sequence data contain
nonlinear determinism and, possibly, chaos.

A similar analysis of the handwriting velocity data,
shown in Figure 12, indicated that the RPE increased
steadily with prediction lag for both the noise-reduced
experimental and the surrogate series. Whereas the sur­
rogate series asymptotes at around 1.0, the experimental
series does not reach asymptote within the number ofpre­
diction lags used. This result suggests that the handwriting
velocity time series contains some nonlinear determin­
ism, accompanied possibly by a long-term autocorrela­
tion structure within the time series.

Application of Surrogate Data Technology
to Experimental Design

Several investigators have shown that people can pre­
dict chaotic sequences at better than chance (Metzger,
1994; Metzger & Theisz, 1994; Neuringer & Voss, 1993;
Smithson, 1997). However, it is still uncertain whether
these people are indeed relying on the nonlinear deter­
minism in the time series or whether their predictions are
facilitated by the linear autocorrelation in the series. This
autocorrelation allows the next observation in the series
to be predicted by using a linear function ofa finite num­
ber of previous observations. Since such predictions can
decline in accuracy with an increase in the look-ahead
window, a similar decline in human prediction accuracy
cannot be diagnostic of chaos sensitivity.

Nevertheless, we can use surrogate series technology
to overcome this problem. Rather than employing ran­
domly shuffled series as a control, in the proposed meth­
odology, phase-randomized surrogate series are used. In
the experimental task, subjects were provided with the
previous 8 days' temperatures (in a range from 10°C to
30°C) and were required to predict the temperatures for
the next 4 days, a task with some face validity in media
weather forecasting. The time series for the experimen­
tal group was a sample from a stationary chaotic Henon
attractor, and the control group experienced a sample
from the phase-randomized surrogate series correspond-
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nonlinear determinism and, possibly, chaos in experimen­
tal time series also provides a methodological tool for
detecting sensitivity to chaos in human decision makers.

Evidence for Chaos in Experimental Data
The time reversibility and nonlinear prediction tests

have supported the proposal that the RT and handwriting
velocity series are nonlinear deterministic and, possibly,
chaotic. In order to confirm chaos, we need to estimate
the full Lyapunov spectrum that estimates the exponen­
tial rates ofexpansion (positive Lyapunov exponent) and
contraction (negative Lyapunov exponent) of nearby
points in orthogonal directions within the attractor. Chaos
is evident when at least one of the Lyapunov exponents
is positive (local instability) while their sum is negative
(global stability).

The full Lyapunov spectrum can be estimated for rel­
atively short experiments, using the NETLE software
(Gencay & Dechert, 1992). As was described in Heath
(2000), the program fits a nonlinear function predicting
the current time series value from w previous values, us­
ing a feed-forward neural network. The window param­
eter, w, is the dimensionality of the space within which
the series is embedded.

The Lyapunov exponent estimates were computed for
the noise-reduced RT and handwriting velocity time series
and their corresponding surrogate series, using a four­
dimensional embedding space (four input units), six hidden
units, and a one-dimensional output. This neural network
provided the best fit to the nonlinear time series in each
case. Table 1contains the Lyapunov spectra for each of the
experimental and surrogate time series. For the RT exper­
imental data, the maximum Lyapunov exponent is positive,
and the sum of the Lyapunov exponents is negative, sug­
gesting that chaos might be present. Although the sum was
negative for the surrogate data, the maximum Lyapunov
exponent was also negative, suggesting different dynamics
for the experimental and the surrogate series.

For the handwriting velocity time series, the results
are a little more ambivalent, with the maximum Lyapu-
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Figure 11. Nonlinear prediction plots for the response time se­
quence data for Subject 3. The noise-reduced series result (solid
line) is compared with the noise-reduced surrogate (broken line)
series, using a delay of one, four embedding dimensions, and a
nearest neighbor radius equal to five.
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Figure 12. Nonlinear prediction plots for the handwriting ve­
locity data for Subject 11. The noise-reduced series result (solid
line) is compared with the noise-reduced surrogate (broken line)
series, using a delay of one, four embedding dimensions, and a
nearest neighbor radius equal to five.
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Figure 13. Mean relative prediction error for the chaotic (solid
line) and phase-randomized surrogate (dotted line) conditions in
a time series prediction experiment.

ing to the Henon attractor (see Heath, 2000, for an ac­
count of these chaotic series). The time series values
were linearly transformed to provide "temperatures" in
an appropriate range.

Each subject estimated the four temperatures on each
of 120 trials. The data shown in Figure 13 are the mean
RPE (l - r2 ) plotted against days, where r is the Pearson
correlation between the observed and the predicted tem­
peratures on that day, for both the Henon chaotic time se­
ries and the surrogate series. The interaction between the
days and the series factors was statistically significant
[F(3,25) = 6.34, p = .001], demonstrating that predic­
tion accuracy for the chaotic time series declined stead­
ily over time, whereas prediction was not possible for the
surrogate series. This result suggests that some people
are sensitive to chaos. So the methodology used to detect
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Note-A feedforward neural network with four input units, six hidden
units, and one output unit was used to estimate the exponents.

Table 1
Lyapunov Exponents (AI to A4) for the Response Time (RT)

and Handwriting (HW) Velocity Data for Both the
Noise-Reduced Experimental (Exp) and

the Surrogate (Surr) Time Series

nov exponents being both small and scarcely positive. In
each case, the sum of the Lyapunov exponents was neg­
ative. In view of the small difference between the pre­
diction functions for the noise-reduced and the surrogate
handwriting velocity data, it is unlikely that this handwrit­
ing velocity time series is chaotic, although clear evi­
dence for chaos in other examples of such series was ob­
tained by Longstaff and Heath (1999).

Conclusions
Several techniques for analyzing the linear and non­

linear dynamics in experimental time series have been
presented. These techniques include the linear tech­
niques ofautocorrelation and power spectral analyses and
several nonparametric procedures for detecting nonlin­
earity, such as the time asymmetry and prediction tests,
together with parametric procedures, such as recurrence
plots, with their associated indices, and finally Lyapunov
spectra.

Following analysis of three empirical data sets involv­
ing typing interkeypress times, sequential RTs, and hor­
izontal handwriting velocity, it was shown that the typing
data were unlikely to be nonlinear, since the time reversal
statistic was not significant. On the other hand, the RT
and handwriting velocity data exhibited some nonlinear
determinism. In particular, the noise-reduced RT series
produced more determinism in recurrence plots, lower
prediction errors, and a positive largest Lyapunov expo­
nent, when compared with the same quantities estimated
from a surrogate series. These observations suggested
that the RT series was probably chaotic. By contrast, the
handwriting series demonstrated very little difference
between the experimental and the surrogate sequences in
both the prediction test and the Lyapunov spectra, sug­
gesting that the dynamics may exhibit limit cycle behav­
ior, rather than chaos, for this particular sample.

Once a quantification of the dynamics of a nonlinear
system has been achieved, the next logical step is to de­
termine what the underlying mathematical equations
might be. This is a difficult task because, as we have seen,
experimental data are always noisy and it is not easy to
remove such contamination completely. Nevertheless, it
is sometimes possible to estimate functions that relate
the inputs (stimuli) and outputs (responses) of nonlinear
systems, using neural networks and nonlinear system
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identification. Heath (2000) uses the latter technique to
predict human performance in a variety ofcognitive tasks,
using nonlinear equations estimated from the relationships
between stimuli and responses. Such technologies have
wide potential application in many areas of psychology.

The use of surrogate data provides a convenient sta­
tistical hypothesis tool for detecting nonlinear determin­
ism. The technology was used to design appropriate ex­
periments for detecting human sensitivity to chaos in
time series. It is inevitable that psychological data will
be analyzed more frequently with nonlinear dynamical
methods, once psychologists become more familiar with
the technology. The Appendix contains World-Wide Web
resources for analyzing nonlinear data sets.

REFERENCES

Sum

-1.22
-3.74
-1.98
-2.58

A4

-0.91
-1.45
-1.65
-2.23

AI A2 A3

0.16 -0.03 -0.44
-0.35 -0.71 -1.23

0.06 -0.07 -0.32
0.01 -0.04 -0.32

Exp
SUH

Exp
Surr

Series

RT
RT
HW
HW

Task



DETECTING NONLINEARITY IN PSYCHOLOGICAL DATA 289

APPENDIX
List of Some World-Wide Web Sites

Offering Nonlinear Data Analysis Software

Because of space limitations, readers are advised to check
the accompanying World-Wide Web sites for detailed informa­
tion on the availability of nonlinear techniques, together with
the latest pricing and ordering information.

TISEAN2.0
This free package is perhaps the most authoritatively docu­

mented of all the presently available noncommercial ones. It
contains a comprehensive range ofprocedures for analyzing all
aspects oflinear and nonlinear data sets. The only disadvantage
is its DOS/UNIX interface and the lack of a user friendly Win­
dows environment. http://www.mpipks-dresden.mpg.de/-tisean!
TISEAN_2.0/index.html

Santis/Dataplore
Although previously freeware, this Windows-based, reason­

ably comprehensive, and usable package is now available only
commercially. It contains a large array of linear and nonlinear data
analysis techniques. It costs $1,099 for the full system, available
for Windows NT and UNIX. http://www.datan.de/dataplore/

Chaos Data Analyzer
Perhaps the classic nonlinear analysis package containing a

variety of nonlinear data analysis procedures, all of which are
accompanied by readily interpreted graphics visualization. The

package suffers from inflexibility and some documentation prob­
lems, especially for the computational algorithms used. Never­
theless, it is very useful for classroom demonstration purposes
and data analyses. The Professional Version (recommended)
costs $300 for a single license. http://sprott.physics.wisc.edu/
cda.htm

Visual Recurrence Analysis
This nicely designed free package uses a friendly Windows

interface to construct recurrence plots and compute various non­
linear indices. http://pweb.netcom.com/-eugenek/download.html

NETLE Software Package
This free program uses a feed-forward neural network to es­

timate a nonlinear function predicting the next time series value
from a small set of preceding values. The derivatives ofthis func­
tion are used to estimate the Lyapunov spectrum. http://www.bsu.
edu/econ/tliu/download/index.html

Tools For Dynamics
A professional nonlinear dynamics analysis package for UNIX

and Windows environments, with a comprehensive array of data
analysis and visualization features. The UNIX version costs
$1,495, a Windows version sells for $845, and a version for Mac­
intosh can be obtained for $495. http://www.zweb.com/apnonlin!
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