Behavior Research Methods & Instrumentation
1979, Vol. 11 (2), 229-233

An introduction to structured programming

KARL P. HUNT
American National Bank, Chattanooga, Tennessee 37350

Structured programming (SP) is a technique devised to improve the reliability and clarity
of programs. In SP, control of program flow is restricted to three structures, sequence,
IF THEN ELSE, and DO WHILE, or to a structure derivable from a combination of the
basic three. Thus, a structured program does not need to use GO TOs or branches (unless
it is written in a language that does not have statement forms corresponding to the SP
structures, in which case, GO TOs may be used to simulate the structures). The result is
a program built of modules that are highly independent of each other. In turn, this allows
a programmer to be more confident that the code contains fewer logic errors and will be
easier to debug and change in the future. However, SP may be less efficient than an
unstructured counterpart. Another disadvantage is the relative difficulty of using SP with a
language that doesn’t support it, although this situation is changing as languages are up-

dated (e.g., FORTRAN 177).

During the last 15 years, many people working in
the area of computing have expressed concern with the
problem of software reliability. While the cost of
hardware has decreased as power has increased, software
costs have increased and become more complex. The
result is that, although we can do more than before, it
is at the risk of encountering more serious problems
than before, and the problems usually prove to be more
resistant to solution. In response to this situation,
several approaches to programming have been devised
to make programs more reliable and, at the same time,
boost the amount of relatively bug-free code a
programmer can produce. The most popular approach
has been structured programming (SP).

Much of the development of SP can be traced to
the work of Dijkstra (Dahl, Dijkstra, & Hoare, 1972;
Dijkstra, 1965, 1968, 1969). Dijkstra’s objective was
to define a class of programs for which correctness
proofs can be relatively easily provided. The class is
that of structured programs.

The European efforts of Dijkstra and others were
primarily academic. In the U.S., Mills and his colleagues
successfully used SP in applied projects for IBM (Baker,
1972; Baker & Mills, 1973). In fact, Mills (Note 1) is
one of the most enthusiastic supporters of SP used in
conjunction with other design methods.

The popularity of SP has increased such that a
number of texts on it have appeared, some devoted
to teaching a specific language via a SP approach
(Conway & Gries, 1973; Hughes & Michton, 1977;
McGowan & Kelly, 1975). Clearly, SP is believed by
many to be an important development in programming.

Requests for reprints should be sent to Karl Hunt,
1413 Cinderella Road, Lookout Mountain, Tennessee 37350.

Copyright 1979 Psychonomic Society, Inc.

229

AN EXAMPLE OF SP

While some may disagree on an exact definition of
SP (McCracken, 1973), there is consensus on its two
primary features: (1)a structured program is a hier-
archical arrangement of highly independent modules,
and (2) flow within the program is controlled exclusively
by only three forms of control, selection, repetition,
and sequencing. The basic control structures proposed
to implement these are IF THEN ELSE for selection,
DO WHILE for repetition, and simply placing statements
one after the other for sequencing. There are other
possible structures, but only two are discussed here:
DO UNTIL (another way of controlling repetition)
and the case structure, which allows for selection from
a large number of alternatives. This list does not include
the GO TO (or jump or branch, whichever term suits
the language you are familiar with).

To help illustrate these characteristics, an example
of an on-line program for control of a paired associate
recall experiment is given in Figure 1. The number of
stimulus-response pairs is variable, and feedback
(“wrong” or “good”) may or may not be given at
recall. Other parameters can be introduced, such as
length of presentation, but are treated as constant to
keep the example simple.

The example as shown in Figure 1 is written in
pseudocode. Pseudocode, which is often suggested as
an alternative to flowcharts, is a natural-language version
of the code in which the program will actually be
written. Just as in a flowchart, its primary purpose is
to represent the logic that controls the flow of the
program. Thus the control structures are emphasized
by being written in all uppercase letters and by the
use of indentation. Pseudocode is a good intermediate
step to writing a structured program even if a flowchart

0005-7878/79/020229-05$00.75/0

230 HUNT

determine if feedback is to be given;
input number of pairs;
DO UNTIL all pairs are input;
input stimuli and responses to file;
END DO;
DO WHILE subjects remain to be run;
present instructions;
DO WHILE present subject is still below criterion;
generate random permutation of pairs and of stimuli;
DO WHILE there are still pairs to be presented on this trial;
present next pair;
END DO;
pause for delay interval;
reset criterion-not-reached switch;
DO WHILE pairs remain to be tested;
present stimulus;
input response;
IF response is wrong;
turn on criterion-not-reached switch;
IF feedback should be given;
print "wrong";
END IF;
ELSE;
IF feedback should be given;

print “good";
END IF;
END IF;

END DO;

pause for intertrial interval;
END DO;
dismiss subject;

END DO;

Figure 1. Program for an on-line paired associate experiment,
written in pseudocode.

is drawn first, since it approximates the actual code
itself. It is fairly easy to tranmslate a pseudocoded
program into final code, especially when the language
used contains statements that correspond to the control
structures of SP. Unfortunately, not all languages do
this.

Looking at the example, one can see that the first
two statements are housekeeping chores in which the
experimenter sets up the experiment. These illustrate
control by sequence. Here, the sequence is trivial since
it could have been reversed with no adverse effect;
elsewhere, of course, it will often be more critical,
especially in the overall sequencing of the major
elements of the program.

The next statement is a DO UNTIL, a variation on
DO WHILE. Its effect is to repeat the statement that
follows it until the condition is met and then to allow
control to proceed to the statement following the
END DO. Specifically, the program will ask the
experimenter to continue entering the stimuli and
responses for the experiment until all n pairs are input.
The input statement itself is indented to show that it
is under the control of the DO UNTIL.

The rest of the program is a more elaborate demon-
stration of the use of indentation. The statement “DO
WHILE subjects remain to be run” exerts control over
all statements that follow it down to the END DO at
the bottom that lines up at the margin with the DO
WHILE. These statements control the experiment.
There are several levels of indentation here, each
representing the extent of control of some control
structure. Indenting is not a necessary part of SP, but
it is almost universally used to make the structure of
a program clearer, not just in pseudocode or formal
algorithms but in program code also, when possible.

Following the “DO WHILE subjects remain . ..” is
a statement that provides for giving the next subject

the instructions for the experiment. The DO WHILE
below it is responsible for repeating the study and
recall phases as long as the subject has not reached
criterion, which in the present case is 100% correct
on one trial. The extent of this DO WHILE’s control
is defined by the END DO which is the third statement
from the bottom. Again, note that the END DO is
indented the same amount as the DO WHILE.

Next, the stimulus-response pairs and a separate
set of stimuli are arranged in a new random order for
the current trial’s study and test phases, respectively.
The next two DO WHILEs control the study phase,
during which the pairs are shown individually, and the
recall phase, in which only the stimuli are shown and
the subject’s responses are input. Each of these DO
WHILEs is followed by pause statements that insert
intervals between study and test phases and trials.

Within the range of the DO WHILE for the test
phase is the third kind of control structure, IF THEN
ELSE. The first of three of these begins after the
statement for response input and ends its control at
the END IF directly below it, several statements down.
At the beginning, it tests the response to determine
if it is correct. If this condition is true (i.e., the response
is wrong), the next set of statements down to the
ELSE will be performed, and the set after the ELSE
will be bypassed. On the other hand, if the response is
correct, only the statements under the ELSE will be
performed. Thus, the IF THEN ELSE structure allows
selection of one of two alternatives depending on the
truth of some condition. More alternatives can be
introduced by nesting additional IFs within the first.
This has been done here to allow feedback to be given
if the experimenter has requested it. Within each
alternative of the first IF is another that causes either
“wrong” or “good” to be displayed to the subject if
it has been indicated at the beginning of the program
that feedback should be given. Neither IF has an
accompanying ELSE since there is nothing to be done
if no feedback is desired. In this case, the ELSE clause
is null, which describes the kind of IF statement one
finds in FORTRAN, for example.

The rest of the example consists of END statements
for control structures, the intertrial interval pause
already mentioned, and a statement for subject
dismissal. The next two sections of this paper examine
the hierarchical nature of a structured program and the
control structures in more detail.

THE HIERARCHY OF MODULES

The hierarchy in a structured program should be
apparent from the way that the control structures in
the example are completely nested. Another device
often used with SP that shows the hierarchy is a
top-down chart, pictured in Figure 2 (Hughes &
Michton, 1977; Miller & Lindamood, 1973).

The boxes in the chart represent modules in the

PAIRED -
ASSOCIATE
EXPERIMENT

HOUSEKEEPING

RUN
EXPERIMENT

|
—~

DISMISS
ESUBJECT

1 |

PRESENT i RUN

INSTRUCTIONS CURRENT
SUBJECT

Figure 2. Top-down chart for the paired associate program
in Figure 1.

program. Each module controls those immediately
below it to which it is connected. Thus, the module
“run experiment” has direct control over “instructions,”
“run current subject,” and “dismiss subject.” Similarly,
“run current subject” controls “present study phase”
and “present test phase.” To say a module controls
another means that it initiates the action of the other,
and that the other module returns control to the first
when it is finished. This is the only control path for
the lower level module; there is no other way to perform
its function except through the one higher level module
that controls it. The single exception is a subroutine
that may be called by more than one module. This
has the same effect as several copies of the subroutine
being in the program, one copy for each calling module.

The lines of control in a structured program, then,
are restricted to the hierarchy. One does not get
the common pattern of many programs where any
module might be connected to any other if it seems
convenient, a pattern that has often been called “a bowl
of spaghetti” or “a rat’s nest.”” This is primarily what
is meant by saying that the modules are minimally
dependent on each other in SP. In a nonstructured
program, it is often difficult to tell when a particular
section of code will be performed because there are
several different paths to it, occurring under a different
set of conditions. While there may be a number of
conditions that cause a module to be performed in a
structured program, the path to that module will be
easier to trace because of the hierarchy.

The use of the term module in the literature is
often vague and contradictory. In some cases, it means
an entire program; in others, it may be restricted to a
certain number of lines of code (e.g., a maximum of
50 or so that fit onto a single page of the program
listing). Still other meanings are associated with it,
such as the assignment given to a programmer working
as a part of a system-development team.

STRUCTURED PROGRAMMING 231

One feature is common to all of these usages:
A module performs a function. If a person can describe
what a part of a program (or a whole program, or even
a set of programs) does in one or two sentences, then
he or she is probably talking about a module. The
function can be very general or very specific; the same
is true of a module. The modules in Figures 1 and 2
are fairly specific, more so than they usually are in
a top-down chart. Although it is not usually done,
there is no conceptual reason for not calling a single
statement a module, with the exception of control
structures that may be comprised of several statements.

There is a second feature of a module as described
here that, while not restricted to SP, is an important
part of the SP approach. A module may have only one
entry point and one exit. This, of course, fits in with
the hierarchy already described. An examination of
the hierarchy shows that each module has a single line
of control, which represents both the entry and exit
points, Figures | and 2 indicate, for example, that
the module for running a particular subject starts only
at the second DO WHILE, which can be arrived at only
after the instructions are presented. Similarly, there is
just one way of getting out of the module: When the
subject reaches criterion, control passes back to the
module represented by the first DO WHILE through
the single exit at the next-to-last END DO.

THE CONTROL STRUCTURES

The three basic control structures, the fourth
introduced in the example program, and a fifth are
illustrated in flowchart form in Figure 3. The circles
are collector nodes and are used to emphasize the single
entry or exit point for a structure. Also emphasized by

(A) (8)
TRUE

L)

(D}

FALSE

()

FALSE

TRUE

FALSE
TRUE

Figure 3. Control structures used in structured programming:
(A) sequencing, (B) [F THEN ELSE, (C) DO WHILE, (D) DO
UNTIL, (E) CASE.

232 HUNT

the flowcharts is the fact that decisions are made and
branches are taken in a structured program, even though
there may be no statements that explicitly say GO TO
or something equivalent. Thus, branches are not
eliminated in a structured program but are restricted to
those that implement the control structures.

The only structure in Figure 3 that has not been
covered is the CASE structure. This is essentially an
expansion of the IF THEN ELSE for the situation in
which there are more than two possible courses of
action; there are several different cases to be taken
care of. The CASE structure, as well as the DO WHILE
and other proposed additional structures, can be
simulated with the proper combination of the three
basic structures. The advantage of such additional
structures is that one can avoid some fairly clumsy
combinations of code. For example, one has to either
nest a lot of IF THEN ELSEs or use a lot of switches
to handle a large number of cases without using CASE
or going through a long, inefficient series of separate
IFs. However, it is also possible to build a new structure
that is so complex that it defeats the purposes of SP.

But are there programs that cannot be written with
these structures? That is, are there programs that require
some form of stand-alone GO TO? The answer is no.
Bohm and Jacopini (1966) and Mills (Note 2) have
proven the theorem that any proper program can be
written with just the three basic structures. Since a
proper program has one entry and one exit and at least
one path between them, and any functioning program
can be written as a proper program, the theorem applies
to all programs worth considering.

The major objective of the structure theorem, as it
is called, is based on the hierarchical structure that
results from using SP. Because the modules are highly
independent of each other, it is possible to prove the
correctness of a program (establish that it performs
the appropriate function) by proving the correctness
of each separate module. The alternative is to prove
the correctness of the program as a whole. Those who
remember trying to prove theorems in math or elsewhere
can appreciate the enormity of this task, which is
tantamount to proving a large set of complexly related
theorems.

Proving program correctness is still a tedious and
difficult exercise with a structured program. However,
there is a parallel between going through a correctness
proof and the design and desk-checking of a program.
While the programmer may not attempt a rigorous
proof, she or he can examine each module separately
and be fairly well satisfied that, if each module seems
to work properly, the program should also (Mills,
Note 2). Parenthetically, it should be emphasized that
for this process, as well as for correctness proofs, one
should be careful to specify the states of all important
variables as the module is entered.

ADVANTAGES AND DISADVANTAGES OF SP

The ability to check each module independently is
an obvious advantage of SP. In general, the clarity and
systematic nature of the lines of control and the
independence of the modules are responsible for
the superiority of SP over a more unorganized approach.
It is much easier to tell when a module is being
performed in a structured program, as there is only one
way of getting into it and only one way of getting out,
and both the entry and exit connect to the same higher
level module. Thus, the logic is more easily followed
both within and between modules.

The result is code that is much more likely to be free
of logic bugs (i.e., more reliable code). In addition,
once the programmer has learned to use SP, programs
are written more quickly and with less pain. It is much
less difficult, on the average, to rid the program of bugs
after it is written. Changes to the program at a later
date can be made more easily because fewer modules
will be affected; often new modules, if necessary, can
be directly inserted into the program with very little
modification of existing code. This process is further
facilitated by the ease of following the logic. Anyone
who has programmed knows that a program that has
been ignored for a while can appear to be almost
unintelligible when first reexamined.

But SP also has its disadvantages. Two are its relative
inefficiency in use of memory and speed of execution.
If Module A is to be performed immediately after
Module B under certain circumstances, a structured
program may route the control path through one or
more higher level modules rather than directly from
A to B. Also, SP may, upon occasion, force a test to
be made more often than might be the case in an
unstructured program. The extra instructions, then,
take more memory and more time. The latter factor
may be a major reason for not employing a strict SP
approach in time-critical applications. However, one
should probably avoid SP in only those program sections
that are time critical. A case could be made that
attempts to make the entire program more efficient
with direct GO TOs could make the program more
inefficient overall, even though there might be improve-
ments in relatively small segments of code.

While the potential inefficiency of SP is a major
reason that opposition to it exists, there are other
disadvantages that are greater, at least at present. One
is the apparent lack of flexibility in SP. While any
program can be written using SP, most programmers
find this hard to believe and resist having the freedom
to branch anywhere in a program taken away from
them. A related factor is the emphasis in SP on the
human element in programming rather than the logical.
Most programmers, probably including psychologists
who program, seem to think of themselves as strictly

logical thinkers. It does not occur to them that human
limitations can keep them from writing the maximally
efficient, logically streamlined programs that may be
theoretically possible but practically impossible.

Another disadvantage is the lack of statement forms
in most popular languages that correspond to the SP
structures. To perform an IF THEN ELSE in BASIC,
one is forced to use GO TOs. This sort of simulation
can produce code that is not much clearer, and probably
less clear in some cases, than unstructured code.
Nevertheless, the modularity advantage of SP is reason
enough to use it in these languages. Also, the situation
is improving: The new ANS FORTRAN 77 is an
example, although it will likely be some time before
this and other language advances will be available in the
compilers being used by most people.

USING SP

How does one learn to use SP? First, an individual
should read as much about SP and related techniques
as possible. An especially good starting point is the
book by Yourdon (1975). Second, if it is possible,
one should work through a good text on writing
structured programs in a specific language, even if the
language is not likely to be used in the near future.
Changing from the usual nonstructured programming
style to SP is almost like learning to program all over
again. A text on a language that incorporates the SP
approach, such as PASCAL, is a good choice.

The problem of “unstructured” languages can be
overcome by simulating the structures, as already
noted, or by using a preprocessor or maverick compiler,
if either is available, that includes statement forms for
the structures. (A preprocessor runs before the compiler/
assembler and translates the special statements into
simulating code; IBM supplies one to allow SP in
FORTRAN.) Since virtually all assembly languages
have a macro capability, it should be possible to write
macros to handle the structures. This should be done,
however, by someone who is experienced in the language
and in address determination schemes, since a method
will have to be found for determining the exit and, in
some cases, entry addresses.

STRUCTURED PROGRAMMING 233

CONCLUSION

While learning to use SP is not as easy as users would
like, the benefits are well worth it. One advantage not
noted earlier is the relative quickness with which
programs can be written. The time gained here and from
less debugging should more than compensate for the
effort to learn SP. I recommend it for all but the most
time-critical operations.

REFERENCE NOTES

1. Mills, H. D. How to write correct programs and know it
(Report No. FSC 73-5008). Gaithersburg, Md: IBM Federal Sys-
tems Division, 1973.

2. Mills, H. D. Mathematical foundations for structured pro-
gramming (Report No. FSC 72-6012). Gaithersburg, Md: IBM
Federa! Systems Division, 1972.

REFERENCES

Baker, F. T. Chiet programmer team management of production
programming. IBM Systems Journal, 1972, 9, 366-371.

Baker, F. T., & MiLts, H. D. Chief programmer teams. Datama-
tion, December 1973, pp. 55-57.

Boum, C.. & Jacorini, G. Flow diagrams, Turning machines,
and languages with only two formation rules. Communications
of the ACM, 1966, 9, 366-371.

Conway, R., & Gries, D. An introduction to programming: A
structured approach. Cambridge, Mass: Winthrop, 1973.

Danr, O. J., DuksTra, E. W., & Hoarg, C. A. R. Structured
programming. New York: Academic Press, 1972,

DukstrA, E. W. Programming considered as a human activity.
Proceedings of IFIP Congress 65. Washington, D. C: Spartan
Books, 1965.

Dukstra, E. W.GOTO statement considered harmful. Communi-
cations of the ACM, 1968, 11, 147-148; 538; 541. o
DuxkstrA, E. W. Structured programming. In P. Naur & B.
Randell (Eds.), Software engineering techniques. Brussels:

NATO Scientific Affairs Division, 1969.

HucHess, J. K., & Micuron, J. 1. A structured approach to pro-
gramming. Englewood Cliffs, N. J. Prentice-Hall, 1977.

McCracken, D. D. Revolution in programming. Datamation,
December, 1973. Pp. 50-52.

McGowan, C. L., IIl, & KEeLry, J. R. Top-down structured pro-
gramming techniques. New York: Petrocelli-Charter, 1975.

MiLLeR, E. F., & Linpamoop, G. E. Structured programming:
Top-down approach. Datamation, December 1973, pp. S5-57.

Yourpon, E. Techniques of program structure and design. Engle-
wood Cliffs, N.J: Prentice-Hall, 1975.

