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Global perceptual processing in problem solving:
The case of the traveling salesperson

THOMAS C. ORMEROD and EDWARD P. CHRONICLE
Lancaster University, Lancaster, England

The traveling salesperson problem (TSP) consists of finding the shortest tour around a set of loca­
tions and is an important task in computer science and operations research. In four experiments, the
relationship between processes implicated in the recognition of good figures and the identification of
TSP solutions was investigated. In Experiment I, a linear relationship was found between participants'
judgments of good figure and the optimality of solutions to TSPs. In Experiment 2, identification per­
formance was shown to be a function of solution optimality and problem orientation. Experiment 3
replicated these findings with a forced-pace method, suggesting that global processing, rather than a
local processing strategy involving point-by-point analysis of TSP solutions, is the primary process in­
volved in the derivation of best figures for the presented TSPs. In Experiment 4, the role of global prece­
dence was confirmed using a priming method, in which it was found that short (100 msec) primes fa­
cilitated solution identification, relative to no prime or longer primes. Effects of problem type were
found in all the experiments, suggesting that local features of some problems may disrupt global pro­
cessing. The results are discussed in terms of Sanocki's (1993) global-to-local contingency model. We
argue that global perceptual processing may contribute more generally to problem solving and that
human performance can complement computational TSP methods.

The traveling salesperson problem (TSP) consists of
finding the shortest closed tour around a set of locations
in two-dimensional space. In other words, a route is found
in which each location is visited only once and the start­
ing point is returned to. The task is of considerable theo­
retical importance in computer science, since it provides
a canonical example ofNP-complete problems, a class of
decision problem that can be shown to be computationally
intractable (Garey & Johnson, 1979). Its computational
intractability is nicely illustrated by the fact that the num­
ber ofpossible solutions to a TSP is given by (n - 1)!12,
where n is the number oflocations (assuming that the di­
rection ofthe tour is ignored). For a 20-location problem,
(n - 1)!/2 is equal to 6.08 X 1016. Assuming a computer
program could find solutions at the rate of 1,000 per sec,
it would take 6.08 X 1013 sec, or approximately 1.9 mil­
lion years, to conduct an exhaustive search ofthe solution
space for a 20-point TSP.

Although TSPs are computationally intractable, they
have considerable practical significance in domains as
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diverse as pipe laying, circuit wiring, and the organization
ofdistribution networks, where optimizing the use ofre­
sources (e.g., time, effort, and materials) can determine
profitability and success. Hence, considerable efforts have
been made in the field of operations research to identify
efficient heuristic algorithms that provide solutions of
acceptable quality while minimizing computational cost.
One approach is to use the relatively inefficient nearest
neighbor heuristic algorithm, in which the order ofpoint
connection is determined by moving from one point to
its nearest neighboring point until the tour is complete
(Rosenkrantz, Sterans, & Lewis, 1974). A more efficient
approach is offered by the 2-0pt heuristic algorithm, in
which an initial approximate solution, based on connect­
ing exterior points into a convex hull, is subsequently im­
proved by comparing alternative connections between
local point clusters and swapping them where this im­
proves the solution (Sangalli, 1992). However, even the
most efficient heuristic algorithms still require in the or­
der of n3 computations, for an n-point network, in order
to compute solutions to within 2%-3% of optimality
(Golden, Bodin, Doyle, & Stewart, 1980).

Given the theoretical and practical importance ofTSPs,
it is surprising that they have received little attention from
psychologists. One approach that has been adopted by
operations researchers is to use computer-based methods
to find partial solutions, which are then completed by
human participants (Krolak, Felts, & Marble, 1971). In
another study, Po1ivanova(1974) demonstrated that, with
simple problems containing between 4 and 10 points, hu­
mans found better solutions to TSP problems that were
represented visually as points in a two-dimensional array
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Figure 1. The traveling salesperson problems used in MacGregor and Ormerod (1996), together with the shortest tour around each
set of points (the same problems were used as stimuli in the experiments reported here).

than to those represented as tabular lists ofnumerical dis­
tances between points. These studies indicated that hu­
mans apply visually based mechanisms in the solution of
TSPs that might complement computer-based heuristic
algorithms, but they did not assess the quality of human
solutions per se.

MacGregor and Ormerod (1996) conducted the first
systematic study comparing the quality ofTSP solutions
produced by humans with those produced by computer­
based heuristic algorithms. In their study, participants
drew solutions to a set of 10- and 20-point TSPs whose
complexity was varied in terms of the number ofinterior
points that lay within a boundary defined by a simple con­
vex hull around the points. Figure 1 shows the l O-point
problems used in their first experiment, together with op­
timum solutions. They found that the least optimal paths
produced by participants were less than 1% longer than
the estimated optimal route for both 10- and 20-point
problems; best path lengths exceeded the optimum solu­
tion for each problem by less than 0.3%. Solutions were
also calculated with three heuristic algorithms: the near­
est neighbor heuristic algorithm and two variants of the

2-0pt heuristic algorithm (largest interior angle and con­
vex hull cheapest interior; for a description, see Mac­
Gregor & Ormerod, 1996). The average percentage above
optimum solution achieved by the best path length from
each heuristic algorithm was 7.3% for nearest neighbor,
2.2% for largest interior angle, and 2.1% for convex hull
cheapest interior. Thus, the path lengths produced by
MacGregor and Ormerod's participants were better by at
least an order of magnitude than the ones produced by
these heuristic algorithms.

Although the experiments ofMacGregor and Ormerod
(1996) demonstrate that humans can produce TSP solu­
tions ofa high quality, the mechanism by which they iden­
tify good solutions has yet to be determined. Two candi­
date explanations can be identified a priori, which differ
in whether the account ofhuman performance is in terms
of a local or a global analysis of TSP arrays. If human
solvers use a local processing strategy, they would select
TSP solution components on a point-by-point basis, bas­
ing their decisions on the processing of localized prob­
lem features. The results ofMacGregor and Ormerod are
sufficient to rule out the use by human solvers ofa near-
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est neighbor heuristic. However, there may be others that
sample localized features of the problem array more ef­
ficiently. Alternatively, human performance may be based
on extracting global properties of a TSP stimulus.

MacGregor and Ormerod (1996) hypothesized that
complexity ofTSPs for humans is a function ofthe num­
ber of points that lie within a convex hull drawn around
the perimeter ofa problem. They found that response un­
certainty (measured by summing, across all possible
pairwise connections, the number of participants con­
necting each pair of points) increased significantly with
the number of interior points (r = .93 for the l O-point
problems, r = .79 for the 20-point problems). Their results
provide evidence that humans identify a convex hull in
solving TSPs and that the ease with which a convex hull
can be identified is a function of the number of interior
points in the problem. Identification of a convex hull
through a point-by-point inspection oflocalized problem
features is, of course, fundamental to many heuristic al­
gorithms.

Given the construction of the problems used by Mac­
Gregor and Ormerod (1996), however, it is possible that
the obviousness of the convex hull is highly correlated
with the figural goodness of the optimal solution. The
starting point for the construction of the problems they
used was, in effect, a notional circle: Problem exemplars
were created simply by taking between one and five dots
from the perimeter to the interior of the circle. Hence,
"simpler" problems (with fewer internal points) were
also more circle-like. One strategy available to partici­
pants would, therefore, have been to approach the task by
drawing a solution that provided the best, most circular
figure. This suggestion finds some empirical support in
the work ofPomerantz (1981), who found that when par­
ticipants were asked to connect points of a random dot
array in a manner that illustrated a pattern that they per­
ceived within the array, they frequently connected points
in the shortest possible path. As MacGregor and
Ormerod themselves point out, "The task of the TSP
may happen to parallel what it is natural for the percep­
tual system to do in any case when presented with an
array of dots" (p. 537).

A possible and plausible model for human performance
on the TSP is, therefore, that participants initially pro­
cess the TSP stimulus globally by identification ofa best
figure fitting the dot array and utilize this figure either to
generate a route or to evaluate a presented route, depend­
ing on the experimental task in which they are involved.
This model makes a number oftestable predictions. First,
and most obvious, ifTSP solutions varying in optimality
are rated for goodness offigure, the greater the optimal­
ity ofthe solution, the better should be the rating ofgood
figure. Second, ifTSP solutions are presented to partic­
ipants who are asked to judge whether the solution is in
fact optimal, the time taken to respond will reflect the de­
gree ofmismatch between perceived best figure and pre­
sented route.

The question then arises as to the nature of the per­
ceptual mechanisms by which best figure is itself identi­
fied. An accumulating body ofevidence (Sanocki, 1993;
see also Sanocki, 1991), using the method ofpart-whole
priming, supports an account ofperceptual processing of
objects wherein some subset ofelements ofthe image of
an object is used to generate a global hypothesis about
the object: this global hypothesis then constrains further
processing at other levels. Sanocki (1993) terms this
global-to-local contingency. In the context of the TSp,
this account implies that a global hypothesis about best
figure might be available early in processing and could
potentially inform a decision about optimal route, by the
process ofcomparison outlined above. Such a theoretical
background allows the derivation of experimental pre­
dictions about the effect of the duration of a prime stim­
ulus on decision times for judging TSP optimality.

The four experiments reported here were, therefore,
conducted to investigate the processes by which humans
identify solutions to TSPs. In the first experiment, the sug­
gestion, above, that optimal solutions to the TSPs used
by MacGregor and Ormerod (1996) were perceived as
having good figure, was examined. Experiments 2 and 3,
using a solution identification task, tested the prediction
that TSP solutions are evaluated by judging them against
a best figure. In a final experiment, using a part-whole
priming method, the question of whether global or local
processes are dominant in the derivation ofa best figure
was examined.

EXPERIMENTl

Method
Participants. Twenty-four undergraduate students at Lancaster

University (17 women and 7 men, mean age 20.8 years) volunteered
to participate.

Materials. The lO-point problems shown in Figure I were used
as materials. The points of each stimulus were placed within a 12­
ern- grid (for the decision rules regarding exact point coordinates,
see MacGregor & Ormerod, 1996). Five problems had a similar
spatial representation, in which the number of internal points within
the problem's convex hull boundary was varied between one and
five. The sixth problem was the Dantzig, a lO-node TSP with five
internal points that is known in operations research to be resistant
to many heuristic algorithms (Dantzig, Fulkerson, & Johnson,
1959). For each ofthe six problems, five solutions were constructed
in the ranges 0%,11%-18%,21%-28%,32%-37%, and 41%­
47% longer than the optimal solution (the spatial layout of each
problem necessitated solutions of slightly different optimality
within each range). For convenience, these ranges are subsequently
labeled with the midpoints 0%,15%,25%,35%, and 45%.

Design. There were two experimental factors, both repeated
measures: optimality, with five levels (0%, 15%,25%, 35%, and
45%), and problem, with six levels (one through five internal
points, plus the Dantzig). The experimental measure was a judg­
ment of good figure of the presented TSP solution on a numerical
scale, where 1 represented agoodfigure and 5 apoorfigure.

Procedure. Judgments of figure were collected individually
from participants, using the computerized SuperLab system. Prior
to the commencement of the experiment, standardized instructions
that explained the nature of the judgment to be made were pre-
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Discussion
In this experiment, the participants consistently rated

optimal solutions to TSPs as having good figures and
successively less optimal solutions as having successively
less good figures. Furthermore, there was a linear rela­
tionship between TSP complexity (as defined by the
number of interior points to a convex hull) and good fig­
ure judgments: The simpler the TSp, the better the figure
was judged to be. These results provide initial support for
the suggestion made earlier that human performance on
these particular TSPs may be underpinned by a strategy
that equates best figure with optimal route. The results
of Experiment I do not, however, permit an entirely un­
ambiguous conclusion about this issue, since it is still con­
ceivable that TSP solutions are provided through some
other set ofcognitive operations, unconnected with ajudg­
ment ofgood figure, and that the relationship with good
figure demonstrated in the foregoing data is merely coin­
cidental.

Ifa judgment ofthe best figure for a particular TSP re­
liably provides the optimal route, one plausible and rea­
sonable strategy for making judgments about the opti­
mality of a particular TSP solution would be to compute
the best figure ofthe problem (we make no claim, as yet,
as to how this might occur) and to compare this best fig­
ure with the presented route. Some relevant theoretical
background is provided by Sanocki (1991, 1993), who
propounded a contingency model in which the processing
of late-arriving information about a visual stimulus is
contingent on hypotheses derived from earlier arriving
information. Early information provides a rough global
reference frame; local information must then be cross­
checked and localized onto this reference frame, if it
matches appropriately. Sanocki (1993) argues that such
a model "allows the system to process late-arriving details
without the immense computational burdens of an un­
constrained set of interpretations" (p. 879). In other
words, late-arriving information that is highly consistent
with prior hypotheses will be processed with minimal
delay. In the context of the TSP solution identification
strategy outlined above, the contingency hypothesis makes
it likely that a presented optimal route would quickly and
accurately be identified as such, since the route would be
highly consistent with the best figure. In the same vein,
it is likely that gross discrepancies between best figure

MSe = 2.628,p < .001]. There was also a significant main
effect of problem [F(5,115) = 28.900, MSe = 0.576,p <
.001, w2 =.052; see Figure 2]. Post hoc trend analysis re­
vealed that rated goodness offigure declined linearly with
the complexity ofthe problem [F(1,115) = 113.564,MSe =
0.576,p < .001]. In addition to these main effects, there
was a significant interaction of problem with optimality
[F(20,460) = 4.442, MSe = 0.433,p < .001, w2 = .019].
Because its effect size was small, in comparison with those
of the main effects, and the rank order ofmeanjudgment
scores across levels of optimality was identical at each
level ofproblem, this interaction is not considered further.
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sented. Each participant received 30 experimental trials presented
in a single block. The order of trials was randomized with respect to
optimality and problem. For each trial, a single stimulus appeared,
consisting ofa tour drawn round a set of points. The participant then
simply rated the goodness of figure of the tour by pressing the ap­
propriate number on the computer keyboard. No time constraints
were placed on each trial; adjacent trials were separated by an in­
terval of 2 sec, during which time a blank screen was shown.

Figure 2. Mean ratings of goodness of figure (1 = best, 5 = worst)
for each level of optimality and problem in Experiment 1. Verti­
cal lines depict standard errors of the means (these are omitted
for the optimality data, since they fall within the space taken by
the plotting point in all cases). Levels of optimality are labeled
with the approximate percentage distance over the optimal solu­
tion, and levels of problem are labeled with the number of points
that lie inside a convex hull drawn around the problem perime­
ter (D = Dantzig problem).

Results
Goodness-of-figure judgments were subjected to a

two-way analysis of variance (ANOVA), over the re­
peated measures factors of optimality and problem. An
alpha level of .05 was used for all the statistical analyses
in this and subsequent experiments. All reported a pos­
teriori probabilities were corrected for sphericity, using
the Geisser-Greenhouse conservative test (Winer, Brown,
& Michels, 1991). We also report w2 as a measure ofef­
fect size for each variable, using the formulas for re­
peated measures designs given by Dodd and Schultz
(1973). There was a significant main effect of optimal­
ity [F(4,92) = 72.843, MSe = 2.628,p < .001, w2 =.492],
which is illustrated in Figure 2. Post hoc trend analysis
revealed that the rated goodness of figure increased lin­
early with optimality of the solution [F(I,92) = 283.097,
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and presented route would also be identified quickly, since
the prior hypothesis would be quickly found to be inap­
propriate in the very first attempt to integrate local infor­
mation with the global reference frame. Presented routes
that are slightly less than optimal, however, would cost
processing time, since a considerable amount of local!
global cross-checking might occur before a mismatch was
detected. It might also be expected that more errors of
route judgment would occur, since slight mismatches be­
tween global and local information might not be detected
with great reliability.

In this hypothesis, no effect ofTSP complexity is nec­
essarily predicted, since the same processes ofgood fig­
ure identification and matching with presented solution
are required in each case. This holds only under the sim­
plifying assumption that the derivation of best figure is
not itself contingent on the complexity of the problem.

In order to examine the role of figural goodness in TSP
performance further, therefore, Experiments 2 and 3 used
a solution identification method to test the foregoing
predictions about the effects of solution optimality and
problem complexity. This method had the additional ad­
vantage that it did not require the drawing ofsolutions by
participants: This is necessarily a serial method of oper­
ation, and it was thought desirable to study identifica­
tion processes in the absence of a production constraint
of this nature.

EXPERIMENT 2

Method
Participants. Fourteen undergraduate and postgraduate students

at Lancaster University (II women and 3 men, mean age
24.5 years) volunteered to participate.

Materials. The TSP stimuli used in Experiment I were used
again here; in addition, a further exemplar for each combination of
optimality and problem was created. In the case ofthe 0% (optimal)
stimuli, the second exemplar used a route that was visually similar
to the optimal route but exceeded the optimal path length by an av­
erage of 2.6%. Four blocks of stimuli were then created by rotating
the orientation of each exemplar through 0·, 90·, 180·, and 270·.

Design. There were three experimental factors, all repeated mea­
sures: optimality, with five levels (0%, 15%,25%,35%, and 45%);
problem, with six levels (one through five internal points, plus the
Dantzig); and block, with four levels (0·, 90·, 180·, and 270· orien­
tations). The experimental measures were identification times, from
presentation of stimulus to response selection, and errors (where no
responses to 0% stimuli and yes responses to any other level of op­
timality were scored as errors).

Procedure. The data were collected individually, using the com­
puter-based SuperLab presentation system. Each participant re­
ceived 240 experimental trials presented in four blocks of60 trials,
each block containing stimuli in a single orientation. Within each
block, the trials were randomized over optimality and problem. For
each trial, the participant was shown a single stimulus consisting of
a tour around a set of points. The task was to decide whether the
route shown was the shortest (i.e., optimal) tour around the points,
and to press a key marked yes if the route shown was optimal, oth­
erwise to press a key marked no.At the start of each trial, the stim­
ulus was presented, and it remained on the screen until the partici­
pant selected a response key.An interval of2 sec separated each trial,
during which a blank screen was shown. The participants rested for

I min between each block of 60 trials. Each participant took ap­
proximately 25 min to complete the experiment.

Results
Mean identification times ofall the responses (pooled

over exemplars) and proportion of errors for each level
of optimality, problem, and block were calculated. Out­
liers more than two standard deviations from the mean
were removed prior to analysis. Three-way ANOVAswere
calculated for the identification time and error data, over
the repeated measures factors of optimality, problem,
and block.

Identification times. Significant main effects were
found ofoptimality [F(4,52) = 4.877, MSe = 1.092 X 107,

P = .02, Q)2 = .017] and block [F(3,39) = 17.195, MSe =

1.413 X 108, p = .001, Q)2 = .070]. Mean identification
times for each level of optimality are shown in Figure 3.
The main effect of problem (means shown in Figure 3)
was not significant [F(5,65) = 1.086, MSe = 4.924 X 106,

P = .37, Q)2 < .001]. The interaction between optimality
and problem (means shown in Figure 4) was also signif­
icant [F(20,260) = 2.804, MSe = 2.612 X 106,p = .014,
Q)2 = .010]. No other interactions were significant.

Errors. Significant main effects were found of opti­
mality [F(4,52) = 12.425, MSe = 0.655, p = .01, Q)2 =

.130] and problem [F(5,65) = 12.34, MSe = 0.130,p =

.0001, Q)2 = .032; means are shown in Figure 3]. The
main effect ofblock was not significant [F(3,39) = 0.715,
MSe = O.077,p = .495, w2 < .001]. The two-way inter­
action between optimality and problem was significant
[F(20,260) = 8.41, MSe = 0.100,p = .0001, Q)2 = .064]
and is illustrated in Figure 4. The three-way interaction
between optimality, block, and problem was also signif­
icant [F(60,780) = 2.18, MSe = 0.048,p = .031, Q)2 =

.014]. However, the effect size was small, as compared
with the main effects of optimality and problem and the
interaction between these factors; it was, thus, not analyzed
further. No other interactions were significant.

Discussion
The main effect of optimality, found in both identifi­

cation time and error data, shows that solution identifica­
tion performance is a function of this factor. As Figure 3
illustrates, the participants were able to make accurate
judgments about optimum solutions and about the sub­
optimality of solutions in the 45% range. With solutions
around 15%-35% longer than the optimum, performance
declined considerably. Comparing the curves for identi­
fication times and errors in Figure 3, there is no evidence
of a speed-accuracy tradeoff in performance.

The data for the problem factor are slightly more com­
plicated than those for optimality. Although there was no
main effect ofproblem in the identification time data, this
main effect was significant in the error data, although
there is no evidence of a linear trend. Instead, it appears
that performance was significantly more accurate with
the one-internal point, four-internal point, and Dantzig
problems than with the other problems.
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Figure 4. Mean identification times (in milliseconds) and pro­
portion of errors for the optimality x problem interaction in Ex­
periment 2. The legend gives the approximate percentage dis­
tance over the optimal solution for each level of optimality.
Optimality levels of 15% and 35% are omitted for clarity. Iden­
tification times for the 15% level follow those for the 25% level,
although at a higher level, whereas identification times for the
35% level lie between those for the 25% and 45% levels. The
error data for 15% and 35% levels follow those for the 25% level,
with more errors for stimuli 15% above optimum and fewer for
stimuli 35% above optimum.

Figure 3. Mean identification times (in milliseconds) and pro­
portion of errors for each level of optimality and problem in Ex­
periment 2. Error bars are omitted for the error data, since they
fall within the space taken by the plotting point in all cases.

The significant main effect of block in the identifica­
tion time data is thought to reflect simple familiarization
with the experimental task, rather than learning of the
stimuli. If individual TSP stimuli had been learned by the
participants, it would have been expected that the factor
of block would interact with the other manipulated fac­
tors, so that the effects ofoptimality and problem lessened
or disappeared across the levels of block. However, the
two-way interactions between block and optimality and be­
tween block and problem were not significant. Although
the three-way interaction between block, optimality, and
problem was significant in the error data, visual inspec­
tion ofthe data does not indicate any consistent reduction
in the effects of optimality and problem across levels of
block, and in any case, the effect size is small, as compared
with other significant effects. Further support for the no­
tion that the differently oriented TSPs found across the
levels of block were unlikely to have been seen as iden­
tical comes from the work of Rock, Schreiber, and Ro
(1994), who found, using both recognition and forced­
choice methods, that two-dimensional shape perception
depended on orientation.

Taken together, the significant main effects of opti­
mality are supportive of the hypothesis that participants
derive a best figure for the presented TSP and compare
it with the presented route to make a judgment about op­
timality. The interaction in the response time data between
optimality and problem reveals a broadly similar effect
of optimality across levels of problem: Each individual
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Figure 5. Mean identification times (in milliseconds) and pro­
portion of errors for each levelof optimality and problem factors
in Experiment 3.

During the intertrial interval of 2 sec, the screen displayed the
words Break-no response and keypresses made after removal ofthe
stimulus were not recorded.

Results
Mean identification times and proportion oferrors for

each level ofoptimality and problem were calculated for
each participant, and two-way ANOVAs were calculated
for these data.

Identification times. A significant main effect ofop­
timality was found [F(4,84) = 3.976, MSe = 120,547,p =
.025, oJ2 = .018]. The main effect ofproblem was not sig­
nificant [F(5,105) = 1.51, MSe = 7l,627.3,p = .21, 0)2 =
.002]. The mean identification times for each level ofop­
timality and problem are shown in Figure 5. The inter­
action between optimality and problem (shown in Figure 6)
was also significant [F(20,420) = 3.099, MSe =75,574.5,
p = .017, 0)2 = .039] .

Errors. A significant main effect of optimality was
found [F(4,84) = 27.026, MSe = 0.239,p = .001,0)2 =
. I68]. The main effect of problem was not significant
[F(5,105) = 1.807, MSe =0.132,p = .136, oJ2 = .004]. The
mean proportion of errors for each level of optimality
and problem are shown in Figure 5. The two-way inter­
action between optimality and problem was not significant
[F(20,420) = 1.498, MSe = 0.136, p = .152, 0)2 = .009].
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Figure 6. Mean identification times (in milliseconds) for the
optimality x problem interaction in Experiment 3. Legend and
levels of optimality factors are as described in Figure 4.

Discussion
The results ofExperiment 3 are remarkably consistent

with those found in Experiment 2, despite the imposition
ofa forced-pace response regime. Again, the participants'
performance is clearly a function of solution optimality,
with high- and low-optimality solutions being identified
faster and more accurately than solutions ofintermediate
optimality. The interaction between optimality and prob­
lem was similar to that found in Experiment 2, in that the
optimal solutions were identified faster with simple prob­
lems, whereas suboptimal solutions were identified faster
with complex problems.
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Method
Participants. Twenty-two undergraduate students at Lancaster

University (9 women and 13 men, mean age 25.5 years) were paid
£4 to participate.

Materials. The TSP stimuli were identical to those used in Ex­
periment I.

Design. There were two experimental factors, both repeated
measures: optimality, with five levels from 0%-45%, and problem,
with six levels (I through 5 internal points, plus the Dantzig). The
experimental measures were the same as those in Experiment 2.

Procedure. The procedure was exactly the same as that for Ex­
periment 2, except that each stimulus was presented for only 2 sec,
during which time the participant was required to make a response.

EXPERIMENT 3

ticipants' overall mean identification times. Of 14 par­
ticipants, 6 had overall mean identification times of be­
tween 1.6 and 2.3 sec, whereas the remaining 8 had over­
all mean identification times of between 3.8 and 5.7 sec.
It is, therefore, plausible to suggest that the participants
used different strategies to cope with the task: Perhaps, for
example, a more global judgment of good figure by the
faster participants, and a more detailed and local assess­
ment and check of route segments by the slower partici­
pants. The following experiment took as its rationale the
general finding ofglobal precedence in the apprehension
ofcomplex forms (Kimchi, 1992) to suggest that, ifonly
the former, global strategy were necessary and sufficient
for the task, similar effects of optimality and problem
should pertain even with the additional constraint of a
forced-pace response.
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The consistency and quality ofperformance in Exper­
iment 3 under a forced-pace response regime is sugges­
tive of global processing in the derivation ofbest figures
for the presented TSPs. It is certainly unlikely that the par­
ticipants could have judged the quality of solutions to 10­
point TSPs through the application of a serial point-by­
point strategy in identification times that were, on average,
less than I sec. Nonetheless, the simple ability of the
participants to make judgments about TSPs within the
time limit, although consistent with the processing hy­
pothesis under consideration, does not exclude the possi­
bility that the efficient allocation ofattentional resources
or other strategic shifts by the participants might have
permitted this pattern ofperformance, even with the time
constraint.

Experiment 4 therefore adopted a different method, in
order to examine more closely the processing involved in
this TSP task. Sanocki (1993) presented a series of stud­
ies using a part-whole priming method, in which the
prime stimuli consisted of subsets of features that were
common to two alternative targets. Under a general fea­
ture model ofobject identification (e.g., Massaro & Fried­
man, 1990), such a prime should not facilitate identifi­
cation and/or discrimination of the targets, as compared
with a neutral prime, since the information contained in
the prime is common to both targets. Sanocki (1993),
however, found a consistent response time advantage for
targets primed in this manner and interpreted these find­
ings as evidence in favor ofhis contingency model ofob­
ject identification, discussed earlier in this paper.

Applied to the present question relating to the TSp,
such a model ofprocessing allows predictions in terms of
the presentation time ofa prime stimulus. With no prime,
judgment of TSP solution quality should proceed as in
Experiments 2 and 3. With a short prime consisting sim­
ply of the problem (without a superimposed solution), a
hypothesis about the complete solution could only be de­
rived through global processing of the stimulus. If TSP
solution judgments are based on a rapid global assessment
of TSP best figure, followed by a comparison with the
presented figure, it is expected that short prime durations
will reduce the time taken to judge routes, since the global
best figure is available before the route is presented. With
increasing prime length, however, an increasing amount
of contingent local processing can be undertaken. By
analogy with Sanocki's (1993) Experiment 4, this is likely
to interfere with a rapid decision, since slower local com­
parisons will be made between an hypothesis generated
from the prime stimulus and the presented route. Alter­
natively, the long prime stimulus may allow sufficient
time for an elaborated hypothesis about a solution to be
developed, which then has to be discarded once the so­
lution is presented for judgment and the original global
figure recovered for comparison. In either scenario, it is
likely that primes oflong duration will give rise to an in­
crease in the response times for decisions. Note that this
goes strictly against an alternative local processing model

in which participants attempt to compute optimum TSP
solutions on a point-by-point serial route, finding a basis
through the application ofsome heuristic (such as nearest
neighbor)-here, it would be predicted that the longer
the time available at prime presentation, the more pro­
cessing would be possible and the faster the decision.

EXPERIMENT 4

Method
Participants. Twenty-two undergraduate and postgraduate stu­

dents volunteered to participate, and were paid £5 for their time.
There were 13 men and 9 women, whose ages ranged from 19 to
26 years.

Materials. The six 10-point TSPs used for this experiment were
identical to those used in Experiment 3. Prime stimuli consisted of
the TSP nodes without superimposed solutions.

Design. There were three repeated measures experimental fac­
tors: prime, with seven levels (0, 100,250,500, 750, 1,000, and
2,000 msec); problem, with six levels (one through five internal
points, plus Dantzig); and optimality, with five levels (path lengths
0%, 15%, 25%, 35%, and 45% longer than optimal). The experi­
mental measures were (1) the solution identification times, measured
from solution presentation onset to keypress, and (2) error percent­
age (no responses to 0% above-optimal stimuli and yes responses to
any other level of optimality were counted as errors).

Procedure. The laboratory software package SuperLab was
used to present stimuli and record response times and errors. Each
participant was presented with 210 trials. In each trial, the prime
stimulus was presented for an appropriate duration, followed im­
mediatelyby the problem plus solution,which remained visibleeither
until the participant's response or until a time limit of 2,000 msec
was reached. However, in trials in which the level of prime was
o msec, only the problem plus solution was presented. For each
trial, the task of the participant was to decide whether or not the so­
lution presented was an optimal tour round the points and to press
a yes or no key, as appropriate. After each trial, a blank screen was
presented for 2,000 msec before the subsequent trial. The trials
were divided into seven blocks ono; all the permutations ofprob­
lem and optimality were presented in pseudorandom order within
each block, and prime was varied across block, with the order of
blocks being randomized anew for each participant. The partici­
pants were offered the opportunity to rest for up to 2 min between
each block; the experiment took approximately 30 min to complete.

Results
Identification times were separated according to the

correctness or incorrectness of the response. This pro­
cess resulted in a large number ofmissing data points for
some subjects; consequently, all the identification times
(correct and incorrect together) were initially subjected
to a three-way ANOVA, over the repeated measures fac­
tors ofprime, problem, and optimality. There was no sig­
nificant main effect ofproblem [F(5, I05) = 1.318, MSe =
1.275 X 105, P = .275, ro2 < .001] nor any significant
interaction of problem with prime [F(30,630) = 1.288,
MSe = 6.906 X 104,p = .232, ro2 < .001] or with prime
and optimality together [F(120,2520) = 1.143, MSe =
6.845 X 104,p = .313, ro2 = .002]. Subsequent analyses
were, therefore, collapsed over the problem factor.

Correct identification times. Mean identification
times associated with correct responses, pooled over the
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problem factor, were subjected to a two-way ANOVA,
with prime and optimality as repeated measures factors.
Outliers more than 2.5 standard deviations from the mean
were removed prior to analysis. The interaction between
prime and optimality was not significant [F(24,504) =

1.615, MSe = 3.822 X 104, P = .11, 002 = .004]. There
were significant main effects of both prime [F(6,126) =

3.858, MSe = 1.224 X 105,p < .01, 002 = .026] and opti­
mality [F(4,84) = 44.381, MSe = 5.153 X 104,p < .001,
002=.111].

Mean identification times for each level ofprime, both
overall and by type of response, are shown in Figure 7.
Post hoc pairwise comparisons, using Tukey's HSD test,
showed that the following primes gave rise to significantly
(p < .05) different identification times: 0 and 100 msec,
100 and 2,000 msec, 500 and 2,000 msec. Identification
times varied with optimality, as is shown in Figure 8.

Errors. The number of errors, defined as either re­
jections of optimal routes or acceptances of suboptimal
routes, made by each participant in each condition of the
experiment were subjected to a two-way ANOVA, with
prime and optimality as repeated measures. There was
no significant interaction of prime and optimality
[F(24,504) = 1.111, MSe =0.023,p = .36,002 = .001] and
no significant main effect of prime [F( 6,126) = 2.033,
MSe =0.038,p = .10, 002 = .003]. There was a significant
main effect ofoptimality [F(4,84) = 89.330, MSe = 0.103,
P < .001,002 = .512], the nature of which is represented
in Figure 8.

Discussion
Identification times varied with prime, so that they

were shortest when the prime was 100 and 500 msec and
longest when the prime was 0 and 2,000 msec. This vari­
ation in identification time was not connected with vari­
ability in the accuracy of performance: The number of
errors was not significantly different across all levels of
prime. This pattern is broadly consistent with the predic­
tion that, ifTSP solution judgments are based on a rapid
global assessment ofbest figure, short primes will reduce
identification times, since the global best figure is made
available immediately before the route is presented. This
provides strong evidence in favor of global processing
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Figure 7. Mean identification times (in milliseconds) for each
level of the prime factor in Experiment 4.
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Figure 8. Mean identification times (in milliseconds) and pro­
portion of errors for each level of optimality in Experiment 4.

and is not consistent with the alternative hypothesis that
TSP solution judgments are based on the computation of
a tour through the application of a point-by-point serial
route-finding heuristic.

An unexpected discontinuity was found in the identi­
fication time data concerning the effect ofprime length:
Whereas primes of 100 and 500 msec showed facilitation
of solution identification, relative to no prime or long
primes, the 250-msec prime showed reduced facilitation.
A number ofexplanations for this discontinuity are pos­
sible, but the simplest ofthese seems to be that it is a result
of saccadic eye movements. Reaction times for saccadic
eye movements of around 200 msec (see, e.g., Vaughan,
1983) are consistent with a pattern in which, after an ini­
tial fixation on the prime stimulus in which a global fig­
ure is extracted, a saccadic eye movement is made, fol­
lowed by refixation on the prime stimulus in which the
global figure is refreshed. Primes of 100 msec would be
unaffected by saccadic eye movements, and primes of
500 msec would allow for an eye movement followed by
refixation, whereas primes of250 msec would include a
saccadic eye movement without refixation, which might
disrupt the maintenance of a global figure that was ini­
tially extracted from the prime.

The main effect of optimality replicated the findings
of Experiments 2 and 3, in that identification times for
optimal and 45% suboptimal solutions were short; for
15%,25%, and 35% suboptimal solutions, identification
times were longer, reaching a maximum at 15% subop­
timal. Accuracy of identification followed a similar pat­
tern, with near-perfect identification when optimality was
optimal and 45% suboptimal, and chance levels of iden­
tification with 15% suboptimal solutions.

GENERAL DISCUSSION

Experiment 1 demonstrated a clear relationship be­
tween TSP solution optimality and judgments of good
figure: The more optimal the TSP route, the better a fig­
ure it was judged to have. In Experiments 2 and 3, the
participants quickly and reliably identified optimal so-
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lutions and rejected those of low optimality; judgments
about solutions with intermediate optimality took longer
and were less accurate. Experiment 3 also demonstrated
the participants' ability to make these judgments within
a 2-sec time limit. The ability to differentiate reliably be­
tween levels of optimality in such short identification
times is suggestive of global perceptual processing of
figural properties in TSPs. Experiment 4 demonstrated
that short prime stimuli, consisting of the problem alone,
gave rise to facilitation ofsolution identification, as com­
pared with both the no prime condition and conditions
with longer prime stimuli. These findings are supportive
ofa model ofTSP judgment in which a global good fig­
ure derived from the problem alone is judged against the
presented route and a decision is made on the basis of
the degree of match or mismatch.

The significant interactions found in all the experiments
between optimality and problem factors indicate that it is
somewhat easier to identify optimal solutions with sim­
ple TSPs and suboptimal solutions with more complex
TSPs. This is also consistent with the proposed model:
Optimal solutions to simple problems have the least dis­
rupted convex hull ofall the possible TSP solutions, and
best figure may, therefore, be easily discovered. As prob­
lem complexity increases, the number of disruptions to
the convex hull also increases for optimal problems;
hence, the best figure may be more difficult to identify.
Suboptimal solutions for simple TSPs have a disrupted
convex hull, but major variations in optimality can be
achieved without adding features, such as line cross-overs.
In more complex problems, because of the increased
number ofinternal points, it is much more common to find
crossed lines and other indicators of solution subopti­
mality. This relates well to Sanocki's (1993) contingency
model: Optimal solutions to simple problems are highly
consistent with the emergence ofa good figure that con­
forms to an uninterrupted convex hull, whereas subopti­
mal solutions to complex problems may be identified
quickly via a clear mismatch between a global reference
frame and the presence offigure-violating characteristics,
such as crossed lines and sharp changes in line angle.

Note that, although the data from our experiments ap­
pear to be consistent with Sanocki's (1993) global-to­
local contingency model, we do not make any specific
claims about the precise nature ofglobal processing that
underlies TSP identification. In particular, the experi­
ments were not designed to distinguish between the con­
tingency and the general feature models reviewed by
Sanocki, since variants of both models might, in princi­
ple, allow global processing ofperceptual stimuli. In Ex­
periment 4, the prime stimulus consisted ofthe complete
set ofpoints for each TSp, so that any model predicting the
global extraction ofa figure could account for our data. To
test between contingency and general feature models in
accounting for TSP solution identification would require
the use of component parts of TSP problems as primes,

whose figure is consistent with optimal tours, suboptimal
tours, or both.

Notwithstanding our caution in suggesting a specific
global processing mechanism, it is interesting to specu­
late on the relationship between one ofthe characteristic
properties of good TSP solutions, that of conforming to
a convex hull, and the nature of contour detection in
human vision. For example, Field, Hayes, and Hess (1993)
have shown how the detection of paths within random
Gabor patch arrays is a function ofthe orientation and po­
sition of elements, so that paths are detected where ele­
ments lie on a simple smooth curve passing between el­
ements. The extraction ofglobal structures based on the
conforming of sets of local elements to curvilinear tra­
jectories may be related to the key role ofthe convex hull,
which typically offers the most obvious global curvilinear
structure in a random dot TSP array. Not only are convex
hulls strongly correlated with good TSP solutions, but
they are also likely to dominate the elicitation offigures
from TSP arrays, because oftheir significance in contour
detection in human vision. One might predict that, where
TSP arrays allow the extraction of curvilinear structures
that do not conform to a convex hull, it will be these that
influence TSP performance. For example, MacGregor and
Ormerod (1996) suggest that an array consisting of two
perpendicular curvilinear sets ofdots is unlikely to yield
high-quality TSP solutions.

Some evidence of localized figural effects was found
across the different problem types. The error data for Ex­
periments 2 and 3 show a similar pattern across different
problems, performance on 1- and 4-point and Dantzig
problems being more accurate than on 2-, 3-, and 5-point
problems. In discussing the results of Experiment 2, it
was suggested that the degree of clustering of internal
points in each problem appears to be related to accuracy
in identifying solution optimality. It is interesting to note
that MacGregor and Ormerod (1996) also found evidence
for effects of internal point proximity. They conducted a
post hoc regression analysis of the response uncertainty
data from the 20-point problems used in their second ex­
periment and found that addition of interior point prox­
imity as a second independent variable increased the
variance accounted for by approximately 17%. Clusters
of internal points may detract from the global figure of
the convex hull, thereby impairing the identification of
TSP solution quality. However, this clustering hypothesis
should be treated with caution: Only a small set ofprob­
lems were used in the experiments, and also a number of
competing hypotheses remain untested. For example, it
may be that the regularity ofinternal point patterns, rather
than their degree of clustering, is more important in de­
termining problem complexity. Experiments are currently
in progress to test these competing hypotheses concerning
localized figural effects.

The outcomes ofthis research have two main practical
implications. First, they may usefully inform the efforts



GLOBAL PERCEPTUAL PROCESSING IN PROBLEM SOLVING 1237

ofoperations researchers in the development ofpractical
methods for solving large-scale TSPs. In particular, the
allocation of tasks adopted by Krolak et al. (1971), in
which they used computer-based methods to find ap­
proximate tours ofTSPs whose details were subsequently
completed by human problem-solvers, may be in pre­
cisely the opposite direction to the most effective alloca­
tion. Our results suggest that the unique capability ofhu­
mans at solving TSPs lies in the rapid identification of
good figures. It may even be that requiring humans to ad­
just partially completed tours encourages them to adopt
local processing strategies that interfere with, or nullify,
the identification of a TSP's global figural properties.

Second, global perceptual processing may be used by
humans in solving problems that are homomorphic to the
TSP-for example, in route finding (see, e.g., Anderson,
Kushmerick, & Lebiere, 1993) and the statistical assess­
ment of data distributions (see, e.g., Lloyd & Steinke,
1977; Walter, 1993). For example, Anderson et al. in­
vestigated how humans choose between routes that vary
according to known and future costs, as a test of Ander­
son's (1993) ACT-R theory. In their experiments, partic­
ipants navigated a spatial array from start to target loca­
tions via a number of intermediate locations. The cost of
alternative routes was manipulated, so that fast travel was
possible on direct routes, whereas slow walking could be
undertaken where no direct route existed. Unlike a real­
istic map-reading task in which all the routes between lo­
cations are displayed, participants saw only the direct
routes radiating from their present location at any stage.
This enabled Anderson et al. to examine the factors un­
derlying decisions to choose one route over another at
intermediate locations in a tour. Their data suggest the
application of a local processing strategy, in which par­
ticipants evaluated the cost of taking alternative routes
between pairs oflocations as a function of the Euclidean
distances between present, future, and target locations.

Our TSP stimuli did not include cost information about
each location and route. Yet, real-world TSPs often re­
quire cost-benefit analyses. For example, in planning a
trip around a number ofoutlets, a distributor needs to be
aware that some outlets' needs are more urgent than oth­
ers or that some outlets may be closed at certain times.
Pilot data from a master's dissertation (Buckmaster, 1992)
showed that irrelevant contextual information (in this
case, superimposing TSP points on a background outline
of the United States) reduced the quality ofparticipants'
TSP solutions to approximately the level of the nearest
neighbor heuristic, suggesting a switch from global to
local processing strategies. Providing relevant contextual
information, such as costs associated with each location
or route, might be expected to impair TSP performance
still further. We are presently exploring a possible remedy
to this problem, in which the costs associated with each
location or route in a TSP are abstracted from the topo­
graphical display of locations and are themselves repre­
sented as a TSP in which location in a spatial array is a
function ofcost. In an inversion of Krolak et al.'s (1971)
approach, we conceive that humans may produce solu-

tions to multiple TSPs (one for each representation of
cost or topography), which can then be combined com­
putationally to determine the most efficient overall tour.

Notwithstanding the importance of cost information,
an essential characteristic ofTSPs and their homomorphs
is that they have visual displays showing the relative spa­
tial distribution ofpoints. Although ACT-R gives a good
account of performance in Anderson et al.s (1993) un­
usual route-finding paradigm, we argue that the restricted
displays that their participants saw precluded the appli­
cation of strategies for extracting figural information.
We suggest that perceptual processing of the figural
properties inherent in a visual display may complement
route- finding performance when complete visual displays
ofroutes between locations are provided. Unitary cogni­
tive architectures, such as ACT-R and SOAR (Newell,
1990), do not address the influence that global perceptual
processing has on problem-solving performance. Others
(e.g., Larkin, 1989; Zhang & Norman, 1994) have rec­
ognized the importance ofexternal displays in mediating
cognition. However, they focus on explaining how exter­
nal displays constrain the operation of local processing
strategies. We suggest that recognizing the role ofglobal
perceptual processing in extracting figural properties
from stimulus displays will form an important extension
to existing theories of human problem solving.
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