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Detecting target elements in multielement arrays:
A confusability model

R. A. KINCHLA
Princeton University, Princeton, New Jersey 08540

A “reductive coding” model for the detection of critical elements in multielement arrays originally applied to
auditory data is shown to provide an interpretation of *set size” and “redundant critical element” effects in visual

letter detection data.

This paper considers the general perceptual problem
of evaluating multielement stimulus arrays for the
presence of certain critical elements. The theoretical
approach is similar to that developed in earlier papers by
this author (Kinchla, 1966, 1969) to characterize
auditory tasks in which array elements (sounds) were
successively presented. It was argued then that a similar
analysis might be appropriate for visual tasks in which
array elements are presented simultaneously. Of direct
relevance to this argument is a paper by Eriksen and
Spencer (1969), which indicated that an O’s ability to
detect a critical letter in a multiletter visual array was
the same whether the letters were presented almost
simultaneously (one letter each 5 msec) or successively
at a very slow rate (one every 5sec). This apparent
equivalence of certain “simultaneous” and ‘“‘successive”
presentation procedures has been confirmed in
subsequent studies by Shiffrin and Gardner (1972).
These results seem to undercut the concept of “serial
coding” processes in vision, since models incorporating
such processes attribute much of an O’s difficulty in
tachistoscopic letter detection tasks to his inability to
process sufficient information from a short-term visual
memory before “decay” or “interference” effects
terminate the process (Estes & Taylor, 1964; Rumelhart,
1970; Sperling, 1963). Presenting individual letters
tachistoscopically but in very slow succession should
allow an O almost as much time to process each letter as
he has to process all of them wheun they are presented
simultaneously (i.e., the “decay” of the second letter
would not begin until ample time had been provided to
process the first letter, etc.). The apparently
contradictory findings cited here, as well as other results,
have led to a critical reappraisal of the concept of “serial
coding” processes in vision (Estes, 1972; Gardner, 1973;
Shiffrin & Gardner, 1972). Eriksen and Spencer
interpreted their results as indicating confusions between
“noisy” or partially processed letters, confusions which
occurred whether the letters were observed
simultaneously or in succession. Thus, the O’s problem
was to make something like a “statistical decision” based
on multiple “noisy” samples, rather than a “race to code
arapidly decaying iconic memory.” This is the “multiple
observation” problem considered in earlier papers by
this author (Kinchla, 1966, 1969). The model developed
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in those papers is used here to interpret a particular type
of tachistoscopic letter detection task; specifically, one
in which Os must decide whether a briefly presented
multiletter array did or did not contain a specific
“target” letter.

Before proceeding further, it will be useful to
introduce some formal notation for describing the task
we shall consider. An n-element stimulus array will be
denoted by the symbol A, and each of its constituent
elements (letters) by e; (i = 1, 2, *** n). Each e; will be
said to have a value, denoted v;, of 1 if e; is a target or 0
if e; is a nontarget. The number of target elements in an
array will be denoted by t. In the experiments
considered here the ordering or positioning of elements
within an array is randomized each time the array is
presented with all possible orderings equally likely. An
O’s report that an array contained some target elements
will be termed an R, response, while a report that no
targets were presented will be denoted R,. Thus, his
performance can be summarized by two proportions:
the proportion of R, responses to A; arrays, denoted
P(R, | A;), and to A, arrays, denoted P(R; | Ay). These
are analogous to “hit” and “false-alarm” rates in a
conventional signal detection task and can be interpreted
as estimates of corresponding conditional probabilities,
P(R, | A;)and P(R, | Ap).

The object of this paper is to show how the number
of elements in an array (n) and the number of target
elements (t) might interact with an O’s “sensitivity” and
‘“judgmental standards” to determine his performance.

THEORY

The model we shall employ can be interpreted as a
series of “coding” operations designed to isolate those
aspects of one’s sensory activity relevant to a particular
judgment. This reductive coding process is represented
schematically in Fig. 1. For our present purposes,
sensory activity can be thought of as the ongoing
activity of a large number of “receptive units.” The
influence of a stimulus array on one’s sensory system
would depend on the physical properties of the stimulus,
the nature and current state of the receptive units, and
on their “orientation,” where orientation refers to any
efferent action which alters the incidence of external
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Fig. 1. Schematic of the theoretical reductive coding process.

energy on the neuronal interface (e.g., accommodation,
dilation, and eye movements in the case of vision, and
head movements, or even muscular control of the bones
in the inner ear, in the case of audition).

We shall consider four successive coding operations
which might be employed in evaluating an n-element
stimulus array for the presence of target elements; these
four operations will be termed elementary, similarity,
cumulative, and response coding (Fig. 1). Elementary
coding is the attempt to isolate (segment, chunk) those
aspects of the ongoing sensory activity containing
information about particular elements in the array.
Thus, the product of this coding operation are n
“sensory samples,” X;, X,, ', Xn, Where x; is the
sensory activity relevant to element e; (i = 1, 2, ***, n).
Similarity coding reduces the stimulus information in
each elementary coding to a minimal form relative to the
decision required of the O; in the model developed here,
each similarity coding, denoted by s;, characterizes the
similarity of x; to sensory activity typically evoked by
the specific values of e;. Cumulative coding integrates
the n similarity codings (s;, sz, ***, $p) into a single
coding, denoted by y, to which a decision rule may be
applied. It is this translation of y into a response R
which constitutes the final coding operation, response
coding.

As indicated in Fig. 1, it will be assumed that each of
the coding operations is influenced by ‘“higher order
memory and control processes.” The nature of these
higher order processes will be considered later, after an
explicit quantitative model has been developed.

A Model

The basic assumptions of the model can be expressed
in the following three statements: (1) Let each s; be an
independent Gaussian random -variable whose
distribution depends only on v; (the value of e;), fori=
1,2,+++,n.(2) Let

y=Zsi.
i

(3) Let Ry occur iff y > 8, where § is a Gaussian random
variable.

Note that Statement 1 defines a relation between the
value of e; (v;) and its similarity coding (s;) without
mentioning the elementary coding x;. There is an
interpretation of s; in terms of x; which is of theoretical
interest, although it is not testable in the present
application of the model; specifically, that

s, = ln[gl(xi) a

8o (%;).

where g,(x;) is the conditional distribution function on
the set of possible elementary codings when v equals v;
(the value of ;). In other words, s; is the logarithm of
the likelihood ratio g (x;)/go (x;). Thus, it characterizes
the relative similarity of x; to target and nontarget
elements and specifies all the information in s; relevant
to a decision regarding the value of e;. While this
interpretation of s; will be considered later in the paper,
its simpler definition in Statement 1 is sufficient here.
Statement 2 defines y as a simple sum of the s; values;
thus it is also a Gaussian random variable. This
unweighted (or equally weighted) combination of
similarity codings is adequate for the data to which the
model will be applied in this paper. However, it should
be clear that more complex combinatorial rules could be
considered, for example, the type of weighted
combinations of elementary information which have
been proposed by Anderson (1968) in his psychological
theory of information integration. Thus y could be
defined as a weighted sum of the elementary codings

(Y = Z_:Wixi)

in situations where an O might “‘attend to” or “weight”
the elementary codings differentially.

Finally, Statement 3 is in the form of a conventional
statistical decision rule except that the response criterion
B is a Gaussian random variable rather than a constant.
This allows one to distinguish between the expected
value and variance of B8, with the former interpreted
much like a conventional fixed criterion and the latter a
measure of inconsistency in judgmental standards from
trial to trial.

Some Properties of the Model

Certain properties of the model can be expressed most
easily by letting the expected value of s; given a
nontarget element equal 0, and its expected value given a
target element equal 1;i.e.,

@

This is simply an arbitrary choice of origin and unit for
expressing s;. It will also be useful to denote the variance
of s; when e; has the value v by a, (v =10, 1) and the
variance of § by m;ie.,

E(s;) =vi.

Var (s5; | vi=Vv)=a,
and

Var (B) = .



It can then be shown that the expected value and
variance of the Gaussian random variable y given any
particular array are

E(y)=t 3

and

Var (y)=tay +(n — thy, “)
respectively. Note that distribution of y given Ay is
simply the special case for t=0: y is the sum of n
Gaussian variables with expected values of 0O and
variances of ¢ . In general, each target element (v; = 1)
in an A, array increases the expected value of y by 1
and its variance by a; . These relationships are illustrated
graphically in Fig. 2(a and b).

Note that the overlapping distributions of y given A,
or A, in Fig. 2b are similar to the stimulus conditional
distributions of likelihood ratio found in Green and
Swets (1966), except for 7, the variance of 8. It can
easily be shown that this “variable criterion™ decision
process is equivalent to a “fixed criterion” one in which
E(B) is the fixed criterion and the variance of each y
distribution is incremented by = (e.g., see Tanner, 1956;
or Kinchla, 1969). Thus it is possible to define a
discriminability measure D analogous to the
conventional d" measure used in signal detection theory,
specifically

_E(1A)—E(y1A0)
[Var (y 1 A0) + Var (9)]

- t
(nag + m)%

(5)
The relation between D and the O’s theoretical response
probabilities can be expressed most simply in terms of
zo and z,, where z, is that value of a standard normal
deviate exceeded with probability P(R, | Ag) and z, isa
similar transformation of P(R | A,); specifically,

D=Z0 - BZl (6)

where

ta; +(n ~ t)a + 7%

™

nog +m

[For the details of this derivation, see Kinchla (1966 or
1969).]

The larger the value of D, the more accurately will an
O distinguish between A, and A, arrays, given the
appropriate value of E(@); ie., D is a type of
- gnal-to-noise ratio. The numerator in Eq. 5
characterizes the systematic difference in y attributable
to the target (‘“signal’) elements, while the denominator
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Fig. 2. Ilustrative distributions of s; conditional on the value
of element e; (v; = 0, 1) and of y conditional on the type of
array, A, or A,.

characterizes variability or “noise” in the perceptual
process. This noise has two components, variability in y
and variability in §. It will be useful to denote this
“perceptual noise” by o? , where

0® =Var (y) + Var (§)

=ta; +(n—thg +7 (8)
for either Ay or A, arrays.

While D characterizes an O’s ability to discriminate
A, and A, arrays, a more general expression for an O’s
response probability given any specific array A can be
defined as follows. If P(R; | t) denotes the probability
of an R; response given an n-element array containing t
target elements (0 <t <) and zg denotes that value of
a standard normal deviate exceeded with probability
P(R; |t), then it can be shown that

U
R
[Var(y | t) + Var (B)] %
E@) -t

©

" [tay +(n—thap +7]%

i.e., zg is simply the deviation of E(y) from E(B) in units
of a (Eq. 8).

In the subsequent interpretation of experimental data,
it will be useful to employ simpler forms of the general
model: specifically, a one-parameter form in which «,
and «, are equal and 7 is zero, so that the single
theoretical parameter is a« (0% = a; = «); and a
two-parameter form in which @, equals a; but 7 is not
assumed to equal zero, so that o and # are the
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theoretical parameters. In both cases the factor B in
Eq. 7 reduces to one, so that

t
(na + )%

(10)

An estimate of D, denoted D, is therefore defined by

(amn

D=7, — 7,

where 2; is that value of a normal deviate exceeded with
a probability equal to the obtained proportion of R,
responses to A; arrays, P(R; |A;) or P(R; | Ao).
Furthermore, the “perceptual noise” (Eq. 8) reduces to

(12)

An estimate of o®, denoted &, is therefore given by
substituting D for D in Eq. 5 and rearranging so that

o =na+m.

o* =t2D2, (13)
Finally, Eq. 9 also simplifies when a, equals «; to
zg =Mt +K (14)
where
M= —(o?)% 15
and
K =E(B)M; (16)

ie., zg is a linear function of t whose slope (M) is a
function of ¢® and whose intercept is a function of E(B)
and ¢?.

INTERPRETING EXPERIMENTAL DATA

Before describing the application of the model to
visual letter detection data, it seems useful to briefly
consider its original application in an auditory study.

*“Set Size” and “Redundant Targets” Effects
in an Auditory Experiment

In this experiment (Kinchla, 1969) the n “elements”
(e1, €2, "+, ey) in each auditory “array” (A) were n,
successively defined, 100-msec intervals, during each of
which a 1,000-Hz tone was either added (v; = 1) to a
continuous level of white noise or not (v; = 0). Each
array was temporally defined for the O by n successive,
100-msec illuminations of a light, with 500-msec periods
of darkness between illuminations. An A, array
consisted of t “tone-plus-noise” intervals and n—t
“noise-alone” intervals, while an A, array consisted of n

noise-alone intervals. The values of n and t were fixed
within each testing session at one of the seven possible
combinations of nequalto 1,3, or 6 and t equal to 1, 2,
or 3 (note that t cannot exceed n). An O’s task in each
condition was simply to decide whether at least one tone
was presented on each trial (R,) or not (Ry). Both the
noise and tone levels were adjusted during preliminary
testing to yield about 90% correct responding when n
and t were each one.

The proportions of R, responses to each type of array
were used to calculate a discriminability measure, D, for
each n and t condition using Eq.11 (the “hit” and
“false-alarm” values are available in Kinchla, 1969).
These measures are presented graphically for each of
three Os in Fig. 3; each of the t =1 points is based on
1,000 trials and each of the rest on 600 trials. The two
main experimental effects are obvious: discriminability
is negatively related to n, a ‘“ser size effect,” and
positively related to t, a ‘“redundant targets effect.”

A theoretical interpretation of these data is provided

by a simple, one-parameter (&) form of the model. The
solid lines in Fig. 3 were defined by selecting that value
of & in Eq.10 which minimized the squared
discrepancies between the observed (D) and predicted
(D) discriminability. The three & values are presented in
Fig. 3. These one-parameter fits account for 93%, 88%,
and 84% of the variance of D for Os 1, 2, and 3,
respectively. While better fits could be obtained by
estimating more parameters, the simple model provides a
reasonable account of both “set size” (n) and
“redundant target” (t) effects: each additional element
in the array increases the variance of the cumulative
coding y by the amount &, while each redundant target
(“signal™) increases the expected value of y by one

(Eq. 3).

A “Redundant Targets” Effect
in a Visual Experiment

Here the model is applied to some previously
unpublished visual letter detection data which are part
of a more extensive study by Kinchla and Collyer (in
preparation). An O’s task was to evaluate briefly
presented four-letter arrays for the presence of one or
more target letter Fs; i.e., each array consisted of four
elements (letters) with A, arrays containing at least one
F and A, arrays none. Os were asked to rate their
confidence that the array contained at least one target
letter by making one of four responses: r; (most
confident), r,, r3, or 14 (least confident). For our
present purposes we shall simply treat the two higher
confidence reports (f, and 1,) as a “yes” (R, ) response,
and the two lower confidence responses (r; and ry) as a
“no” (Ry) response (this is a common practice in the
analysis of rating data and is discussed in Green & Swets,
1966). Of central interest was how the number of target
elements t (0, 1, 2, 3, or 4) influenced the O’s response
tendencies.



DETECTING TARGET ELEMENTS 153
Y] s
SLBJECT 1 SUBJECT 2
ae39 a=.83
X1 3 L] L o
i \ 20k
tel
D 1of
o
os})
) o e —— — 1 Il
Fig. 3. Application of the model to an ° ! : ‘,, * : ¢
auditory task (Kinchla, 1969). 28
“1 susuecT 3 OBSERVED :/ALUES
AL ot
20 r—“ 81 . At=2
ted LR
s PREDICTED
o VALUES
0
l.O}-
ost
cc l| Jz ; ; 3‘; )

METHOD
Apparatus and Procedure

The stimuli were presented on a rapid-decay cathode ray tube
(CRT) driven by a DEC PDP-12 computer. Each letter was
defined by a specific subset of a 4 by 6 array of points as is
conventional on computers of this type. The luminance of each
letter was basically the same as those described in Shiffrin and
Gardner (1972). Each O was seated in a darkened acoustical
testing chamber and viewed the CRT from about 20 in. Each
trial began with a 1-sec illumination of a fixation point in the
center of the CRT, followed by a 12-msec illumination of the
four-letter array, followed by a 2-sec illumination of a masking
field. This masking field consisted of the full 4 by 6 point
pattern from which each letter was defined. The letters were
positioned in the corners of an imaginary square centered on the
fixation point. Each letter subtended .75 deg vertically, .5 deg
horizontally, and was centered about 1.2 deg from the fixation
point. The O made a pushbutton response while the masking
field was on. Each trial concluded with a .5-sec ‘‘feedback"’
period during which the previously presented four-letter array
reilluminated. This was followed by a dark .5-sec intertrial
period.

Each O was tested for 15 360-trial sessions, or a total of 5,400

Table 1
Observed Proportion of “Detect” Responses, P(R,It), and
Predicted Probability, P(R,it), for Each Value of t
in the Kinchla and Collyer Experiment

Obs 1 Obs 2
P(R, 1) PR, It) P(R, 1) P(R, 1)
t=0 11 07 29 29
1 19 21 52 53
2 40 44 15 15
3 70 .70 89 .90
4 88 88 97 97

n

trials (not counting 8 prior practice days).

Arrays in which t equalled 0, 1, 2, 3, or 4 occurred with equal
frequency in a randomly determined sequence within each block
of trials. The (t) target “‘Fs” were positioned at random within
each array along with (4-1) other nontarget letters chosen
randomly from the remaining letters of the alphabet.

RESULTS

For our present purposes it will be sufficient to
consider representative data from two Os. Since each
performed in 15 sessions, the proportion of R,
responses to each of the five types of array (t values) is
based on approximately 1,080 trials. These five
proportions for each O are presented in Table 1. Each
proportion, P(R, |t), yields a Z value (the normal
deviate exceeded with a probability equal to that
proportion) which is graphed as a data point in Fig. 4.
The general nature of the results is clear: the larger t, the
greater the probability of a “detect” (R, ) response. -

Theoretical Analysis and Discussion

The solid lines in Fig. 4 indicate the theoretical
function defined by Eq. 14 with M and K chosen so as
to minimize the squared discrepancies between zg and
Z2g; M was —.66 and —.60, while K was 1 .45 and .54 for
Os 1 and 2, respectively. More elegant techniques for
fitting the model could be employed, including
separately estimating o and a,, but this simple method
seems adequate here. The main point is clear: the model
can account for virtually all of the variability in
performance.l The effect of adding each *“‘redundant”
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Fig. 4. Data from unpublished study by Kinchla and Collyer
(in preparation).

(t > 1) target element to an array is entirely consistent
with the discriminability between single-target (t=1)
and no-target (t = Q) arrays.

Note that the estimates of M and K in Eq. 14 also
vield estimates of the “perceptual noise” o and the
expected response criterion E(B), using Egs. 15 and 16;
specifically, 6> = 1/M? and E(§) = K/M. However, note
that these data do not allow one to isolate the two
components of o2 in Eq. 12;i.e., to separate variability
in the cumulative coding (na) from that in the response
criterion (7). One method of separately estimating these
two components of perceptual noise will be considered
in the next section.

A “Set Size” Effect in a Visual Experiment

The model can also be used to interpret a visual letter
detection experiment reported by Eriksen and Spencer
(1969), specifically their “Experiment One.” The
elements (g;) of their stimulus arrays were individual
white-on-black-background letters which subtended
.18 deg visual angle. Each letter was an uppercase T, U,
or A. The O’s task was to detect the occurrence of the
letter A. In the present notation, ¢; had a value of 0 if it
was a T or U and the value of 1 if it was the “critical”
letter A. An array was generated by the successive
presentation of 1, 3, 5, or 9 letters positioned at various
points about the circumference of a 1.3-deg-diam circle,
centered on a .25-deg fixation cross. There were 10
possible letter positions equispaced about the circle, and
the n (1, 3, 5, or 9) positions utilized on a specific trial
were selected randomly so that each possible set of
positions was (essentially) equally probable. Each letter
was illuminated for about 2 msec. The dark intzrval
between successive letters varied from one session to the
next such that the letters were presented at rates of 5,
15, or 30 per sec within any one session. A critical letter
was present (A, ) on a randomly selected 50% of the trial
and absent (Ao) on the rest. When an array contained
the letter A, it occurred with equal probability as the
first, middle, or last element. (While this represents a
potentially important deviation from a completely

random positioning, it appears to have had no observable
effect on performance.) After viewing each array, the O
indicated whether he thought an A had been presented
(R;) or not (Ry).

The performances of four Os indicated no significant
effect of presentation rate, position of critical letter, or
differences between Os. Only the number of letters in an
array (n) had a statistically significant effect on
performance. Table 2 presents values of P(R; | A;) and
P(R; | Ag) (the “hit” and “false-alarm” rates) averaged
over the three presentation rates, critical letter position,
and Os; each of the n = 1 proportions are based on 4,880
trials, and each of the rest on 960 trials. The general
nature of the “set size” effect is obvious: while
P(R, | A,) is essentially invariant, P(R, | Ay) increases
with n, indicating a drop in discriminative ability.

The two-parameter form of the model (a and )
provides an interpretation of these data. Estimates of
discriminability (D) were obtained for each value of n
using the data in Table 2 and Eq. 11. These values of D
were then transformed to estimates of the “‘perceptual
noise,” 6 using Eq. 13. Theoretically these estimates
should be a linear function of n (Eq. 12). The extent to
which this is true is indicated in Fig. 5. It is clear that
there is no significant deviation from the linear function
(solid line) fitted by a least-squares method to the four
D values. Note that the slope (.15) and intercept (.2) of
this line constitute esimates of & and #, respectively.

Thus, in terms of the model, the set size effect can be
interpreted as an additional square unit of variance
(noise) in the cumulative coding y produced by each
additional letter in the array. There also appears to be a
fixed component of “perceptual noise” () which is
independent of n and interpretable as variance in the
response criterion (or other fixed sources of “noise™).
This fixed component was approximately as large as that
attributable to each letter. The parameter & can be
thought of as a measure of “‘confusability”” which makes
a progressively larger contribution to the variance iny as
n is increased, i.e., the basic difficulty for an O is the
increasing number of opportunities for confusing
nontargets with targets.

SOME ADDITIONAL CONSIDERATIONS

In the preceding applications of the model, it has been
possible to ignore certain aspects of the more general
theoretical process represented in Fig. 1; specifically,

Table 2
Data from Eriksen and Spencer (1969) with Estimated Values

of 6 and D and Predicted Values of D Given
a=,15ad n = .2

- A R Predicted
N P(R,1A,) P(R,IA,) o? D D
1 71 13 35 1.68 1.69
3 74 27 .64 1.25 1.23
5 5 .37 1.00 1.00 1.03
9 .75 44 1.49 .82 81




“higher order memory and control processes” and
“elementary coding.” These will be discussed briefly
here, since they suggest important considerations for
further application and elaboration of the model. For
similar reasons it will be useful to consider some
alternative letter detection paradigms and some related
theoretical work.

Higher Order Memory and Control Processes

An O’s perception of a stimulus is clearly influenced
by information acquired prior to its presentation. Some
of this information he brings with him to the laboratory
(e.g., familiarity with alphabetic characters), some is
specified in his instructions (e.g., “targets will be
presented on 50% of the trials”), and some is gained
through practice in the actual testing situation (e.g.,
familiarity with the font, positioning, and timing of
stimulus letters). It is the role of such aprior
information which is represented by the box labeled
“higher order memory and control processes™ in Fig. 1.
While the acquisition of this prior information (a kind of
“perceptual learning” process) is obscured in studies
which employ highly practiced Os, its importance is
suggested by the large increase in accuracy typically seen
during an O’s initial practice sessions.

One type of information an O could acquire during
practice sessions is a familiarity with the sorts of
“sensory samples” (elementary codes, x;) typically
evoked by target and nontarget elements; i.e., the
functions g,(x;) in Eq.1. As he gained a better
impression of these distributions, his similarity codings
(sy) would become more accurate, thereby reducing a
source of “noise” in his judgments. Practice should also
optimize an O’s orientation strategies and stabilize his
judgmental standard (i.e., reduce n in Eq.5, thereby
increasing D).

The Concept of “Elementary Coding”

As indicated earlier, the simple model employed in
this paper essentially ignores the elementary coding
stage, since s; is defined directly as a Gaussian variable
determined by v;. Why then is “elementary coding”
represented in Fig. 1? Many authors have ignored the
problem of ‘segmenting” sensory activity into
elementary codes, simply referring to a “perceptual
channel” (e.g., Gardner, 1973; Rumelhart, 1970;
Shiffrin & Gardner, 1972) corresponding to each
element in an array, without considering how these
“channels” are defined. They are clearly not anatomical,
in any simple sense, since their number varies with the
size (n) of an array. In the experiments we have
considered there was an obvious *“‘elementary” structure
to each stimulus array. Os were essentially trained to
perceive this structure, i.e., to “segment” or code the
sensory information in the “appropriate” way. Since this
coding process was fixed and well practiced, it seemed a
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negligible part of the perceptual process. However,
consider the three stimulus patterns (I, II, and III) in
Fig. 6. If an O were trained to process stimuli like
Pattern I, he might initially *“see” Patternll as a
“two-element” array consisting of the letters T and L,
whereas if he had been trained to process stimuli like
Pattern III, he might “see” Pattern II as 12 small letters.
The point of this illustration is that the number of
“channels” or ‘“‘elementary codings” (x;) employed to
evaluate an array is basically defined by the O. This
“grouping” or “‘segmentation” process is often obscured
in studies which employ fixed format stimuli and highly
practiced Os, yet it may be an important consideration
when format (e.g., letter size) is varied (or unknown) or
when alternative ‘“‘elementary” segmentations are
possible, as with Pattern ITin Fig. 6. The results of some
preliminary experimentation in this laboratory suggest
that one’s initial organization of stimuli like Pattern II is
critical when they are seen tachistoscopically (e.g.,
50 msec). A predisposition to organize the stimulus into
two large letters seems to reduce one’s ability to “see”
the small letters radically, and vice versa, as if it were
difficult to “segment” the same array in two different
ways simultaneously. One could argue that a similar
problem arises in the classic “cocktail party” situation,
since the temporal segmentation of acoustic “sensory
activity” appropriate for ‘“hearing” one person’s voice
would usually be inappropriate for another voice. Thus,
there may be selective or “‘attentional” processes at the
level of elementary coding which would not be evident
in studies utilizing fixed format stimuli.

Alternative Letter Detection Paradigms

The procedure employed by Neisser (1967) and
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Fig. 6. Nlustrative stimulus patterns, where II can be
interpreted as either a 2- or 12-element array.

others to study overt visual scanning is formally similar
to the tasks we have considered: the O is asked to scan a
whole page of characters “from top to bottom,”
stopping as soon as he detects a target letter or reaches
the end of the page. While the logical arguments
developed here are relevant to such problems, the lack of
E control of orientation (location, duration, and order
of fixations) makes the data from such tasks difficult to
analyze.

In both visual experiments analyzed in this paper, the
stimulus elements were well spaced and equidistant from
the fixation point. Care should be taken in applying the
model to other situations, e.g., more complex lateral
interactions may occur when letters are presented closer
together, and it might be necessary to assume different
“noise” (a) values when letters are presented at various
distances from the fovea.

Another paradigm which has been used extensively in

letter detection studies (e.g., Estes & Taylor, 1966, 1972;
Shiffrin & Gardner, 1972) has often been referred to as
simply a “forced-choice” form of the “yes-no” tasks con-
sidered earlier in this paper. For example, the O could be
asked to evaluate tachistoscopically presented letter ar-
rays for the presence of a target T or F, where each array
contains either a T or an F (but never both), along with
other “nontarget” elements. Thus, every array contains a
“target.” In our terminology there are three classes of
elements, the nontarget elements and the two targets.
These could be said to have the ‘values” 0, 1, and 2,
respectively. Note that in contrast to the experiments
considered earlier, an O in this task cannot evaluate x;
along a single dimension of similarity (Value 0 vs
Value 1), but must consider three possible values for e;
(0, 1, or 2). This “three-valued” decision problem has
been referred to as a ‘“recognition” task in the
psychoacoustic literature (e.g., Luce, 1963; Shipley,
1960; Tanner, 1956) and is appreciably more complex
analytically than the two-valued ‘yes-no detection”
task. It is argued here that a more appropriate
“forced-choice detection” task would be simply to
present single-target (t = 1), multielement (n> 1), A,
arrays (of the sort employed in the preceding “yes-no”
experiments) on every trial, and ask the O to specify the
position of the target. Since each element could still be
evaluated along a single similarity dimension (v; = 0 or
1), the perceptual process would be consistent with the
previously defined model up to the cumulative coding
stage. In the simplest possible case, the O might simply
identify the element evoking the largest s; as the target.
He might also “weight” the s; values differentially,
reflecting some predisposition or “bias” to report the
target in one location rather than another. A weighted
decision process of this sort would be more difficult to
evaluate. In any case, since no suitable data of this sort
are currently available, no evaluation of this
“forced-choice” variant of our model is possible here. It
is described simply to indicate the potential theoretical
simplicity of the two-valued “forced-choice” task
compared to the three-valued “recognition” problem.

Related Work

While a complete review of all related work is beyond
the scope of this paper, some particularly relevant
references should be cited. As indicated earlier, one line
of theoretical work has emphasized the problem of
“coding™ stimulus information from a rapidly decaying
“jconic” memory system. The assumption that only so
much information can be successfully coded before
decay (or interference) terminates the coding imposes an
information ‘“‘bottleneck™ early in the perceptual
process. In contrast, a number of authors have suggested
the major problem for an O is the interpretation of
confusable or “noisy” subjective representation of the
stimulus.

Gardner (1973) developes an ‘“‘independent channels



confusion” model which is similar in many respects to
the one presented here. However, Gardner only derives
quantitative expressions for the probability of a correct
response in a two-alternative “recognition” task;i.e., a
task in which each array contains one of two alternative
“critical” letters along with additional “‘noise” letters.
Gardner assumes that the “sensory sample” derived from
each stimulus letter is independently identified (as a
particular critical letter or a noise letter) before the
information is integrated. Basically there are at least nine
conditional probabilities implied in such a process: the
probabilities of each identification given each type of
element. Gardner provides “an intuitive explanation” for
these probabilities with a graph of three overlapping
bell-shaped distributions on ‘“an underlying T-F
(similarity) axis” (T and F being the two critical letters).
This axis is assumed to be divided into three regions,
corresponding to the three possible “end states,” by two
symmetrically placed criteria. This “‘symmetry
assumption” allows the nine conditional probabilities to
be defined with only three parameters. Then, by
assuming that these three parameters are the same in all
“channels” and independent of the number of letters in
an array (n), Gardner derives an expression indicating a
negative relation between set size and probability
correct. While this relation is of the same ordinal form as
the “set size” effect, Gardner does not actually “fit” his
quantitative expression to any data, nor does he estimate
any theoretical parameters.

Several comments seem appropriate regarding
Gardner’s analysis. First, processing each sensory sample
to the level of an identification prior to “integration” of
the information across elements involves a greater
information loss than the integration rule used in this
author’s model (the three-valued “end state™ variable
carries less stimulus information than the continuous
similarity coding). Second, the assumption of symmetry
in the overlapping distributions and in the placement of
identification criteria is unlikely to be appropriate
except in special cases. Finally, there is no a priori
reason to suppose that an O would maintain precisely
the same identification criteria for different set sizes,
and Gardner’s derivation of a set size effect depends on
this assumption. In any case, Gardner’s theoretical
arguments are generally consistent with the model
presented here, and he presents several excellent
experiments supporting the ‘“‘confusability” point of
view.

Two other important papers are those by Estes (1972)
and Shiffrin and Geisler (1973). Both emphasize the
“confusability” of partially processed letters, although
they each suggest a distinction between ‘“primary
detection,” where enough stimulus information is
obtained to allow an unambiguous identification and the
processing of ambiguous or “noisy” subjective
representations. The Shiffrin and Geisler model is
developed in detail and is particularly interesting as a
bridge between letter detection and the sort of
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“scanning of short-term memory” which is associated
with the work of Sternberg (e.g., Sternberg, 1969).

Both Estes and Shiffrin have dealt mainly with
“recognition” tasks (the sort of “three-valued” visual
task described in the preceding section). As indicated
earlier such tasks may involve more complex coding and
decision-making processes than the ‘“two-valued”
detection tasks considered in this paper. Although
recognition tasks may be closer to the more complex
perceptual problems encountered in reading, the simpler
detection paradigms may be more useful for certain
types of analysis.

The problem of elementary coding is closely related
to the problem of “perceptual grouping” which was
studied extensively by early Gestalt psychologists.
Excellent contemporary discussions of this topic can be
found in Hochberg (1973), Keel (1973), and Kahneman
(1973). Of particular relevance is the recent work of
Beck (1972) in vision and Massaro (1972) in audition.
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NOTE

1. An alternative to the response rule employed in this paper
R, ify =0 would be to respond R, if at least one value of sj
exceeds a particular criterion value. Green and Swets (1966)
consider such a rule in a “decision threshold model.”” They
indicate that this decision rule is less efficient than the one
employed in this paper, leading to less accurate responding at
each value of n than would be predicted from the model used

here.
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