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In this paper we derive the optimum (likelihood-ratio) decision statistic for a same-different para­
digm. The likelihood ratio is dependent on the degree of correlation between the two observations on
each trial. For the two extreme cases in which the observations are either independent or highly cor­
related, the optimum decision rule is identical to each of two previously suggested decision rules. For
these two cases, the receiver-operating characteristic (ROC) curves are calculated. Finally,an experi­
mental procedure is suggested for assessing the decision rule actually used by the observer in a same­
different task.

This paper derives the optimum (likelihood-ratio) deci­
sion rule for a same-different paradigm. In the same­
different paradigm there are two types of trials, one having
a pair of identical stimuli, and the other having a pair of
different stimuli. The subject responds either "same" or
"different." Suppose an experimenter applies the same­
different paradigm to measure a listener's ability to dis­
criminate between two tones having different frequencies
ofiA = f-l1fandfB = f+l1/ Herefcan be regarded as a
standard frequency. On each trial, the experimenter may
present a pair of tones at frequencies of (iA,j~), (JB,fa),
(iA,JB), or (JB,iA)· The correct response is "same" for the
first two pairs, and "different" for the last two pairs. In this
example, the relevant stimulus cue is the pitch of the tone.
Sometimes, however, the relevant stimulus cues are un­
known, or the experimenter may have difficulties in at­
tempting to describe the stimulus differences to the sub­
jects (as in wine tasting). In such cases, the same-different
task is particularly useful, because the subject can use
whatever clues are useful in making the discrimination. In­
cidentally, another paradigm that is useful for such cases
is the oddity paradigm, which is treated in a companion
paper by Versfeld, Dai, and Green (1996).

Two decision rules have been suggested previously for
the same-different paradigm. Suppose the two observations
on atrial are given by the vector ~= [g\ ~2JT, where Tde­
notes transpose-that is, changes a row vector into a col­
umn vector, and vice versa-then, according to Sorkin's
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(1962) decision rule, the subject should respond "differ­
ent" only if the absolute difference ofthe two observations,
Igl - g21, is greater than some criterion value. The second
decision rule is the likelihood-ratio rule derived by Noreen
(1981; cf. Macmillan & Creelman, 1991). According to
Noreen's decision rule, the subject should respond "dif­
ferent" only if(gl-lll)(~2-lll) < 0 is true. Here III is the
(expected value of the) pitch associated with the standard
frequencyf Macmillan and Creelman (1991)suggested that
Noreen's rule is appropriate for conditions using a fixed
standard, whereas Sorkin's rule is appropriate for condi­
tions using a variable-or roving-standard. One question
addressed by this paper is the relation between these two
decision rules.

In this paper, we derive the likelihood-ratio decision sta­
tistic assuming an arbitrary correlation between the ob­
servations. The concept of correlation can be understood
via our example of frequency discrimination. In that ex­
periment, the listener hears two tones having nearly the same
frequency. Let us call the first tone j], and the second, f2.
The observation of those tones can be represented by two
random variables, of\ and of2. Ifthe standard frequency,j, of
these two tones is fixed over trials, the covariance of these
two random variables is zero by assumption (i.e., the sub­
ject's processing can be represented by two random vari­
ables that are assumed to be uncorrelated):

COV[gl,of2 ] = E[(~J -E[~I])(g2-E[of2])] = 0 (1)

When the standard frequency is randomly changed from
trial to trial, both frequencies in the two observation inter­
vals are modified by the same random variable, r. Thus we
have the observation t l =?\+wr in the first interval and the
observation g2 = ?2+wrin the second interval, where ?l and
?2 are independent ofeach other, and Wr represents the cor-
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related part. Now the covariance between the two obser­
vations is

u 2 I-p£2= = __
u 2 + 2u~ 1+p ,

(6)

where (i = 1,2), we get, after expanding the cosh-function
and some rearranging (Appendix B),

This expression is identical to the likelihood ratio from
Noreen's (1981) Rule 6. Assuming that there is no bias, we
have C = 1. Solving Equation 10 for Ldjx) > 1 yields
(Appendix B)

which is in fact Noreen's (1981) decision Rule 6'. The re­
gion defined by Equation 11 is the same as that described
by Macmillan and Creelman (1991, p. 144) for the case in
which the observations are independent. Equation 11
states that the observer should respond "different" if the
observations are in the second or fourth quadrant of the
(Xl,x2) plane, and "same" otherwise. Written in terms ofg,
Equation 11 becomes

(7)

(9)

(11)

(10)
ed'x, + ed'X2

Lds(x) = , .. 1+ ed (X,+X2)

or, equivalently,

If g; is substituted by Xi via

x=g;-)1,
I U

1-£2
p= 1 +£2 .

Thus if u~ = 0, then p = 0 and £2 = 1, and ifUk » u 2, then
p~ 1 and £2~ O. The optimum decision rule is to re­
spond "different" where Ld,ig) > C, and to respond "same"
otherwise, where C is the decision criterion. The value of
C depends on the a priori probability and the values and
costs associated with each stimulus-response alternative.
If there is no bias toward either response, we have C = 1.
Clearly, the value of)1 must be known to apply the optimum
decision rule.

The expression for the likelihood ratio (Equation 5) may
be simplified for two special cases, depending on the value
of the correlation between the two observations gl and g2'
One case is when the observations are independent-that
is, uR = 0 (p = 0), or, equivalently, £2 = I-and the other
case is when the observations are highly correlated-that
is, v»> U (p~ 1 or e2~ 0).

The Optimum Decision Rule for Independent
Observations

When Uk = 0 (£2 = 1, p = 0), the observations are inde­
pendent; then Equation 5 reduces to

COSh[d' g2 - gl J
L (l:) _ 2 a (8)

d,s!> - [d,g+g -2)1J'
cosh I 2

2 a

COV[~\,g2] = COV[~I+wr'~2+wr] (2)

= E[(~I+wr - E[~I+wr])(~2+wr- E[~2+wr])]

(3)

=E[(wr-E[wr])2] = VAR[wr] (4)

If the variance of W r is large in comparison with the vari­
ance of ~I or ~2' the correlation between the two observa­
tions in a trial approaches unity. A correlation ofnear unity
is easy to achieve in an experimental situation by making
the random change in frequency, r, large in comparison
with the frequency difference limen.

In this paper, it will be shown that if there is no corre­
lation between the observations (fixed standard), the op­
timum rule is identical to the rule suggested by Noreen
(1981), and ifthe observations are highly correlated (rov­
ing standard), the optimum rule is identical to the rule sug­
gested by Sorkin (1962). Thus, the correlation between ob­
servations provides a common thread between the two
decision rules. Next, the receiver-operating characteristic
(ROC) functions are calculated by assuming each of the
decision rules. For a given pair ofcorrect and incorrect "dif­
ferent" response proportions, the d' value is different
depending on which decision rule is used. Finally, an ex­
perimental procedure is suggested for empirically deter­
mining which decision rule is used by the observer.

THE LIKELIHOOD-RATIO
DECISION STATISTIC

The two observations on a single trial, gl and g2' can be
written as a vector g= [gl g2]T. Assume that ghas a bivari­
ate Gaussian distribution, with expected values that have
an equal probability to be ILAA = [)1A )1AY' ILAB= [)1A )1BY'
ILBA = [)1B )1A]T, or ILBB= [)1B )1B]T, where u, and)1B are the
expected values of g, given stimulus presentation A or E,
respectively. We arbitrarily let )1B> )1A; their difference,
)1B- )1A' represents the subjective effect of the signal size.
The correct response is "same" for the first and fourth ex­
pected values, and "different" otherwise. For the purpose
of analysis, we introduce )1= ()1A + )1B)/2. The two obser­
vations of each trial have an independent variance of u 2

and a common variance of u~, so that the total variance of
each observation is u 2+u1- The correlation coefficient
between the two observations is, by definition, p =

up(u2+u~). Ifwe let d' = ()1B- )1A)/u(d' '? 0), we can ex­
press the likelihood ratio of the different hypothesis over
the same hypothesis (Appendix A) as

COSh[d' g2 -glJ
[(

d ' )2 2 ] 2 a
Ld,s(g)=exp-T (l-£) [d'd+g-2)1Jcosh _£ I 2

2 a
(5)

where e is introduced for the convenience of notation (12)
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Figure I. Decision space for independent observations (0-1 = 0).
The four probability density functions (BB), (AB), (AA), and (BA)
associated with either the same or the different hypothesis are cen­
tered at (d'/2,d'/2), (-d'/2,d'/2), (-d'/2, -d'/2), and (d'12, -d'12),
respectively. The shaded areas indicate where Ld,S<x) > C is true;
see Equation 10 for the expression of Ld,s(x). The boundaries of
the shaded area are given by Equation 16. The upper panel is for
C> 1,and the lower panel is for C < I. The response bias is altered
by changing the value of the criterion C.

The ROC Curves for Independent Observations
Figure 1 shows the <Xl,xz) decision space for the same­

different task where observations are independent «(Ti = 0).
The upper panel is for C> 1, and the lower panel for C < I.
The shaded areas indicate the acceptance region for "dif­
ferent" responses, where £d,ix) > C (given by Equation 10)
is true. The boundaries ofthe acceptance regions are given
by (Appendix B)

CALCULATING THE PROBABILITIES
OF CORRECT AND INCORRECT

"DIFFERENT" RESPONSES (ROC)

Ifa correct or an incorrect "different" response in a same­
different task is equated with a "hit" or a "false alarm" in
ayes-no task, then an ROC function can be obtained for the
same-difJerent task, which shows how P("D" Id) varies
with P("D" Is), where d and s stand for trials that contain
two different or two same stimuli, respectively.

The Optimum Decision Rule for Highly
Correlated Observations

When (Ti» (T2 (£2~ 0, p~ I), the observations are
highly correlated, and Equation 5 reduces to

c (~)=e-(d'l2)2cOSh[d,g2-g1]. (13)
d ,s 2 (J

Note that, for the particular case of highly correlated ob­
servations, J1 does not appear in Equation 13. The likeli­
hood ratio is determined by only the difference of the two
observations, not their absolute values. Based on Equa­
tion 13, the inequality £d.sC~) > C can be expressed as

Igz-g,l> ~~cosh-l[Ce(d'/Z)2], (14)

which is the decision rule given in the introduction. It shows
that the observer needs to know J1 to make the optimal
decision.

The optimum decision rule for C ;f. 1 is obtained by
solving Equation 10 for £d.s(x) > C. This will be done
below. For C> 1 the observer does best to respond "dif­
ferent" ifthe observations x] andx, are in the shaded areas
of the upper panel in Figure 1, and "same" otherwise. For
C < 1, the observer should respond "different" if the ob­
servation pair is in the shaded area of the lower panel in
Figure 1. The expected values of the four density func­
tions are now (due to the transformation of Equation 9)
d' d' d' d' T d' - d' T[-2 2 V for <SB,SB)' [-22] for <SA,SB)' [-2 2] for

d'_d' T" < )<~,~), and [2 2] lor SB'~ .

where cosh - I is the inverse function of the hyperbolic co­
sine function. For given values of C, (T, and d', the quan­
tity on the right-hand side of Equation 14 is a constant.
This decision rule-which was already mentioned in the
introduction-is identical to the rule suggested by Sorkin
(1962). By taking the absolute value of the difference be­
tween the two observations obtained on anyone trial, the
decision rule cancels any common variability-that is,
positive correlations-associated with the observations.
By making the transformation of Equation 9, we obtain

2 [' 2]Ixz-x,l> 7cosh-l Ce(d/Z) .

The values for the pair (x I,xz) that satisfy Equation 15 are
indicated by the shaded region of Figure 2. Thus, for the
highly correlated case, the observer does best to respond
"different" if Equation 15 is true.
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Figure 3. Receiver-operating characteristic (ROC) curves for
independent observations (ai = 0) using the following decision
rule: Respond "different" iff Ld.s(x) > C. The expression of the
likelihood ratio, Ld.s(x), is given by Equation 10. The parameter is
the d' value. The curves are calculated by using Equations 17-20.
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By integrating the probability density functions over the
shaded regions, we obtain the probabilities of correct and
incorrect "different" responses (Appendix B):

P("D"ld) = r <I>(v(xl ) - ~}P(Xl + ~')dXl

+r <1>(v(x l ) + ~}P(XI - ~')dXl' (17)

and

where I/>(z) and <I>(z) are the Gaussian and the cumulative
Gaussian probability density function, respectively, and
u =j; In(C). For C< 1, the two probabilities can be derived
from those for C > 1 on the basis of Equations 17 and 18,
by using the property that

Figure 3 shows the ROC curves generated via Equations
17-20. The probability of a correct "different" response,
P("D" Id), is plotted as a function of the probability ofan
incorrect "different" response, P("D" Is). The parameter is
the value of d'. Each ROC curve is symmetric about the

Figure 2. Decision space for highly correlated observations
(ai » a 2) . The four probability density functions (BB), (AB),
(AA), and (BA) associated with either the same or the different hy­
pothesis are centered at (d'/2,d'l2), (-d'l2,d'l2), (-d'/2, -d'l2),
and (d'/2, -d'l2), respectively. The acceptance region for the "dif­
ferent" response is indicated hy the shaded areas, where Equa­
tion 15 is true. When the criterion Cis altered, the unshaded area
changes in width.

minor diagonal. Macmillan and Creelman (1991, p. 145)
suggested an approximation method for calculating the d'
values on the basis ofP("D" Id) and P("D" Is) values. Ex­
cept for extreme values ofthe criterion (i.e., for C« 1 and
C» 1), the approximation is reasonably accurate; their
approximated d' values and our calculated d' values are
within a few percentage points.

The ROC Curves for Highly Correlated
Observations

For highly correlated observations, the decision space
is shown in Figure 2. One could follow the previous sec­
tion and calculate the probabilities P("D" Id) and P("D" Is)
by integrating the joint density functions over the shaded
regions; however, these probabilities can be obtained via a
simpler approach, described by Sorkin (1962). One can ex­
press the observations on a single trial as gl = ~l+wr and
g2 = ~2+wn where ~l and ~2 are independent of each other,
both having a variance of cr2, and the common term W r has
zero mean and variance crff. Because the optimum decision
statistic is the absolute value ofthe difference between the
two observations, we shall work with the difference of the
two observations, normalized with respect to O; z = ({2 - {l)/
a> (~2- ~l)/cr. Note that the common noise to; is canceled
in z. Based on this relationship, the calculation of the ROC
functions requires only one-dimensional integrations.

For the same hypothesis, the probability density func­
tion ofthe difference z is a Gaussian having a mean ofzero
and a variance of2 (the sum of the two independent vari­
ances). For the different hypothesis, the density function is
a composite function oftwo parts. One is a Gaussian hav­
ing a mean of(J.1s- J.1A)/cr= d' and a variance of 2, with the
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= 2_<I>(ZC --:_d')_<I>(zc +d') (22)
\,/2 \,/2

P("D"ld) = 1_1 e. [t/J( Z -,/') + ¢J( z+d')]dZ (21)
2 z( \'2 \j 2

Figure 5 shows the ROC curves generated from Equa­
tions 22 and 24. The parameter is d'. The ROC curves are
slightly asymmetric about the minor diagonal. Each curve
tends to be farther apart from the major diagonal near the

other having a mean of -(J.1B-J.1A)Ia-= <d' and a variance
of 2. Figure 4 shows the decision space for the present
task. For a given criterion C, the observer responds "dif­
ferent" iff the di fference score z falls into the shaded area
ofFigure 4. P("D" Id) is the integration of the two different
density functions over the shaded areas. Likewise, P("D" Is)
is obtained by an integration of the same density function
over the shaded areas. The two probabilities are presented
here in a form similar to that given by Sorkin (1962):

HOW TO DETERMINE THE
DECISION RULE USED BY THE OBSERVER

origin (0,0) than near (1,1). Our calculations confirm
Macmillan and Creelman's (1991).

For a given d'; the ROC curves generated from the two
decision statistics (Equation 8 for independent, and Equa­
tion 13 for highly correlated observations) are clearly dif­
ferent. Suppose, for example, that an experiment produced
values of P("D"ld) = 0.8 and P("D"ls) = 0.2. Then one
would estimate that d' = 2.4, given the independent­
observation decision rule (Figure 3), and that d' = 3.0,
given the second decision rule (Figure 5), a difference in
d' of about 20%. Such differences in d' suggest that it
would be desirable to have a means ofdetermining which
of the two decision statistics the observer actually uses.

We now present a procedure that may allow the exper­
imenter to distinguish between the two potential decision
rules. In our application, we will use a modification of
Berg's (1989) conditional-on-a-single-stimulus (COSS)
technique as suggested by Richards and Zhu (1994) and
by Lutfi (1995). (Despite the modification, we will still
refer to it as the COSS procedure.) The COSS procedure
calculates a correlation between the observer's responses
and alterations of the stimuli imposed by the experimenter
on each trial, which we call perturbations. We have not at­
tempted to use the technique experimentally, but the fol­
lowing computer simulations suggest that the technique
may be ofvalue. In the example, we consider only the two
extreme decision rules (Equations 8 and 13). Human ob-

(25)

(23)

(24)

1- r~ t/J(~",.,)dZ
·C ,2

P("D" Is)

= 2-2<1>(~)
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Figure 4. Simplified conditional probability density functions for the differ­
ent and same hypotheses and decision space for the same-different task where
the observations are highly correlated. The abscissa (z) is the difference between
the observation of the second interval and the first interval, normalized with
respect to cr.The middle function denotes the Gaussian probability density func­
tion given that a stimulus pair AA or BB was presented. Its variance equals 2,
and the area under the curve equals unity. The two other distributions denote
the probability density functions given a pairAB or BA, respectively. For both dis­
tributions the variance equals 2, but the area under each curve equals 0.5. The ob­
server responds "different" iff the z value falls into the shaded areas. The
boundaries of the shaded areas, - Zc and zc' correspond to the decision criterion.
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Figure 5. Receiver-operating characteristic (ROC) curves for
highly correlated observations using the following decision rule:
Respond "different" iff Equation 15 is true. The parameter is the
d' value. The curves are calculated by using Equations 22 and 24.

servers may, however, adopt more complicated rules or
may even blend the two extreme rules. For a more de­
tailed discussion of the COSS technique and its limita­
tions, the original papers should be consulted.

On each trial, the experimenter modifies each stimulus
of the same-different pair by adding a random and inde­
pendent perturbation to it. For example, if the problem
were to discriminate whether two tones had the same or
different frequencies, we might modify the frequency of
each member ofthe tone pair by changing it by an amount
ofi or 012, respectively. The perturbation value is a random
variable drawn from a Gaussian distribution with zero
mean and variance a~. Thus, contrary to the roving stan­
dard, the present perturbation is differentjor each stimu­
lus interval. Note that if the observer were infinitely sen­
sitive, even the same trials would appear to be different,
because it is unlikely that exactly the same perturbation
would be applied to both stimuli of a same pair. This is
probably not a problem, because the perturbation can be
chosen to be small yet still useful. In other applications, it
has been found that the perturbation is largely unnoticed
by the listener (Berg & Green, 1990). Next, we record for
each trial the values of the two perturbations and the ob­
server's response R (e.g., R = 1 for a "different," and R = 0
for a "same," response).

At the conclusion ofa set oftrials, we compute two cor­
relation coefficients: one between the binary response
given on that trial and the perturbation of the first stimu­
lus, and a second one based on that same response and the
perturbation of the second stimulus of the pair. There are
four types oftrials, (~,SA)' (~,SB)' (SB'~)' and (SB,SB)' so
that a total ofeight correlations can be computed. For each

trial type, the correlation between the response and the per­
turbation of the second interval can be plotted as a func­
tion of the correlation between the response and the per­
turbation ofthe first interval. This has been done in Figure 6.
Using a computer to simulate performance in the same­
different task, we find that the pattern of correlations is
quite different for the two different decision rules. In each
of the four panels, representing the different types of tri­
als, the crosses are the correlations obtained by using the
optimum decision rule for independent observations (Equa­
tion 8, C = 1), and the circles are the correlations obtained
by using the optimum decision rule for highly correlated
observations (Equation 13, C = 1). Each correlation value
(circle or cross) is based on 100 trials. The simulation was
repeated 2,000 times in order to give us the cluster ofpoints.
As can be seen in Figure 6, for each trial type, the two sets
of correlation values cluster in different regions depend­
ing on the rule used by the decision maker. For example,
in the lower left panel, for (SA' SA)' ifa point falls above the
line, it is more likely to be generated from the optimum
decision rule for correlated observations; if it falls below
the line, the other decision rule is more likely. The lines are
simple linear functions that were empirically adjusted to
separate the two clusters. The error rate is I% for the same
stimulus pairs (lower left and upper right panels of Fig­
ure 6) and about 9% for the different stimulus pairs.

An experimenter can locate the point on the appro­
priate panel of Figure 6 by segregating the trial types and
computing the two correlations between the observer's re­
sponses and the perturbations applied to the first and second
stimuli.With only one trial type, the error rate classifying the
decision rule used by the observer can be less than 1%. Lower
error rates can be obtained if all four trial types are used.

We used specific parameter values when conducting
the computer simulations. The variance of the internal
noise of the observer was set to a 2; that of the perturba­
tion aj was given a value 2.25a2, to give a total variance
of a:j.= a 2 + a} = 3.25a2. The means J.lA and J.lB of the two
probability density functions were adjusted to produce a
normalized difference of (J.lB-J.lA)/a = 1.8.

To apply this technique to human observers, the exper­
imenter must adjust two experimental variables in order to
obtain useful correlation coefficients. They are the value
of the perturbation, q" and the difference between the means
of the two distributions, J.lB-J.lA' If the perturbation is too
small, it will not influence the observer's responses. If the
perturbation is too large, all trials will appear to be "dif­
ferent." To determine the most useful perturbation value,
the experimenter can estimate the internal noise by mea­
suring the subject's threshold d'= (J.lB-J.lA)/awithout per­
turbations: Call the resulting threshold d th for d'= 1,which
we can use as an estimate of the listener's internal noise, a.
We recommend that the size of the perturbation be about
1.5d th , as it was in the simulation, so that the subject's re­
sponse is influenced more by perturbation than by inter­
nal noise. The size of the signal must also be selected with
care. It should not be too large; otherwise, the responses
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CORRELATION BETWEEN RESPONSE AND PERTURBATION OF FIRST STIMULUS

Figure 6. Computer simulation results of the correlation coefficients between the observer's responses and perturba­
tions imposed on the observations. The observations on each trial are assumed to be independent. The total variance is
set to be 3.25u2, which includes a variance of u 2 for the internal noise and a variance ul= 2.25u 2 for the perturbation.
Each panel is for a particular type of stimulus pairs. The ordinate is the correlation coefficient between the responses
(1 for "different," and 0 for "same") and the perturbations imposed to the second stimulus; the abscissa is the correla­
tion coefficient between the responses and the perturbations imposed to the first stimulus. Each panel has 2,000 crosses
and circles, and each point is based on 100 trials. The crosses are generated with the optimum decision statistic for in­
dependent observations (Equation 11). and the circles with the optimum decision statistic for highly correlated obser­
vations (Equation 15 with C= 1). Each straight line (with equation) represents an empirically determined criterion for
each type of trial. The lines were chosen so that minimum numbers of crosses and circles went across them. In the lower
left panel «SA'~». for exam pie, if an experimenter obtains a point that falls below the line, the point is more likely to be
generated from the optimum decision rule for independent observations; ifit falls below the line, the other decision rule
is more likely. With this procedure, the error rate is about 1% for each ofthe two same stimulus pairs (the lower left and
upper right panels) and about 9% for each ofthe two different stimulus pairs.

will all be correct. Nor should it be too small; otherwise,
the subject may not maintain a reasonable decision rule in
the task.

SUMMARY

In this paper, we have derived the optimum (likelihood­
ratio) decision statistic for a same-different task, assum­
ing that the observations are partially correlated. Under

two special cases, the optimum decision statistic is iden­
tical to two previously suggested decision statistics. When
the correlation is zero-so the observations are indepen­
dent-the optimum decision rule is identical to the rule
suggested by Noreen (1981, cf. Macmillan & Creelman,
1991). When the observations are highly correlated, the
optimum decision rule is identical to the rule suggested by
Sorkin (1962). Using the decision statistic optimal for ei­
ther independent or highly correlated observations, we
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(A4)calculated for given d' values the probability ofa correct
"different" response as a function of the probability of an
incorrect "different" response (ROC). A correlation analy­
sis based on the COSS procedure provides a means for
empirically distinguishing the actual decision rule used by
the observer.
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The pair of observations gj and g2' written as a vector ~ =

[gl g2] T, obtained in a same-different task, has equal probability
to be drawn from four joint Gaussian distributions having means
of /LAA =[IlA IlAF, /LAS =[IlA IlsF, /LSA =[Ils IlAF, and /Lss =
[Ils Ils]T. Here, T stands for transpose. Under the assumption
that the two observations, gl and g2, are partially correlated, the
density functions are

Pd F (l:) = I e-~(~-J.'xx)T:E-2(~-J.'xx) (AI)
JXX ~ 27tV~1 '

whereXX=AA,AB,BA, or BB, and where IL2
1 is the determinant

of the covariance matrix L 2

COSh[d' g2 - glJ
[ (d' )Z 2 ] 2 (J'

Ld,s(~)=exp - 2 (I-E) [' g +g -2 J'
cosh!L£2 I 2 11

2 (J'

(A2)
(AI3)

where the hyperbolic cosine function is defined as

This expression is identical to Equation 5 in the main text.

When the observations are independent, 0'] = 0, thus e 2 = I,
and Equation A 13 (Equation S in the main text) reduces to

APPENDIXB
Calculation of the Receiver-Operating Characteristic

(ROC) Functions for Independent Observations

(AI4)
e-Z+e Z

cosh(z) = ---.
2

(A3)

in which 0'2represents the independent variance of each obser­
vation and 0'] represents the common variance between the two
observations. The inverse of the covariance matrix is

where we defined for convenience
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Expanding the cosh functions, by use of the definition given in
Equation A14, we obtain, after m~ltiplicationofn.ume~~tor~nd

denominator by a factor of exp [4(xl + x2) ] and simplification,

For convenience, we make the transformation

~i-f.i
x i =-,;:- ,

where (i = 1,2), which changes Equation Bl into

cosh[f(X2 - Xl)]

Ld.s (g) = [d' ].
cosh Z(xi +X2)

(Bl)

(B2)

(B3)

(B4)

composite density function for all different trials is pd.fd(x) =

t [pdJ,;B(X)+pdfsix)]; The proba?ility density for (SA,SA).tria~s
is pdJ,;A(X) = ¢(XI + J1.) • ¢(x2 + 1), and that for (SB,SB) tnals IS

pdfsB(X)= ¢(xl-1') ~ ¢(X2-1\ The composite density function
for pdf, (x) =.1 [pdfAA(x) + pdfsB(X)], Now we derive one part of
the ROC cur~e that is associated with decision criterion values
C> I (the upper panel of Figure 1), The rest of the ROC curve,
which is associated with C < I (the lower panel ofFigure I), can
be derived from the first part based on the property that

PL=c("D"ld) = 1 - PL=l/c("D"ls) (B9)

and

PL=c("D"ls) = 1- PL=!/c<"D"ld). (BIO)

The reader may gain some insights about those two relations by
comparing the shaded regions of the upper and lower panels of
Figure I.

For C> I (the upper panel ofFigure I), because the two shaded
areas in quadrants II and IV are symmetric withpd.fd(x), P("D" Id)
may be obtained by integratingpd.fd(x) over quadrant IV and dou­
bling the result. Because 2pd.fd(x) = pdJ,;B(X) + pdfsA(x), we have

(B6)

(B5)

(Bll)

which is identical to the likelihood ratio from Noreen's (1981)
Rule 6. Solving Equation B4 for Ld.s(g) = C(C* I) yields Equa­
tion 16 in the main text

I [c_ed'x'J
x2 = v(x l ) = d' In I-Ced'x, ,

which describes the boundaries in Figure 1. Note that Equa­
tion B5 will still be correct when the two variables XI and x2 are
interchanged, For the special case of Ld.s(g) = I (no bias), Equa­
tion B4 reduces to X Ix2= 0, so that the boundaries are defined by
the x l- andx--axis, The expected values ofthe four density func­
tions are now (owing to the transformation of Equation B2)
[ffJT for (SB,SB)' [-4JJT for (SA,SB)' [-4'-4'JT for (SA,SA),
and [4'-1Yfor (SB,SA)'

The probabilities ofcorrect and incorrect "different" responses
are obtained by integrating the probability density functions over
the region ofacceptance for the "different" response (the shaded
areas in Figure I). Because here a~ = 0, the observations are in­
dependent; thus the joint probability density functions from
Equation Al can be written as a product of the individual (one­
dimensional) density functions. The joint density function for
(SA,SB) trials,pd.t;B(x), can be expressed as

I d' 2 I( d')'I -2("+2) I -2"-2
pd.t;B(X) = -(-.-. e . --y==-e

'.!2n ,;2n

P("D"ld) = [U:")¢(XI + ~)¢(XI- ~')dX21dXI

+[U:'\)¢(xl- ~)¢(Xl + ~')dX21dXI'

where u =~ In (C). Therefore, the probability ofa correct "differ­
ent" response, P("D"!d), may be expressed as

P("D"ld) = J; c{:l(v(x1) - ~)¢(XI + ~)dxI

d') ( d')+J;c{:l(v(X1)+z ¢ xI- z
dx., (BI2)

where c{:l(x) is the cumulative Gaussian probability density function.
Likewise, the probability ofan incorrect "different" response,

P("D"ls), given the response criterion, C, is the integration of
pdfs(x) over all shaded areas. Because the two shaded areas (in
quadrants II and IV) are symmetric with pdfs(x), P("D" Is) may
be obtained by integrating 2pdfs(x) = pdiJA(X) + pdfsB(x) over
only quadrant IV: Furthermore, because the integration of
pdiJA(X) over the shaded areas is the same as the integration of
pdfsB(X),P("D"ls) can be obtained by integrating 2pdiJA(X) over
the shaded area in quadrant IV only. Therefore, we have

P("D"ls) = 2J;[r<'\)¢(xI-~')¢(xl-~')dx21dxI' (BI3)

where ¢(x) is the standard Gaussian probability density function
having mean zero and unit variance. Likewise, the probability
densityfor(SB,SA)trialsispdfsA(x)=¢(xl-4')· ¢(x2+f). The

=¢(XI + ~)'¢(X2 - ~)

= pd.t;(xl ) · pdf8(x2),

(B7)

(B8)

which may be expressed as

(BI4)

Equations B 12 and B 14 are used in the text.

(Manuscript received June 10, 1994;
revision accepted for publication May 5, 1995.)


