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Sequence effects in hedonic judgments
of taste stimuli

HENDRIK N. J. SCHIFFERSTEIN and W.ERNO KillPER
Agricultural University, Wageningen, The Netherlands

Sequential dependencies in taste research may be different from those obtained in other modalities,
due to the long interstimulus intervals and the intermediate rinses. In two experiments, subjects judged
the pleasantness of 50aqueous solutions on 150-mmline scales. During data analyses pseudo-sequence
effects arose, because data were aggregated over individuals and because the first trials of the exper­
imental sessions deviated from the rest. After correcting for the pseudo-sequence effects, robust re­
gression analyses revealed small but significant sequential dependencies. The current response devia­
tion was positively related to previous response deviations and negatively related to previous
subjective, internal representations.

In experiments in which subjects provide direct esti­
mates of perceived intensity, responses obtained at the
current trial t (RI ) are often positively correlated with pre­
vious responses (R 1-1) and negatively correlated with
previous stimulus intensities (II-I)' Empirical investiga­
tions of these sequential dependencies have mostly been
conducted using auditory or visual stimuli (e.g., DeCarlo
& Cross, 1990; Jesteadt, Luce, & Green, 1977; Mori &
Ward, 1990; Ward, 1979). Extrapolating these outcomes
to taste and smell research may be premature, because
the typical characteristics of experiments on chemosen­
sation can affect the pattern of sequential dependencies.

In chemosensory research, the time intervals between
successive stimulus presentations are large (30 sec or
more) compared with those used in research on hearing
and vision. Inaddition, subjects usually rinse their mouths
with water between taste stimuli. Both these measures
are taken to prevent sensory adaptation. However, they
can also affect the pattern of sequential dependencies.
For example, DeCarlo (1992) showed that the size of the
interstimulus interval affects the size of sequential ef­
fects. Inaddition, due to the large interstimulus interval,
relatively few stimuli are evaluated in one session. Con­
sequently, individual analyses lack statistical power, and
data from different subjects are combined, under the as­
sumption that sequential dependencies are similar for all
subjects. These typical characteristics of data collection
and analysis may affect the type and size of sequence
effects.

The main objective of the present study is to provide a
detailed description of sequential dependencies in affec-
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tive responses to gustatory stimuli. Although several au­
thors have indicated that sequential effects are likely to
occur in hedonic judgments (e.g., Berlyne, 1973; Helson,
1973), such analyses are lacking in the current literature.
The idea of sequential dependencies is captured by Bacon,
Rood, and Washburn's (1914) "law ofaffective contrast"
which states that "the pleasure ofan agreeable experience
is heightened if it is preceded by a disagreeable experi­
ence, and an impression in itselfunpleasant may be felt as
pleasant if a more unpleasant state has been its an­
tecedent" (p. 290). In Beebe-Center's (1929) "law of af­
fective equilibrium," however, "the affective value of the
experiential correlate ofa stimulus varies conversely with
the sum of the affective values of those experiences pre­
ceding this correlate which constitute with it a unitary
temporal group" (p. 64). According to Beebe-Center's ex­
periments on odorants and Harris's (1929) study on colors,
the hedonic contrast should be attributed to the entire set
of preceding stimuli (context effect), and not to separate,
consecutive stimulus presentations (sequential effect).

In the present study, sequential dependencies in hedo­
nic judgments are studied for stimulus sets eliciting mul­
tiple taste qualities (Experiment 1) or one, sweet quality
(Experiment 2). Inour analyses, we start out from a two­
stage stimulus-organism-response (S-O-R) model of
psychological judgment. In the first stage, each stimulus
Sit is represented on an internal, hedonic continuum (S-O:
the psychohedonic function). In the second stage, the in­
ternal representation lit is transformed into an observable
response Rit (O-R: response output function). The sub­
scripts refer to a particular stimulus (i) presented at a spe­
cific trial (t).

METHOD

Subjects
In Experiment I, thirty untrained paid volunteers, 12 men and 18

women, ranging in age from 18 to 49 years (median age 22.5) par­
ticipated. In Experiment 2, thirty-six paid or unpaid volunteers, 15
men and 21 women, ranging in age from 18 to 49 years (median age
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Figure 1. The frequency with which each stimulus is classified as A, D, C, D, or E (A = least preferred, E =
mostpreferred). Panel A shows the results for Experiment 1. Q, QUCI; N, NaCI; C, citric acid; and S, sucrose.
Panel D shows the results for Experiment 2, in which the stimuli were sucrose solutions varying in concentra­
tion level (% w!v).

22) participated. They were students and employees of the Agri­
cultural University. The subjects were naive with respect to the sub­
stances used and the purpose of the study.

Stimuli
In both studies, five different stimuli were used. Experiment I

employed a heterogeneous stimulus set containing stimuli that var­
ied considerably in pleasantness. Mean pleasantness ratings were
expected to increase in the following order: 120,uM quinine hy­
drochloride (QHCI, Sigma Q-1125) < 0.16 M NaCI (Merck
6404) < 2.5 mM citric acid (Merck 244) < a mixture of 60,uM
QHCI and 10% w/v sucrose (Merck 7653) < 10% w!v sucrose
(Schifferstein, 1995). In Experiment 2, the stimuli differed in su­
crose concentration only (Merck 7653): 5%,7.1%, 10%, 14.1%,
and 20% w/v. Group mean hedonic responses for sweetened lemon­
ade are found to peak at 10% sucrose. The standard error of this
mean is large, indicating that subjects differ considerably in their
preferred sucrose level (Pangborn, 1980). Therefore, the two stim­
ulus sets are expected to differ with regard to the number of subjects
with equal preference orderings.

Solutions were prepared in demineralized water at least 24 h be­
fore tasting, and were stored in a dark, refrigerated room at 4°C for
no longer than 3 days.

Procedure
Subjects were instructed to judge the pleasantness of each stim­

ulus on a 150-mm hedonic line scale. The left and right ends of the
scale were labeled not pleasant at all and extremely pleasant, re­
spectively. The subjects were requested to rinse their mouths thor­
oughly with demineralized water after each stimulus. The stimuli
were presented at room temperature (-20°C) in polystyrene med­
icine cups. Each cup contained 10-12 ml of solution. One stimulus
was presented every 60 sec in Experiment I, and every 50 sec in Ex­
periment 2. Every solution was judged 10 times by each subject

during a I-h session. The order in which the stimuli were presented
was randomized and differed between subjects.

RESULTS

Preliminary Analyses
For each subject, a one-way analysis of variance was

performed to check whether the stimuli differed in ex­
perienced pleasantness. In Experiment I, the stimulus
main effect was significant for every subject [F(4,45) >
5.57, P -s .001]. The results of 4 subjects in Experi­
ment 2 whose test yielded no significant outcome (p >
.05) were discarded.

Individual preference orders were determined for the
five stimuli from the mean individual hedonic ratings.
The data were recoded: Stimulus codes were replaced by
Stimulus A-E (A = least preferred and E = most pre­
ferred). Figure I shows the frequency with which each
stimulus was classified as A, B, C, D, and E. As expected,
Figure I shows that the degree ofagreement among sub­
jects was larger in Experiment I than in Experiment 2.
Experiment 2 suggests a bimodal distribution ofsubjects,
with some subjects preferring high sucrose concentra­
tions and some subjects preferring low concentrations.
After recoding, the data were aggregated over subjects.

Stimulus Analysis
The mean response on trial t, averaged over solutions,

subjects, and replications, was calculated as a function of
the preceding stimuli presented at t - I up to t - 6 (see,
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Figure 2. Sequential stimulus and response effects for hedonic judgments of the stimulus set elic­
iting multiple taste qualities (Experiment 1). The mean response on trial t (R,), averaged over stim­
uli, is depicted as a function ofthe stimulus level (panel A) or the response level (panel B) on trial
t - k, and as a function of both the preceding stimulus and response on trial t - 1 (panel C). The
stimuli range from A (least preferred) to E (most preferred). The response categories correspond to
1 = R < 30; 2 = 30 5 R < 60; 3 = 60 5 R 5 90; 4 = 90 < R 5 120; 5 = 120 < R. Mean responses
are depicted only if the number of observations exceeds 25. For the outermost stimuli, the sizes of
95% confidence intervals are indicated by error bars (±2 SE).
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Figure 3. Sequential stimulus and response effects for hedonic judgments ofthe unidimensional
stimulus set containing sucrose solutions only (Experiment 2). See Figure 2 for further explanation.

e.g., Holland & Lockhead, 1968). These calculations do
not show systematic sequence effects for Experiment 1
(Figure 2A) or Experiment 2 (Figure 3A).

Response Analysis
The mean response on trial t was calculated as a func­

tion ofprevious responses for trial t - I up to t - 6 (see,

e.g., Holland & Lockhead, 1968). To reduce the number
of possible responses, the responses were divided into
five response categories. Each category represented one
fifth of the response scale. Responses on the left part of
the scale «30 mm) received Category 1, responses on
the second part of the scale (>29 mm and <60 mm) were
classified in Category 2, and so on.
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The curves in Figure 2B (Experiment 1) are somewhat
separated; the curves for high previous responses seem
to be somewhat higher than those for low previous re­
sponses. In Experiment 2, this effect is more pronounced.
Figure 3B shows that a high response on a preceding trial
coincides with a high response on the present trial, and
that this effect hardly decreases with increasing time lag.

The Simultaneous Effects of Stimulus
and Response

The mean responses at trial t were calculated as a
function of the stimulus (St-I) and the response category
(R t - I ) at trial t - 1. A simultaneous analysis aims to dis­
entangle the effects of previous stimuli from those of
previous responses (Petzold, 1981). The outcomes show
a positive dependency between consecutive responses
and a negative dependency between the present response
and the previous stimulus (Figures 2C and 3C): The cur­
rent response increases with increasing levels ofthe pre­
vious response (the slope ofthe curves), and it decreases
with increased preference for the previous stimulus (the
separation between the curves). Since the curves are
steeper in Figure 3C than in Figure 2C, these analyses
suggest that the response effects are larger for the unidi­
mensional stimulus set than for the multidimensional set.

Differences Between Subjects
Figure 3B suggests that a response given six or more

trials back exerts a substantial effect on the momentary
response selection process at trial t. However, the pattern
observed can also be accounted for by idiosyncratic dif­
ferences in response selection. Ifsome subjects use higher
ratings than others, a high response on trial t - 1 will co­
incide with a high response on trial t when the data are
aggregated over individuals (Haubensak, 1992). If so,
the mean individual responses in Experiment 2 should
be more variable than those in Experiment 1. Indeed, the
mean individual responses in Experiment 1 ranged from
27.4 to 81.1 (n = 30), whereas they varied from 19.5 to
131.6 (n = 32) in Experiment 2.

To correct for idiosyncratic differences in scale usage,
the individual response distributions can be brought
back to a mean of0 and a standard deviation of 1 by cal­
culating

R ijt-st = (R ijt - Rj)/Oj, (1)

where Rijt-st is the momentary standardized response,
Rijt is the momentary response, and Rj and OJ are the
overall mean and the standard deviation of the responses
of a particular subject j. To perform the response analy­
sis and the simultaneous analysis, boundaries for the re­
sponse categories of the standardized responses need to
be determined. These boundaries can be obtained from
the standard normal distribution: 20% of the standard­
ized responses should be < -0.841,40% < -0.255,
60% < 0.255, and 80% < 0.841. Figure 4 shows the re­
sults for the stimulus analysis, the response analysis, and
the simultaneous analysis after standardization of the re-

sponses in Experiment 2. Most of the "sequence effects"
evident in Figure 3 have now disappeared.

The Adoption Stage
For a meaningful analysis ofsequential dependencies,

we first have to make sure that the same processes oper­
ate throughout the entire experimental session. There­
fore, we first inspected the ratings for individual stimuli as
a function of trial number, after standardization (Equa­
tion 1).The average number ofobservations for each mean
equals the number of subjects divided by five (the num­
ber of different stimuli). Due to a lack of observations,
no mean could be calculated for the least appreciated
stimulus (A) on Trial 8 in Experiment 2.

If naive subjects develop a response strategy during
the first trials of a session, the initial responses are ex­
pected to deviate from the remainder of the experiment.
Wetested whether the 20 initial observations can be con­
sidered outliers (see Godfrey, 1988). For each stimulus Si'
we performed a regression of the response R, on a con­
stant and 20 dummy variables. Each dummy variable
equaled 1 at trial t and 0 otherwise (t ::5 20). The in­
stances in which the two-tailed t statistics for the coeffi­
cients attached to the dummy variables were significant
(p < .025) are indicated in Figure 5. These observations
are considered outliers.

Figure 5 shows that the subjects' response behavior
changes gradually during the first trials: The number of
outliers decreases with trial number. The effect is more
pronounced in Experiment 2 than in Experiment 1. These
results suggest that a sensory evaluation session can be
considered a two-stage event. In the first stage, the sub­
jects probably use the way in which they perceive the re­
sponse scale and the perceived taste sensations to construct
a response strategy. In this stage, response variability de­
creases. During the second stage, the mean ratings for
the individual stimuli remain constant. To analyze the
trial-to-trial dependencies in this stationary stage, the
observations obtained during the adoption stage have to
be deleted from the sample.

Data Cleaning and Model Selection
In determining the duration of the adoption stage, we

used the rule that the mean standardized responses to one
or more stimuli had to deviate significantly on at least
two consecutive trials (p < .025). In this way, we fixed
the length of the adoption stage at 3 trials for Experi­
ment 1 and at 12 trials for Experiment 2. These observa­
tions were deleted before the sequential effects were cal­
culated: (50 - 3) X 30 = 1,410 and (50 - 12) X 32 =
1,216 responses were left in Experiments 1 and 2, re­
spectively. We standardized these data again using Equa­
tion 1 to delete any primacy effects. Note that after this
standardization, the mean standardized responses still
differ across stimuli and individuals.

To investigate the sequential dependencies during the
stationary stage, we performed regression analyses. We
utilized Schifferstein and Frijters's (l992a) idea that not
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Figure 4. Sequential stimulus and response effects for the unidimensional stimulus set (Experi­
ment 2), after standardization of the raw data. The standardized response on trial t, averaged over
stimuli, is depicted as a function of the stimulus level (panel A) or Ihe response level (panel B) on
trial t - k, and as a function of both the preceding stimulus and response on trial t - 1 (panel C).
The stimuli range from A (leastpreferred) to E (most preferred). The response categories correspond
to 1 = R S 1 < -0.841; 2 = -0.841 :$ R S 1 < -0.255; 3 = -0.255:$ R S 1 < 0.255; 4 = 0.255:$ R S 1 <
0.841; = R S 1 ~ 0.841. Mean responses are depicted only ifthe number of observations exceeds 25.
For the outermost stimuli, the sizes of95% confidence intervals are indicated by error bars (::!:2 SE).
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Figure 5. Mean standardized hedonic responses for each stimulus, plotted as a function
of trial number. Panel A shows the responses to the multidimensional stimulus set (Experi­
ment 1), and panel B shows the responses to the unidimensional set of sucrose solutions (Ex­
periment 2). The stimuli range from A (least preferred) to E (most preferred). Responses
were averaged over subjects.

responses, but successive response deviations, are re­
lated. In addition to preceding response deviations, the
model includes previous stimulus intensities, because
DeCarlo and Cross (1990) found effects ofprevious stim­
uli separate from autocorrelated residuals. The model is
given by

K

RDt = a o+ L [Yk RD t-k + f3k It-k] + Up (2)
k=l

where RD t denotes the momentary response deviation
(R, - It) at trial t, k denotes the lag number, a, 13, and 'Y
are regression coefficients, and u, is an error term.

Some authors have used log (St) as an approximation
of the internal representation It. However, deviations
from an assumed S-I function may result in outcomes
that resemble a pattern expected for sequential depen­
dencies (Gregson, 1976). Therefore, we made no as­
sumptions about the individual S-I functions, and we
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used the mean response individualj gave to stimulus S,
as the estimate of L; (R,).

The coefficients obtained for Equation 2 can be easily
transformed into coefficients for a model employing
only Rt~k and It~k:

K

R, -It =ao+ I [YkRt-k +(fik -Yk)It-k]+ut. (3)
k=l

The only additional restriction is that the coefficient
for It must equal I. If the standard deviations of the in­
dividual average responses per stimulus differ from the
standard deviation of the average individual response,
the coefficient for It could be significant when it enters

the right-hand side of Equation 3. However, this was not
the case in any of the following analyses.

Time series analysis assumes at least weak stationarity
(Maddala, 1992), implying that the mean response over
time should be constant. A trend dominates all features of
the time series and will affect the pattern ofsequential de­
pendencies. To correct for a possible trend, a trend term
that equaled I on the first trial accounted for by the de­
pendent variable, 2 on the second trial, and so on, was in­
cluded in the regression model as an explanatory variable.

The Stationary Stage
Assuming that sequential dependencies are similar for

all individuals, we calculated the ordinary least squares
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Table 1
Regression Estimates (RE) With t Values of the Parameters in Equation 2 for the

Ordinary Least Squares (OLS) and the Generalized M (GM) Estimation Procedures

Experiment I (N = 1,320) Experiment 2 (N = 1,088)

OLS OM OLS OM

RE RE RE RE

Intercept 0.006 0.577 -0.001 0.089 -0.059 -1.599 -0.070 -2.067
Trend 0.0031 1.688 0.0042 2.546
RD t - 1 0.099 3.686 0.111 3.593 0.071 2.327 0.053 1.614
It- 1 -0.054 -4.466 -0.041 -4.451 -0.148 -6.541 -0.125 -5.922
RD t_2 0.010 0.368 0.079 2.814 0.030 0.991 0.051 1.639
It- 2 -0.018 -1.506 -0.024 -2.590 -0.052 -2.232 -0.013 -0.606
RD t - 3 0.084 3.150 0.060 1.986 0.055 1.850 0.039 1.324
It- 3 -0.033 -2.685 -0.017 -1.910 -0.066 -2.853 -0.051 -2.433
RD t- 4 0.061 2.081 0.022 0.739
11- 4 -0.035 -1.509 -0.012 -0.611

R2 0.041 0.033 0.076 0.068
F 9.2 9.9
SE 0.395 0.263 0.592 0.464
DW 2.071 2.078 2.016 2.020

x~ 1831 70

Note-N, effective sample size; F, tests for significance of R2; SE, standard error of the regression; DW,
Durbin-Watson statistic; and xi, Bera-Jarque statistic.

(OLS) estimates for Equation 2 for k = 5. As the estimates
of 'Ys and {3s were both individually and jointly insignifi­
cant, we reduced k by 1 and estimated Equation 2 again.
We repeated this procedure until at least one ofthe coeffi­
cients for the largest time lag became significant. The es­
timation results are presented in Table 1. Parameter esti­
mates differ significantly from zero when the t values are
larger than 1.96 (two-tailed t test, p < .05). The estimates
for Q'o are expected to approach zero because the explana­
tory variables all have zero means.

The R2 values are significant, suggesting the existence
of sequential effects in both experiments. The values of
the Durbin-Watson statistic lie around 2, as they ought to
for dynamic models that are adequately specified (Durbin
& Watson, 1950, 1951). Nevertheless, the Bera-Jarque
statistics reject the null hypothesis, indicating that the
UtS do not follow a multivariate normal distribution (Jar­
que & Bera, 1980). This result is caused by too many
large residuals. Since lagged values ofRD are used as ex­
planatory variables, outliers affect both the dependent and
independent variables of Equation 2.

To identify influential observations, we made a scat­
ter diagram of the robust residuals versus robust dis­
tances along the lines of Rousseeuw and Van Zomeren
(1990) using the computer program RIPE (Lucas, 1993;
Figure 6). All observations outside the tolerance limits
are outliers. The observations in the upper right and
lower right segments of each diagram make a relatively
large contribution to the values of the estimated regres­
sion coefficients. These "bad leverage points" lead to re­
gression results that suggest a relationship between the
dependent variable and the independent variables, when
such a relationship does not exist. Twenty of the 146 out­
liers in Experiment 1 and 1 of the 81 outliers in Experi­
ment 2 were bad leverage points.

To preserve our estimation results from influential ob­
servations, we estimated the two regression equations

again by a robust estimation procedure, employing the
generalized M (GM) estimator (see Lucas, 1996). Roughly
stated, the GM estimator weights the non-deterministic
independent variables and the estimated residuals in an
iterative procedure to obtain estimates not exposed to
outliers. The weighting procedure transforms the out­
liers so that they become part of the majority of the data.
All calculations were performed in the computer pro­
gram RIPE (Lucas, 1993; Table 1).

Ifwe compare the results for Experiment 1, the robust
method yields estimates that differ considerably from the
OLS estimates. The robust estimates and their t values
decline monotonically with increasing lag of the regres­
sor. Sequential dependencies are significant up to RDt- 3
and I t - 2• The robust estimation method also led to differ­
ent results in Experiment 2. The most important differ­
ence with the OLS estimates is that the robust estimates
no longer suggest that subjects are primarily responsive
to the response deviation four trials ago. The coefficients
for the lagged response deviations are positive and de­
crease as a function oflag. However, none of the individ­
ual coefficients for the lagged RDs is significant. The co­
efficients for the preceding stimulus intensities remain
difficult to interpret, since the coefficient for I t - 3 is larger
than the one for I t- 2• Experiment 2 yields a positive trend,
implying that the average RD value increases during the
session. The trend causes the coefficient for the intercept
to be significant. To summarize, the robust estimation
procedure yields parameter estimates that are more in line
with a declining influence of preceding events as a func­
tion oflag than does the OLS procedure.

Second-Order Dependencies
It should be noted that regression analyses may not be

appropriate because the variables in the regression equa­
tion may be dependent. Many authors (e.g., Baird, Green,
& Luce, 1980; DeCarlo & Cross, 1990; Jesteadt et al.,
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Figure 7. Second order dependencies for Experiment 1 (panel A) and Ex­
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are plotted as a function of subjective stimulus differences (I, - 1'-1)' The sub­
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-2.1 :5 1, - 1,-1 < -1.5; -1.5:5 I, - 1'-1 < -0.9, and so on. The curves with
the reduced number of subjects (n) show the outcomes after subjects who pro­
duced bad leverage points were deleted from the sample.

1977) have found second-order dependencies in their
data: The size of the correlation"betweenconsecutive re­
sponses depended on the subjective difference between
stimuli. For two identical stimuli, the correlation coeffi­
cient was largest, and it decreased with increasing stim­
ulus differences. These findings formed an inverted V
pattern when the size of the correlation between consec-

utive responses was plotted as a function of the stimulus
difference. Therefore, we calculated the correlation be­
tween successive response deviations (RD t , RD t_1) as
a function of the difference in internal representation
(It- It-I)· Neither of the two experiments showed the
characteristic inverted V (see the curves drawn for the
largest numbers of subjects in Figure 7). However, sev-
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eral correlations were significantly larger than zero, es­
pecially in Experiment 1.

To make sure that the results of the robust regression
analyses were not affected by second-order dependen­
cies, the correlation coefficients were calculated again
after deleting the data from subjects who produced one
or more bad leverage points in Figure 6. For Experiment 1,
data from 6 subjects were deleted, and for Experiment 2,
data from 1 subject were deleted. No inverted V pattern
was found. In addition, none ofthe correlations deviated
significantly from zero (Figure 7). Consequently, we
conclude that the robust regression analyses are appropri­
ate for analyzing these data.

GENERAL DISCUSSION

The analyses reveal two different judgmental strate­
gies during a l-h experimental session. During the first
trials of a session, subjects adopt a certain way of re­
sponding. After a response mapping strategy has been
developed, the average responses to a stimulus remain
fairly stable. The momentary response deviations during
the second part of the session are related to preceding re­
sponse deviations and the preceding stimuli.

The Adoption Stage
During the initial trials of a session, subjects can obtain

all the necessary information from the response scale, but
they have only limited access to information from the stim­
ulus set. The information gathered during the beginning of
a session is used to develop a way in which perceived sen­
sations are mapped onto responses. These first trials
largely determine the responses during the entire session
(Haubensak, 1990). To optimize consistency over trials,
many subjects adopt a conservative attitude and use the
middle response category on the first trial (Poulton, 1979).

In experiments in which stimulus context was manip­
ulated, the length of the adoption stage extended over
fewer than 13 trials (Morris & Rule, 1988; Parducci &
Wedell, 1986; Vollmecke, 1987). In the present study, es­
timates for the length ofthis stage were 3 (Experiment 1)
and 12 (Experiment 2) trials. These estimates were ob­
tained from the decreases in response variability with
trial number. The length of this stage presumably de­
pends on the subjects' initial expectations concerning
the relationship between stimulus and response. In the
present study, the heterogeneous stimulus set probably
matched the subjects' ideas ofnot pleasant at all and ex­
tremely pleasant better than the set of sucrose solutions.
The subjects in Experiment 2, therefore, needed more
trials to redefine the meaning of the scale descriptors in
the context ofthe perceived sensations. The estimates for
the length of the adoption phase may be relatively large
for experiments on contextual effects, since these stud­
ies typically use stimulus sets that do not correspond to
subjects' initial expectations with respect to perceived
dynamic range and stimulus frequency.

Most studies reporting sequential dependencies have
employed a training procedure or a practice session (e.g.,
Baird, Berglund, & Olsson, 1996; Bruvold, 1970; Green,
Luce, & Duncan, 1977; Mori & Ward, 1990; Ward, 1985;
Ward & Lockhead, 1970) or several practice trials within
the experimental session (e.g., DeCarlo, 1992, 1994; De­
Carlo & Cross, 1990; Jesteadt et aI., 1977; Riskey, Par­
ducci, & Beauchamp, 1979; Treisman & Williams, 1984).
Practice trials are probably most effective in eliminating
the effects of the adoption stage from experimental data.
Subjects may start any session with their initial response
behavior and use their previously developed response
strategy only after they have made sure the stimulus con­
text is similar to the one presented at the preceding ses­
sion (see Stang, 1975). It should be noted that some stud­
ies have reported analyses of sequential effects without
eliminating the results ofthe first trials, and that these may
have contaminated their results (e.g., Gregson, 1983;
Schifferstein & Frijters, 1992a; Stang, 1975; Ward, 1979).

The notion of an adoption stage is particularly rele­
vant for taste research, since several investigators in the
taste realm have argued that subjects cannot evaluate
more than 10 samples per session (see Sauvageot, 1990).
Means and standard deviations ofthe responses obtained
in such short sessions are likely to depend on trial num­
ber to a considerable extent.

Gradual Changes in the Stationary Stage
In Experiment 2, a significant trend was found in the

regression analyses (Table 1). However, the impact of
this trend on the stationary stage is small and probably
has no practical relevance. The absence of trends in the
stationary stage may be expected for intensity judg­
ments, but is less logical for hedonic judgments. Mere
exposure to an initially novel stimulus increases famil­
iarity and liking (e.g., Becknell, Wilson, & Baird, 1963;
Zajonc, 1968, 1980), whereas the pleasantness ofa well­
known food decreases after subjects eat the food until
satisfied (e.g., Pliner, Polivy,Herman, & Zakalusny, 1980;
Rolls, Rolls, Rowe, & Sweeney, 1981).

The tastes perceived in the present study were proba­
bly not extremely novel, although these particular stim­
uli may have been. Therefore, a decrease in pleasantness
ratings with trial number seems feasible. In studies on
sensory-specific satiety (Rolls et aI., 1981) researchers
have typically examined the decrease in pleasantness
after instructing subjects to eat certain foods until they
were satisfied. In the present study, however, the stimuli
were not ingested. The present findings are in accor­
dance with Cabanac (1971), who reported that the pleas­
antness of sweet solutions decreases for subjects who
swallow sucrose solutions but remains unchanged for
subjects who expectorate them. Cabanac accounted for
these findings by a mechanism based on the subjects'
physiological need. However, a cognitive mechanism is
equally plausible: When subjects judge the pleasantness
ofa stimulus without swallowing the sample, they may re-



gard "pleasantness" an abstract stimulus attribute inde­
pendent of their own physiological condition.

Sequential Dependencies in the Stationary Stage
Contrary to most of the other continua investigated,

consecutive judgments for taste stimuli show a negative
dependency between the current response and the pre­
ceding stimulus, even after correction for autocorrela­
tion in the error term (see DeCarlo, 1992; DeCarlo &
Cross, 1990; Schifferstein & Frijters, 1992a). This dis­
crepancy between modalities may originate from differ­
ences in intertrial time intervals. DeCarlo (1992) has
shown that the positive dependency between R, and I t- 1
disappears when the interstimulus interval is increased
from 2 or 6 sec to 15 or 20 sec. In taste psychophysics,
where interstimulus intervals of30-60 sec are frequently
used, the positive dependency is likely to be absent or
may turn negative.

A negative dependency is also found when a test stim­
ulus is tasted after a series of stimuli low or high in tar­
get intensity. The size of this dependency increases ap­
proximately linearly with the number of repetitions of
the preceding stimulus (Kroeze, 1983; Schifferstein &
Frijters, 1992b; Schifferstein & Oudejans, 1996). How­
ever, this type of dependency may result from another
mechanism than the one observed in the present study.
The series of extreme (high- or low-intensity) stimuli
may encourage the subjects to adjust their judgmental
reference frames. In that case, subjects are continually
adopting new response strategies and have not reached
the stationary stage.

Second-Order Dependencies
The present data do not show an inverted V pattern

when the correlation coefficient between R, and R t - 1 is
plotted as a function of the subjective stimulus differ­
ence. This finding contrasts with findings from most
empirical studies investigating intensity responses. The
absence of the inverted V could be due to the weakness
ofthe intertrial dependencies. When the present analyses
were performed on Schifferstein and Frijters's (1992a)
sweetness intensity data, the R2 value was 0.12, which is
higher than the values reported in Table 1 for hedonic
judgments.

A second possibility is that identification underlies
second-order dependencies. The awareness that two con­
secutive stimuli are identical could induce a response
heuristic: Identical stimuli get the same response. The
correlation decreases with increasing stimulus differ­
ences because the probability of being identified as
"same" decreases with an increasing difference. Two
stimuli that are equally pleasant are not necessarily the
same. Ifthis line ofreasoning is correct, therefore, pleas­
antness ratings will not exhibit the inverted V pattern.
However, such a mechanism is unlikely, given that Ward
(1982) found inverted V patterns for consecutive re­
sponses when subjects judged the intensities ofalternat­
ing sounds and lights.
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