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Detection of symmetry in tachistoscopically
presented dot patterns: Effects of
multiple axes and skewing

JOHAN WAGEMANS, LUC VAN GOOL, and GERY D’'YDEWALLE
University of Leuven, Leuven, Belgium

We examined the effects of multiple axes and skewing on the detectability of symmetry in
tachistoscopically presented (100-msec) dot patterns to test the role of normal grouping processes
based on higher order regularities in element positions. In addition to the first-order regularities
of orientational uniformity and midpoint collinearity (Jenkins, 1983), bilateral symmetry (BS)
gives rise to second-order relations between two pairs of symmetric elements (represented by corre-
lation quadrangles). We suggest that they allow the regularity (i.e., BS) to emerge simply as a
result of the position-based grouping that takes place normally, so that no special symmetry-
detection mechanism has to be postulated. In combination with previously investigated variables—
number and orientation of axes—we introduced skewing (resulting from orthographic projection
of BS) to manipulate the kind and number of higher order regularities. In agreement with our
predictions, the data show that the effect of skewing angle (varied at three 15° steps, clockwise
and counterclockwise) on the preattentive detectability of symmetry (measured with d') increases
as the number of axes decreases. On the basis of some more specific findings, we suggest that
it is not as much the number of correlation quadrangles that determines the saliency of a regularity

as it is the degree to which they facilitate or “bootstrap” each other.

During the time since Mach’s (1886/1959) observations
on the special status of bilateral or mirror symmetry for
the human perceptual system, numerous experiments have
been done on its detection and use. With respect to the
latter, abundant data indicate the influence of symmetry
on several perceptual and cognitive processes, such as
scanning, encoding, short-term memory, recognition,
representation, imagination, the establishment of a refer-
ence frame, and judgments of numerosity, complexity and
goodness, or aesthetic value (see, e.g., Chipman & Men-
delsohn, 1979; Fox, 1975; Howe & Jung, 1987; Locher
& Nodine, 1973, 1989; Palmer, 1985; Pashler, 1990;
Szilagyi & Baird, 1977; Yodogawa, 1982). All this
research suggests that symmetry is a very salient visual
property that the human visual system must detect effi-
ciently and rapidly.
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Although the use of signal-detection measures (e.g., d')
and tachistoscopic presentation (e.g., 25 or 100 msec) has
shown that human perceivers are indeed capable of de-
tecting bilateral symmetry (BS; see, e.g., Barlow &
Reeves, 1979; Carmody, Nodine, & Locher, 1977),
several decades of experimentation and modeling have not
succeeded in clarifying how we do it exactly. To be sure,
the effects of several different variables on the efficiency
and speed of symmetry detection have been studied ex-
tensively. Naturally, this kind of research has yielded im-
portant information about the general principles of the
mechanism and the constraints within which it operates.
In addition, the implications of these findings have been
accounted for in some preliminary accounts of symmetry
detection. Nevertheless, several essential questions remain
unanswered. We will address them by discussing exam-
ples from experimental and theoretical work. Our own
research fits into the same tradition, in that we are trying
to find out the effects of particular variables (here, mul-
tiple axes and skewing) on symmetry detection, but we
are attempting to go further, in that our research is more
explicitly focused on testing a particular proposal about
a mechanism of symmetry detection.

EFFECTS ON SYMMETRY DETECTION:
PRELIMINARY ACCOUNTS

Axis Orientation

The variable most often studied in research on detec-
tion of symmetry is the orientation of the axis of sym-
metry. Whereas most studies (e.g., Fisher & Bornstein,

Copyright 1991 Psychonomic Society, Inc.



414

1982; Jenkins, 1985) have shown that symmetry about
a vertical (V) axis is most salient, and hence easier to de-
tect, as measured by accuracy and response times (RTs),
there is some controversy about the relative detectability
of horizontal (H) and oblique (O) symmetry. Palmer and
Hemenway (1978) have explained the difference between
their results regarding orientational effects, indicating an
oblique effect (RTv < RTu < RTo), and Corballis and
Roldan’s (1975), indicating a mental rotation effect
(RTv < RTo < RTy), by the absence or presence,
respectively, of an explicitly drawn axis of symmetry. In
addition, this has been interpreted as evidence for a stage
in which a potential axis is selected prior to the evalua-
tion of symmetry about it and for the bias of this stage
toward V. Recently, Pashler (1990) has come to a simi-
lar conclusion on the basis of data from two experimen-
tal paradigms: response times with extended exposure du-
ration and accuracy with tachistoscopic presentation (i.e.,
100 msec).

Palmer and Hemenway (1978, Experiment 1) found
considerably higher detectability of double and quadru-
ple symmetry (i.e., resulting from a reflection of a pat-
tern about two and four axes, respectively). This finding
led them to suggest that the first stage of axis selection
follows a variable order. On the average, a symmetry axis
will be selected sooner when there are multiple axes from
which to choose. In their Experiment 2, Palmer and
Hemenway instructed the subjects to detect V symmetry
only, in order to eliminate the selection process. This
manipulation resulted in a considerable reduction in RTs
for all symmetries, yet the advantage of the multiple sym-
metry remained. This result is somewhat surprising, if
the variable selection is indeed the only explanation for
the multiple symmetry advantage. It has been interpreted,
therefore, as a facilitation of the evaluation stage on the
basis of the good gestalt of the pattern halves that have
to be compared.

In summary, then, Palmer and Hemenway (1978,
p- 700) have suggested the following dual process model
with which to interpret their results.

First, the observer selects a potential axis by a crude, but
rapid, analysis of symmetry in all orientations simulta-
neously . . . . This selection process is biased toward V and,
to a lesser extent, H axes rather than O ones. The actual
order of selection is assumed to be variable rather than
fixed. If a given axis meets the selection criterion, a per-
ceptual reference frame is established in the appropriate
orientation—perhaps through rotation. ... The observer
then performs a detailed evaluation of symmetry about the
selected axis by explicitly comparing the two halves for
mirror-identity.

How the first global, crude, and rapid stage operates is
not specified. Nevertheless, this seems to be the essen-
tial part of the symmetry-detection mechanism, because
the second component process is in fact only consciously
controlling what has been signaled preattentively. (For
a clear distinction between effortless, immediate, preat-
tentive perception, on the one hand, and attentive search
and scrutiny, on the other, see Julesz, 1981.)
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Different Zones and Central Presentation

A second set of factors that have frequently been in-
vestigated consists of the contribution of different zones
in a pattern to the global impression of symmetry in it,
as well as the relative importance of central presentation
to it. Most studies have shown that a restricted area around
the axis of symmetry is the most important (e.g., Jenkins,
1982) and that central presentation (with the axis of sym-
metry being located at the point of fixation) is most help-
ful (e.g., Saarinen, 1988). Nevertheless, several findings
urge that this general statement should be qualified.

With respect to the issue of central presentation, Julesz
(1971) has noted that the detection of symmetry in sim-
ple patterns (e.g., amorphic shapes) does not require that
the center of symmetry coincide with the fixation point
of the eyes, in contrast with the same detection in com-
plex patterns (e.g., dot textures). Julesz has therefore con-
cluded that symmetry detection operates at two levels: for
patterns with low spatial frequencies, the symmetric re-
lations are extracted globally; in contrast, for patterns with
high spatial frequencies, the symmetric relations are ex-
tracted by a point-by-point comparison process. A simi-
lar distinction (without the spatial filtering notions) has
been incorporated in most subsequent models and theories
(see, e.g., Bruce & Morgan, 1975; Palmer & Hemen-
way, 1978).

With respect to the contribution of different zones,
Barlow and Reeves (1979) have provided some evidence
for the importance of outer areas also (possibly because
of an imaginary contour), and they have stressed the ver-
satility of the symmetry-detection mechanism by show-
ing a remarkable tolerance to smearing (i.e., nonexact cor-
respondences between symmetrically positioned elements)
and noncentral presentation. These findings led them to
suggest that *‘symmetry detection requires nothing more
than the comparison of dot densities measured over quite
large areas symmetrically placed about the putative axis
of symmetry’” (Barlow & Reeves, 1979, p. 791).
However, they are forced to admit that ‘‘each different
position of the axis requires a different set of compari-
sons, and [that] the means by which these sets of com-
parisons are brought about is not easy to imagine’’
(p. 792). Again, it seems that this first, preattentive global
stage is the real mystery.

Orientational Uniformity and
Midpoint Collinearity

Jenkins’s (1983) study of component processes in sym-
metry detection is a third example of experimental
research on the effects of different variables on the de-
tection of symmetry resulting in some basic principles to
be taken into account by symmetry-detection models. In
fact, he comes closest to the essentials of the first stage
of rapid and crude symmetry detection by explicitly
manipulating the information that is present in a bilater-
ally symmetric pattern. Jenkins started from the defini-
tion of a bilaterally symmetrical dot pattern ‘‘as a two-
dimensional distribution of uniformly oriented point-pair
elements, of nonuniform size, which fall across the same



axis evenly such that the uniformly oriented pairs have
collinear midpoints’’ (p. 433). In a nice set of experi-
ments, he has shown the visual system’s sensitivity to
orientational uniformity (i.e., the fact that all virtual lines'
connecting the symmetrically positioned dots are parallel)
and midpoint collinearity (i.e., the fact that all midpoints
of these virtual lines are situated on one straight line, viz.,
the axis of symmetry). It is tempting to conclude from
these findings that symmetry detection is based on these
regularities, and Jenkins's own model more or less sug-
gests this.

However, it remains unclear exactly how orientational
uniformity and midpoint collinearity are detected. It seems
that the detection of both factors must occur cooperatively;
in order to detect the orientational uniformity, one has
to know how the dots belong together, but to measure the
symmetric positions requires information about the orien-
tation of the axis and hence the detection of the midpoint
collinearity. Furthermore, experiments with skewed sym-
metry indicate that orientational uniformity and midpoint
collinearity are insufficient to explain symmetry detection.

Skewing

Skewed symmetry (SS) is the result of a general ortho-
graphic projection of BS. In fact, the only situations in
which a planar BS in the world is projected to BS on the
retina are the accidental cases of an orthogonal viewing
position or a plane slanted about an axis perpendicular
to the axis of symmetry. In all other cases, BS yields SS
in the image plane. In computer vision, the presence of
SS in the image is therefore used as a cue to infer BS in
the world (see, e.g., Kanade & Kender, 1983; Stevens,
1979), and algorithms have been proposed to derive con-
straints on the orientation (slant and tilt) of a nonor-
thogonal plane from the direction and angle of the skew-
ing (see, e.g., Friedberg, 1986; Hakalahti, 1983).
Recently, we have extended this work considerably by
allowing interactions between multiple regularities (Van
Gool, Wagemans, Vandeneede, & Oosterlinck, 1990).

As far as we know, the human sensitivity to SS has
never been tested formally and systematically (some in-
formal observations were made by Attneave, 1982, and
Stevens, 1979). Nevertheless, detecting symmetry in
nonorthogonal planes seems to be a prerequisite if a bio-
logical visual system is to be able to use this kind of nonac-
cidental property in object recognition (as proposed re-
cently by Biederman, 1987, and Lowe, 1987). Some
preliminary data indicate that, analogously to the afore-
mentioned computer vision algorithms, the human visual
system has a perceptual bias toward symmetry that is used
in the recovery of a constant three-dimensional (3-D)
shape from changing two-dimensional (2-D) images
(King, Meyer, Tangney, & Biederman, 1976).

In a study published elsewhere (Wagemans, Van Gool,
& d’Ydewalle, 1990), we have investigated the percep-
tion of SS with a paradigm in which the subjects had to
detect and locate an additional dot that disturbed the sym-
metry (BS or SS) in a dot pattern. As a result of the
orthographic projection of BS, the angles between the
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virtual lines connecting the symmetrically positioned ele-
ments and the axis of symmetry generally differ from 90°,
but orientational uniformity and midpoint collinearity are
preserved by the affine transformation. The results of that
study indicate that it is much harder to detect a violation
of SS than it is to detect a violation of BS (higher error
rates, longer RTs). In the following section, we will
present the principles of a new account of symmetry de-
tection that integrates all the findings reviewed above.

A NEW ACCOUNT AND ITS PREDICTIONS

Consider the dot pattern presented in Figure 1 (left).
Suppose that the human visual system, when confronted
with such a pattern, starts processing it by grouping dots
together, so that they are eventually represented by vir-
tual lines (see Note 1). Initially, connections will be es-
tablished in all possible directions, but gradually the lo-
cal parallelism between the virtual lines spanning the
symmetry axis will be noticed. When more and more of
these pairwise connections between symmetrically posi-
tioned elements are formed, their midpoint collinearity
and, in fact, the global symmetry giving rise to it, would
be detected (see Figure 1, middle).

Second-Order Relations

The same pairwise correspondences are possible in SS,
yet they are much harder to detect (see Figure 2). The
critical difference between both types of patterns occurs
in terms of second-order relations holding between pairs
of first-order virtual lines.> As can be seen in the right
item in Figure 1, two pairs of symmetrically positioned

Figure 1. Example of a dot pattern with perfect single symmetry
about a vertical axis (left) and its first-order (middle) and second-
order (right) regularities. In the rightmost item, only some of the
bootstrapping based on the correlation quadrangles (i.e., symmetric
trapezoids) is shown.

Figure 2. Example of a dot pattern with skewed single symmetry
about a vertical axis (left) and its first-order regularities (right).
The skewing is 30° counterclockwise. In contrast with orientational
uniformity and midpoint collinearity (Jenkins, 1983), the higher
order relations disappear. As a consequence, there are no correla-
tion quadrangles, and hence, no bootstrapping.
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elements constitute a virtual quadrangle with certain spe-
cial characteristics such as correlated angles. The virtual
quadrangles of this basic correlational type are called
correlation quadrangles.® In principle, two kinds of such
correlation quadrangles are possible: symmetric trape-
zoids, with two pairs of equal adjacent angles, and
parallelograms, with two pairs of equal opposite angles.

Our suggestion is that the normal grouping processes
that occur as one of the first stages in all perceptual
processing automatically lead to the detection of sym-
metry, because the possible relations confirm one another,
given the Euclidean invariant line lengths (i.e., distances)
and angles (i.e., orientations). More specifically, in BS
the elements are positioned in such a way that not only
the individual elements are in symmetric positions about
an axis. The virtual lines formed between two elements
not belonging together because of the symmetry, but be-
cause of their proximity (i.e., the nonhorizontal lines in
Figure 1), have the same lengths and relative orientations
as those of their corresponding virtual lines at the other
side of the symmetry axis (see Note 3).

In SS this additional support from connections between
nonsymmetrically positioned elements is absent, because
all lengths and angles of virtual lines representing them
are different as a result of the affine skewing transforma-
tion. Although all first-order relations (defined in terms
of the ‘“‘correct’”’ correspondences) are the same for BS
and S8, the second-order relations (dependent on the *‘in-
correct’’ correspondences as well) are regular only for
BS. So, given that the visual system does not ‘‘know’’
initially which pairwise connections indicate symmetric
correspondences, many spurious ones are made. These
are helpful in BS, but not in SS.

These geometric relations holding in patterns with BS
might facilitate the detection of it in the following way.
Let us assume that from the moment at which some
parallelism is detected (i.e., first-order regularity), a lo-
cal reference frame is established for it (one axis of the
frame parallel to it, the other orthogonal to it), with respect
to which all other angles are expressed (i.e., second-order
regularity). Note that this does not require that the axis
of symmetry be detected for the second-order regulari-
ties to be registered. If the quadrangle formed in this man-
ner is of a nonaccidental nature (i.e., the genuine result
of the regularity in the pattern), it can serve as a starting
point for building additional quadrangles. The propaga-
tion of this local reference frame, called bootstrapping,
is quite easy for symmetric trapezoids, because one of
the two axes of the frame indicates the direction in which
to proceed.

Without becoming too engaged with the specific details
of processing, we can say that all previous findings regard-
ing effects of multiple axes, different zones in a pattern,
and central presentation can be accounted for if we as-
sume that the normal grouping processes start in parallel,
but operate faster in the center (probably because of higher
foveal accuracy, although additional reasons might ex-
ist; cf. Saarinen, 1988). Similarly, the orientational aniso-
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tropy found in symmetry detection can be incorporated
as a weighted parameter expressing the ease of the spread-
ing of the grouping in different directions. In addition to
this post hoc explanatory power, our account leads to quite
specific predictions that have not been tested so far. In
the experiment reported here, we investigated the impor-
tance of the higher order relations by disturbing them and
measuring the detectability of the symmetry in the resuit-
ing patterns. The way to do this is to use symmetric pat-
terns with multiple axes and skewing.

Multiple Symmetry

In single symmetry, a pattern is reflected about a sin-
gle axis. In the present study, in which all patterns have
24 dots, the original input pattern is a pseudorandom col-
lection of 12 dots, and the axis is oriented vertically,
horizontally, or diagonally to the left (L) or to the right
(R). When the reflection occurs orthogonally to the axis,
the resulting symmetry is a perfect BS. When the reflec-
tion is performed in a nonorthogonal coordinate system,
the resulting symmetry is skewed single symmetry (for
a more mathematical treatment of skewing, see Friedberg,
1986). In multiple symmetry, a pattern is reflected about
more than one axis. For example, in our double sym-
metry, represented in Figure 3, a pseudorandom collec-
tion of six dots is reflected about a V-H system of axes
or an L-R system of axes. In our quadruple symmetry,
shown in Figure 5, a pseudorandom collection of only
three dots is reflected about each of the four possible axes
(V, H, L, and R). Of course, the skewing transformation
can be applied equally well to these multiple symmetries.
The results are called skewed double symmetry (Figure 4)

and skewed quadruple symmetry (Figure 6), respectively.

Predictions

It is interesting to see what happens with the higher
order relations in all these different kinds of symmetry
with single or multiple axes and with skewing. The num-
ber of virtual quadrangles along each axis present in a
pattern is constant. This number is [N(N—1)}/2; with N
being 12 (i.e., the number of dot pairs), this yields 66
virtual quadrangles.* The different kinds of symmetries
differ in the number of axes along which there are 66
quadrangles and in the regularity of the quadrangles. In
Table 1, the available quadrangles are specified for all
of the kinds of symmetries studied in the experiment
reported here.

In perfect double symmetry, two axes exist, each with
66 virtual quadrangles, all of which are of the basic cor-
relational type. As can be seen in Figure 3, there are 66
correlation quadrangles, 60 symmetric trapezoids, and 6
even higher order ones (viz., rectangles with four cor-
related angles; see Notes 2 and 3), all 2 X 2 identical.’®
In skewed double symmetry, however, only 6 parallelo-
grams (viz., skewed rectangles) and 60 nonsymmetric
trapezoids are present along each of the two axes (see
Figure 4). So the number of quadrangles of the correla-
tional type is significantly decreased by skewing. The
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Figure 3. Example of a dot pattern with perfect double symmetry about left and right axes. In the sec-
ond column, the first-order regularities are shown for both axes separately. In the third column, the boot-
strapping based on the second-order regularities is shown for the same two axes. The top-right item represents
the correlation quadrangles that result from combining the two first-order regularities (i.e., rectangles).

Il
%

Figure 4. Example of a dot pattern with skewed double symmetry about vertical and
right axes, as a result of a 45° counterclockwise skewing of a double vertical-horizontal
symmetry about the vertical axis. In the second column, the first-order regularities are
shown for both axes separately. Their superposition gives the parallelograms shown in the
rightmost item, but there is no bootstrapping between them.

prediction, then, is that there will be a significant differ-
ence in detectability between the perfect and the skewed
double symmetries.

In perfect quadruple symmetry, four axes are present,
each with 66 virtual quadrangles, all of which are again
of the basic correlational type. As one can see in Figure 5,
there are 60 symmetric trapezoids and 6 rectangles along
each axis, all 2 X 2 identical. In skewed quadruple sym-
metry, there are also four axes with 66 virtual quadran-
gles, but not all of them are correlation quadrangles (see
Figure 6). Along two of the four axes, there are 60 sym-

metric trapezoids and 6 rectangles, all 2 X 2 identical.
Along the other two axes (i.e., the ones around which
the skewing is applied), there are 60 nonsymmetric trape-
zoids and 6 parallelograms, again pairwise identical. In
fact, skewing a quadruple symmetry results in a perfect
double symmetry (the orientation of the orthogonal sym-
metry axes depends on skewing angle and axis) and a
skewed double symmetry. All in all, the number of corre-
lation quadrangles is very high, so that the detection of
this kind of symmetry must be very easy, at least if the
account presented above has some validity.
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Figure 5. Example of a dot pattern with perfect quadruple symmetry (i.e., about vertical, horizontal,
left, and right axes). In the second and third columns, the first-order regularities and the bootstrapping
based on the second-order regularities are shown, respectively, for all four axes. The fourth column
represents the rectangles resulting from combining two orthogonal first-order regularities.

To recapitulate what is hinted at above, in perfect sin-
gle symmetry 66 correlation quadrangles are present along
the axis; but they are not pairwise identical, and there are
no rectangles, only symmetric trapezoids (see Figure 1).
In skewed single symmetry, the second-order relations
are destroyed, and hence, no correlation quadrangles are
present whatsoever (see Figure 2). In summary, the skew-
ing should have little or no effect on the detection of sym-
metry in dot patterns with four axes, a small but maybe
significant influence on the detectability of double sym-
metry, and a large disruptive effect when only a single
axis is present.

Our previous study (Wagemans et al., 1990) showed
that skewed single symmetry is very hard to detect. In
fact, preattentive detection of regularity was completely
destroyed by skewing (these dot patterns look random at
first sight). Subsequently, we have used SS as a means
of investigating orientational effects and component
processes in symmetry detection without the confound-
ing of two orientations (axis and virtual lines) and the
cooperation of two stages (global axis selection and local

point-by-point evaluation) that are clearly present in BS
(Wagemans, Van Gool, & d’Ydewalle, in press).

However, a fundamental weakness of those studies
with respect to the normal process of preattentive sym-
metry detection was that the experimental paradigm
forced the subjects to search for a particular regularity
(or a dot disturbing it) consciously, yielding very long
search times (even up to 20 or 30 sec). To investigate
the role of these higher order relations more quantita-
tively in a paradigm measuring fast symmetry detection
was our principal aim in the experiment reported here.
Following Julesz’s (1981) operational definition, the re-
quirement of the level of the process being measured
(preattentive vs. attentive) has been met by presenting
the dot patterns tachistoscopically (100 msec) in a dis-
crimination task (random vs. symmetric). The require-
ment of quantitative detail has been met by using differ-
ent kinds of symmetries. As indicated above, it appears
that the identity and number of higher order regularities
can be varied sufficiently by skewing single, double, and
quadruple symmetries.



Figure 6. Example of a dot pattern with quadruple symmetry after 45° clockwise skewing about the left axis.
As a result, there is skewed symmetry about the left and horizontal axes and perfect double symmetry about
intermediate axes. In the second column, the first-order regularities for the four axes are shown, whereas the
third column indicates that there is only bootstrapping based on the second-order regularities for the two axes
with perfect symmetry. In addition, superposition yields rectangles for the perfect double symmetry and parallelo-
grams for the skewed double symmetry.

METHOD

Subjects

Four subjects participated in the experiment: the first author and
3 naive observers who were paid about $4 US per hour. All ob-
servers had normal or corrected-to-normal vision. Because of the
very large number of trials and conditions (see the Procedure sec-
tion), only a few well-motivated subjects (subjects who were will-
ing to return several times) could be run. The expectation was that
the processes under investigation are so basic as to allow no cogni-
tive biases or large interindividual differences. Previous research
has indicated that despite overall differences between trained and
untrained subjects, the same relative detectabilities of different kinds
of symmetries are usually obtained (Locher & Wagemans, 1991;
Royer, 1981; Wagemans et al., in press).

Task

The subjects received a large number of random and symmetric
dot patterns, randomly intermixed, which had to be judged as regular
or not (the notion of ‘‘symmetry’’ was avoided in the instructions
to the subjects, because naive observers tend to equate this with
perfect bilateral symmetry only). The yes/no answers had to be made
as accurately as possible. There was no time pressure, except that
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the dot patterns were presented only for a fixed small amount of
time (i.e., 100 msec).

Stimuli

The random dots used to generate the symmetric dot patterns were
only partly random. There were three basic constraints. First, the
random dots had to fall within a global circular area defined around
the center of the screen with a diameter of 10 cm, and they had
to be located so that their symmetrically positioned partners also
fell within the same circular area. Second, the random dots had
to be located outside a circular area defined locally around the other
dots in the pattern (both the random and the symmetric ones) with
a diameter of 1 cm. The third constraint on the locations of the ran-
dom dots was that they had to be distributed equally within the to-
tal area. This was realized through the location of an equal number
of dots (i.e., eight) within each of the three annuli that resulted from
four concentric circles defined around the middle of the screen. The
radii of two of the four circles were already fixed by the first two
constraints; the outermost circle had a radius of 5 cm, and the in-
nermost circle had a radius of 0.5 cm. The remainder of the whole
circular area was divided into three annuli with almost equal areas
by two circles with radii of 2.75 and 4.25 cm.
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Table 1
Enumeration of Available Virtual Quadrangles in All Kinds
of Symmetry Generated by Combining Different Numbers and Orientation of Axes
with Different Skewing Angles

Symmetric Nonsymmetric

Trapezoids Rectangles Trapezoids Parallelograms
Perfect quadruple 460 46
Skewed quadruple 260 2-6 260 26
Perfect double 260 2°6
Skewed double 260 26
Perfect single 66
Skewed single 66

Note—Underlined numbers indicate that they are pairwise identical. As with all nth-order regularities
with n > 2, we do not know whether they are used by our visual system, but they are available

information.

Apart from the first constraint, which defined the visual angle
of the stimulus field, the constraints on the random selection of dot
locations were introduced to prevent special grouping effects.
Without the second constraint, some dot clusters might have arisen
that would have been processed as a single higher order feature.
Although this feature clustering is in itself an interesting topic for
study (see, e.g., Jenkins, 1983; Locher & Wagemans, 1991; Wage-
mars et al., 1990), it would have been a confounding factor in this
experiment. Without the third constraint, many patterns would have
been generated with an almost completely empty inner zone and
most dots constituting an imaginary outer contour; the restriction
on the interdot distances forces the dot-selection process to locate
the dots in the periphery of the circular area, because this max-
imizes the chance that a dot does not fall within the local area around
another dot. Again, this imaginary contour is in itself an interest-
ing topic for study (see, e.g., Barlow & Reeves, 1979; Wagemans
et al., 1990), but it was not the focus of the present experiment.
In our experiment, the special grouping effects could have func-
tioned as cues to distinguish symmetric from random dot patterns
and were, therefore, avoided.

In summary, the symmetric dot patterns were generated accord-
ding to the following procedure. First, a random dot was selected
within the first annulus (defined as the region between the circle
with radius 0.5 cm and the circle with radius 2.75 cm). This ran-
dom dot was projected according to the kind of symmetry one wanted
to generate (e.g., reflected seven times for a quadruple symmetry).
Next, it was checked to see whether the projected dot(s) was (were)
not too close to the original dot (or the other projected dots). Then,
a second random dot was selected, this time in the second annulus
(defined as the region between the circle with radius 2.75 cm and
the circle with radius 4.25 cm). Again, the location of this dot was
checked to ensure that it was outside the local area around an al-
ready selected dot. Then again, this random dot was projected ac-
cording to the appropriate symmetry rule and checked. A new dot
was selected randomly, this time in the third annulus, and so on
until 24 dots were located pseudorandomly and symmetrically in
the three annuli in the circular area.

When an SS had to be generated, a second phase was added to
this first phase of random dot selection and symmetric projection.
In accordance with one of six possible skewing rules to be followed,
a clockwise (CW) or counterclockwise (CCW) skewing of a par-
ticular angle (15°, 30°, or 45°) was performed about 2 particular
axis (V, H, L, and R). After this skewing, a final check was made
on the minimal interdot distances.

The general procedure for stimulus generation of the random dot
patterns was as similar to the one for the symmetric patterns as
it could be. The constraints on the randomization of the dot loca-
tions were the same. Now, 24 random dots were to be located in
the circular area with a diameter of 10 cm (8 dots in each annu-
lus). After every random generation of a possible dot location, a

check on the minimal interdot distances was made. The skewing
transformation was also applied to the random dot patterns, because
the circular area in which the dots were located (and to which the
subject’s attention had to be divided) was transformed to an ellip-
tic one in the case of SS. Its elongation measure and direction were
dependent on the angle and direction of the skewing and on the orien-
tation of the axis about which the skewing was applied. Work by
Lansky, Yakimoff, and their colleagues has shown that human ob-
servers are quite good at estimating the orientation of an elliptic
dot pattern (e.g., Lansky, Yakimoff, & Radil, 1987; Lansky,
Yakimoff, Radil, & Mitrani, 1989). Therefore, in order for the form
of the stimulus zone not to be a potential cue for the decision on
the randomness or regularity of the pattern constituted by the dots
located in the zone, the random patterns had the same stimulus fields
as did their symmetric counterparts.

Apparatus

The dot patterns were generated by a C program on a SUN-3
Workstation with a Motorola MC 68881 floating-point board.
Stimulus presentation was automated by another C program on an
IBM-AT-compatible with a Phoenix 80386 processor and a VISTA
card. The stimuli were presented on a raster display with high tem-
poral and spatial resolution (BARCO, Type CDCT-6351B) used
in PAL mode with a 50-Hz temporal resolution and a 740 x 578
spatial resolution, noninterlaced, as black dots against a homogene-
ous gray background. The experimental room was completely dar-
kened, and screen borders were covered by black cardboard with
a circular aperture to reduce orientational cues. The subjects were
seated at a distance of 114 cm with their eyes in front of the mid-
dle of the screen. At that distance, the size of the individual dots
and the whole patterns subtended 5.7’ and 5°, respectively.
Forehead- and chinrests were used to prevent head rotations.

Procedure

The experiment was designed as a signal-detection experiment.
The “‘signal’’ to be detected was symmetry or, as it was explained
to the subjects, regularity. Before starting the experiment, the sub-
jects received a rather extensive introduction to what was meant
by ‘‘regularity.’’ Examples of each of the different symmetries were
shown (on paper), and time was given to explore the dot patterns
sufficiently to detect the presence of single or multiple axes. They
were then instructed that they would see many such patterns, mixed
with random dot patterns and presented only very briefly. The task
was described as a forced choice in response to the question, ‘Is
it a regular pattern or not?’’—which had to be answered to the best
of their abilities. Response fingers were chosen by the subjects.
All 4 subjects answered “‘yes’’ (regular) with the right index finger
and ‘‘no”’ (random) with the left index finger.

A trial consisted of the following sequence of events. First, a
fixation pattern was presented for 500 msec. This was a black *‘ +”’



at the center of the imaginary circle on a homogeneous gray back-
ground. It allowed the subject to fixate the center of the dot pattern
when it was presented immediately thereafter. Second, a dot pat-
tern was presented for 100 msec. This was a collection of 24 ran-
dom or symmetric black dots on a homogeneous gray background
falling within an imaginary circle or ellipse centered at the middle
of the screen (see Stimuli section above). Immediately following
this 100-msec dot pattern, a masking pattern was presented for
1,500 msec. This was a similar black-on-gray collection of 36 ran-
dom dots sufficiently large to cover the stimulus pattern completely.
A set of 10 masking patterns was used. After each stimulus pat-
tern, one of these 10 masks was randomly selected. The reason why
the same mask was not used after all stimuli is that it would thereby
have lost its masking power. From the moment the mask was on,
the subject could respond by pressing one of the two buttons on
a response panel connected to the PC configuration used for the
stimulus presentation. Each answer was instantaneously evaluated
by the computer so that immediate feedback could be given. A cor-
rect answer was followed by a 300-msec high-frequency tone
(750 Hz), a false response by a 500-msec low-frequency tone
(100 Hz). The only reason why this feedback was provided was
to keep the motivation and arousal of the subjects at an optimal level.
As a result of this feedback, some learning probably occurred, es-
pecially for the naive observers. This potential secondary effect was
controlied for by randomizing trial and block orders across subjects.

Following the introductory session in which the concept of regular-
ity was explained and demonstrated and in which the task was
described, subjects received a practice session of three series of
158 trials. A practice series contained one symmetric and one ran-
dom dot pattern for each of the 79 kinds of symmetry. This odd
number is the result of combining three variables as orthogonally
as possible: (1) the number of axes (three levels, viz., one, two,
and four); (2) the orientation of the axis (four levels when there
was one axis, viz., V, H, L, and R; two levels when there were
two axes, viz., V-H and L-R; and only one level when there were
four axes); and (3) the skewing angle (seven levels, viz., 15°, 30°,
and 45°, both CW and CCW, in addition to 0° skewing, i.e., yield-
ing perfect symmetry).

Although this nonorthogonal combination complicated the data
analysis somewhat, we considered this to be a smalier disadvan-
tage than the alternative solution, which would have been to present
four blocks of perfect quadruple symmetry and two blocks of each
type of double symmetry. Because the prediction was that these
were the easier conditions, presenting them more than once would
have left room for a more mundane explanation for that finding,
in that these types of symmetry could have been learned better than
the other conditions.

The data for the practice stimuli were not analyzed. The only
reason for the practice session was to allow the subjects to get an
impression of the difficulty of the task (i.e., the short presentation
time} and to exercise the procedure {¢.g., the sequence of events
that defined a trial, the feedback, etc.). The same patterns were
not used in the experimental sessions.

Trials were presented in blocks of 210: Ten practice trials (differ-
ent from the experimental ones and not analyzed) preceded 100 ran-
dom and 100 symmetric experimental ones. The kind of symmetry
was constant within and changing between blocks. The order of
trials within a block and the order of blocks were randomized for
each subject separately. Following each block of 200 trials, the sub-
ject was informed about performance level (percent correct) for that
block, again to maintain motivation.

After each block, the subject could choose to continue or to quit.
They were aware of the large number of trials to be run (i.e., 17,064;
viz., 79 blocks of 200 experimental trials, together with the 3 X
158 trials from the practice sessions and the 79 X 10 practice trials
preceding the experimental blocks). This encouraged them to do
more than a few blocks each time they were in the lab. The sub-

MULTIPLE SKEWED SYMMETRY 421

jects were advised to take short breaks between the blocks. On the
average, subjects did 5-10 sessions of 7-15 blocks, spread over
a period of 4-7 days. The duration of the whole experiment (i.e.,
the introductory session, practice session, and 79 experimental
blocks) was about 13 h for each subject.

RESULTS

For each observer and condition, a fourfold detection
table was constructed from the responses. On the basis
of these raw data, several signal-detection measures such
as d’ were calculated. On the set of 4’ values for all con-
ditions and for the 4 subjects, an ANOVA was performed
to assess the differences in detectability between the differ-
ent kinds of symmetry. ANOV As on other measures, such
as raw hit and false-alarm rates, yielded similar conclu-
sions and will not be reported here.

The data points for the perfect multiple symmetries were
repeated for each axis orientation (i.e., perfect quadru-
ple symmetry was repeated four times, and both perfect
double symmetries twice each), so that the data could be
analyzed for the different conditions as an orthogonal com-
bination of three factors: number of axes (three levels:
four, two, and one), axis orientation (four levels: V, H,
L, and R), and skewing angle (seven levels: —45°, —30°,
—15°, 0°, 15°, 30°, and 45°). This ‘‘trick’’ has conse-
quences for the variability in the corresponding cells only
when the effects of axis orientation are analyzed. This
causes no serious problems, because orientation was of
secondary importance in this study. Moreover, several
alternative tests (e.g., in nested designs) with correct num-
bers of observations at each level have been performed
and have yielded very similar results.

In addition to this overall analysis, a posteriori com-
parisons (Tukey’s HSD tests) were done to evaluate all
pairwise differences for the main effects and at all levels
of each factor interacting with other factors. The results
for these follow-up tests will be summarized only descrip-
tively (all quantitative details can be provided on request).
Furthermore, a restricted number of a priori comparisons
(F and ¢ tests) were performed to test the specific predic-
tions of the model formulated above. Throughout, the
level of statistical significance was set at p < .05, un-
less reported otherwise.

Overview

All main effects and interactions are (at least margin-
ally) statistically significant. The average d' values for
the different kinds of symmetry and the results of the
ANOVA associated with them can be found in Tables 2
and 3, respectively. As can be seen, the detectability of
the symmetry decreases as the number of axes decreases,
as the orientation of the axis changes from V and H to
L and R, and as the skewing angle increases. However,
because of the significant interactions between these fac-
tors, one must be careful about interpreting these effects.
It appears, for example, that axis orientation and skew-
ing angle do not have an effect on the detectability of sym-
metry when there are four axes of symmetry.
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Table 2
Mean Detectability (d’) as a Function of Number of Axes,
Axis Orientation, and Skewing Angle

Skewing Angle

—-45° -30° —15° 0° 15° 30° 45° M
Number

4 4.57 4.55 4.65 5.09 4.76 4.52 4.54 4.67

2 2.30 3.20 3.90 4.60 3.9 3.19 2.36 3.36

1 0.51 1.06 2.48 3.40 2.64 0.99 0.82 1.70

Orientation

Vertical 2.52 3.42 3.85 4.81 4.09 2.85 2.70 3.46

Horizontal 2.63 3.00 3.61 4.51 3.83 3.23 2.67 3.35

Left 2.22 2.40 3.59 4.23 3.63 2.62 2.67 3.05

Right 2.47 2.92 3.65 391 3.65 291 2.24 3.11

M 2.46 2.93 3.67 4.37 3.80 2.90 2.57

Table 3
Results of Analysis of Variance on Detectability Scores (d')
Effect or Interaction df F p

Number of axes 2,6 103.55 0.00017
Axis orientation 39 3.72 0.054
Skewing angle 6,18 37.93 0.00000
Number of axes X axis orientation 6,18 2.68 0.049
Number of axes X skewing angle 12,36 13.66 0.00000
Axis orientation X skewing angle 18,54 1.81 0.048
Number of axes X axis orientation X skewing angle 35,108 1.45 0.073

To be able to judge what happens exactly with the higher
order interactions, the effects of skewing angle and axis
orientation on the detectability of the symmetry are shown
for each number of axes in Figure 7 (the top, middle, and
bottom rows represent the results for quadruple, double,
and single symmetry, respectively). In addition to the
results across all subjects (left column), the data for two
individuals (the first author and a naive subject) are shown
to give an idea of the interindividual variance (middle and
right columns, respectively). It appears that the basic
trends were very similar for the separate subjects.

Main Effects

Number of axes. Across all axis orientations and skew-
ing angles, symmetry is easier to detect with an increas-
ing number of axes. A posteriori comparisons showed all
pairwise differences to be significant: Quadruple sym-
metry was easier than double symmetry, which was eas-
ier than single symmetry.

Axis orientation. Although the main effect of axis
orientation was only marginally significant (p < .06), it
is interesting that the combined detectability for the two
main axes (V and H, d’ = 3.41) was somewhat higher
than the one for the two diagonal axes [L and R, d' =
3.08; F(1,3) = 7.75, p < .07].

Skewing angle. Most pairwise differences for this fac-
tor were significant, at least all those between two non-
subsequent levels (e.g., between 0° and 30°, CW or
CCW). An alternative way to assess the effect of skew-
ing angle is to use trend analysis. The quadratic trend was

the most reliable one, but there was a small quadratic com-
ponent added to it [F(1,3) = 239.94 and 11.00, respec-
tively]. In this case, this means that symmetry becomes
more difficult to detect, with increasing skewing angle,
both CW and CCW. The quadratic component was caused
by the fact that the decrease in detectability from 30° to
45° skewing angles was less than expected on the basis
of linearity (probably because of orientational effects of
the virtual lines resulting from combining axis orienta-
tion with skewing angle; see Wagemans et al., in press).

Interactions

Number of axes X axis orientation. This interaction
means that, averaged across perfect and skewed sym-
metries, the orientation of the axis did not matter for quad-
ruple symmetry [F(1,3) < 1], whereas a clear orienta-
tional effect was found for double symmetry [F(1,3) =
69.99], with the main axes (d' = 3.64) yielding higher
detectability than the oblique axes (d’ = 3.08). For sin-
gle symmetry, the orientational rank ordering was simi-
lar (single V and single H, d' = 1.95, vs. single L and
single R, d' = 1.45), but it does not approach statistical
significance [F(1,3) = 2.23, p > .20].

Number of axes X skewing angle. As can be inferred
from Table 2, this interaction means that, averaged across
axis orientations, the skewing angle did not matter for
quadruple symmetry (p > .15), whereas the effect of
skewing on the detectability of symmetry became increas-
ingly more dramatic for the double and the single sym-
metries [F(1,3) = 3.27, 19.66, and 61.48, respectively].
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When only one axis of symmetry was present in a pat-
tern, skewing about it by a large angle (i.e., 30° or 45°)
reduced the detectability considerably (d' = 0.84).

Axis orientation X skewing angle. The pattern of
results for this interaction in Table 2 is complex, and its
nature is difficult to interpret on the basis of a posteriori
comparisons. It seems as if the differences between the
small skewing angles (0° + 15°) are more pronounced
for the patterns with a V or an H axis than for the oblique
orientations, whereas the reverse is the case for the large
skewing angles (+30° and 45°).

Number of axes X axis orientation x skewing an-
gle. Because this highest order interaction was only mar-
ginally significant (p < .08), a posteriori comparisons
cannot be used to specify the nature of the effect.
Nevertheless, some a priori comparisons associated with
it are crucial for the main purpose of this experiment—
namely, to test the predictions of the model of symmetry
detection described above. For example, the detectability
of perfect double symmetries was exactly the same as that
for skewed quadruple symmetries (d’ = 4.60). Further-
more, although perfect single symmetries (d' = 3.40)
were equally as detectable as skewed double ones [d' =
3.16; 1(110) < 1, when averaged across axis orientations],
perfect single V symmetry (d’ = 4.44) was easier than
skewed double V-H symmetry [d’ = 3.43; #50) = 2.94}.

DISCUSSION

Summary and Model Predictions

In general, the effects of multiple axes and skewing in-
teracted as expected. Skewing had an increasingly larger
effect on the detectability of symmetry for a decreasing
number of axes. In other words, quadruple symmetry was
not affected by skewing, whereas double and single sym-
metry became much harder to detect. Similarly, the third
factor manipulated in this experiment (i.e., axis orienta-
tion) had no effect for symmetry about four axes, whereas
the classically found orientational effects (V and H ad-
vantage) were replicated for double and (to a lesser ex-
tent) single symmetry.

This pattern of results corroborates the principles of our
account presented above quite well (orientational effects
could be incorporated). In single symmetry, only first-
order relations between symmetric elements remain af-
ter skewing (see Figure 2). Although the virtual lines con-
necting the symmetric elements pairwise still have orien-
tational uniformity and midpoint collinearity, as noticed
by Jenkins (1983), the detectability drops considerably.
Apparently, the virtual lines connecting nonsymmetric ele-
ments are also important. In skewed single symmetry,
these are all different, because distances and angles are
not invariant under skewing (which is an affine transfor-
mation), and the grouping based on them does not con-
firm the symmetry. In double symmetry, some second-
order relations between pairs of virtual lines (represented
by correlation quadrangles) remain after skewing (see
Figure 4). More specifically, although the virtual sym-
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metric trapezoids disappear, some virtual parallelograms
are created by skewing the virtual rectangles. As a result
of this, the detectability of double symmetry is decreased
by skewing, but it remains quite high. In quadruple sym-
metry, the number of higher order relations remaining
after skewing is so high (see Figure 6) that the regularity
automatically emerges out of the normal grouping
processes based on them. In other words, the symmetry
is very salient and easy to detect.

Toward an Invariants-Based
Bootstrapping Model

Although the general ideas behind this framework for
symmetry detection seem to be psychologically valid,
some specific results are not consonant with the model’s
implications. As noted above, skewed quadruple sym-
metry is not easier to detect than perfect double symmetry.
Nevertheless, the former has additional virtual parallelo-
grams that are absent in the latter. We have suggested
that this is of no additional help, because the number of
second-order relations is already high enough. However,
alternative explanations are possible. For example, it
might also be the case that virtual parallelograms are less
strong correlation quadrangles than virtual symmetric
trapezoids are. At first sight, this suggestion seems to be
corroborated by the fact that skewed double symmetry
(with parallelograms) is harder to detect than perfect sin-
gle symmetry (with symmetric trapezoids), at least about
a V axis, but the different numbers involved (i.e., 6 vs.
66) appear to offer a better ground for the latter finding.

The main difference between the two types of correla-
tion quadrangles is the degree in which the grouping can
spread along the axis. Symmetric trapezoids facilitate each
other because the angles between the parallel sides and
the virtual lines connecting them with the next parallel
line along the axis are pairwise identical (i.e., the sym-
metric pair of sides of the trapezoid). Parallelograms do
not have this property; the angles between the parallel
sides and the virtual lines connecting them with the next
parallel line along the axis are not pairwise identical (i.e.,
the virtual quadrangles connecting the virtual parallelo-
grams are nonsymmetric trapezoids).

Therefore, our account can be focused somewhat more,
in that it is not as much the number of correlation quad-
rangles that determines the saliency of a regularity as it
is the degree to which they facilitate or bootstrap each
other. This is so because each of the parallel virtual lines
plays a role in two subsequent quadrangles along the axis
of symmetry, whereas this is not the case in parallelo-
grams (e.g., in skewed double symmetry; see Figure 4).

One approach to specifying this bootstrapping based on
invariant second-order relations is to develop a mathe-
matical function expressing the perceptual cost of a par-
ticular grouping. This function would incorporate two
terms, corresponding with first- and second-order rela-
tions. In addition, a stochastic algorithm based on simu-
lated annealing can then be formulated to search for a
global optimum minimizing this cost function. Several



parameters in the cost function and the simulated anneal-
ing algorithm could take care that the algorithm converges
to a solution more rapidly if more higher order regulari-
ties are present and more invariants-based bootstrapping
takes place (see the Appendix).

In addition, making use of a computer implementation,
one could try to simulate the basic perceptual findings.
This work would allow us to propose a real model of a
general mechanism for symmetry detection, whereas the
study presented here only suggests some of the princi-
ples to be incorporated (for an interesting view on the re-
lation between models and mechanisms, see Uttal, 1990).
The results of such an analysis will be reported elsewhere
(Wagemans, Van Horebeek, Van Gool, & Swinnen,
1991). In that study, we will also show that similar boot-
strapping effects based on invariant second-order relations
seem to underly other phenomena of perceptual group-
ing and regularity detection. For example, processes such
as detecting global structure in vector patterns (see, €.g.,
Caelli & Dodwell, 1982, 1984; Moraglia, 1989) and solv-
ing correspondence problems in stereo (see Akerstrom
& Todd, 1988) and apparent motion (see Werkhoven,
Snippe, & Koenderink, 1990) seem to rely on the same
mechanisms.
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NOTES

1. The concept of virtual lines stems from computational models try-
ing to represent perceptual groupings between elements in a display.
For example, Stevens (1978) has introduced the notion to represent a
perceived local pairing in Glass patterns. Smits and Vos (1986) have
used virtual lines as primitives to detect contours and curves in dot pat-
terns. The interesting property of these representational primitives is
based on the fact that they explicitly possess attributes (i.e., length and
orientation) that are only implicitly present in the input. However, one
does not have to commit oneself to this computational/representational
approach to believe in the psychological relevance of physical charac-
teristics in the display (e.g., distances between dots). In this article, we
are using the notion of virtual lines as a shorthand 1o refer to the pairwise
relative positions of dots in a dot pattern (i.e., distance and orientation).

2. Our use of first-, second-, and higher order regularity is different
from Julesz’s classical use of first-, second-, and higher order statistics
in texture discrimination (for a clear review, see, e.g., Julesz, 1981).
What we mean by first-order is all properties of line segments (i.e.,
two connected dots), and by second-order all properties of quadrangles
(i.e., two connected pairs of line segments). For example, orientational
uniformity (Jenkins, 1983) is referred to as a first-order regularity,
whereas regularity of relations between two pairs of dots is called
second-order.

3. The virtual lines between two parallel virtual lines do not have the
same absolute orientation; they only have the same orientation relative
to the axis of symmetry. This fact is indicated by pairwise identical an-
gles in the virnal quadrangle representing the two pairs of virtual lines.
To denote the relative nature of this equality, the notion of correlation
is used.

4. Of course, the total number of possible virtual quadrangles formed
between four elements is much larger still. Here, only the ‘‘correct™
ones (i.e., those between two symmetric dot pairs) are counted. When
our visual system starts to process a dot pattern, it is totally unaware
of the “‘correct’” groupings. However, we suppose that, out of the ini-
tial stage in which all virtual-line orientations are equally likely, some
structure gradually emerges that facilitates the correct connections and/or
inhibits all spurious ones. We think our research has something to say
about this mechanism, but we postpone our speculations on this point
to the Discussion section. All in all, despite the fact that our system
might not use all of these 66 virtual quadrangles, they are at least avail-
able to be detected or picked up.

5. Again, we do not know whether this additional regularity is used
by our mechanism, but it is potential information (see Note 4).

APPENDIX

In this Appendix, we will briefly mention some of the aspects
of our mathematical cost or energy function expressing the lack
of regularity or ‘‘goodness’’ in a dot pattern. This function is
then minimized with a simulated annealing technique. Let A be
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A

Figure Al. First-order (A) and second-order (B) relations in terms
of virtual lines and quadrangles, respectively.

a set of elements representing a pattern of dots {i,j,k, ...}.
With every interpretation x—that is, a set of couples of elements
in A—an energy value f(x) is associated. Although several al-
ternative functions are currently under investigation, all take the
relative positioning of point pairs (represented by virtual lines)
into account. Previously, models working with relative orien-
tations of such line elements have been proposed in the litera-
ture (e.g., Smits & Vos, 1986; Stevens, 1978). We have referred
to such relationships as first-order. Here, we introduce energy
functions carrying second-order terms.

Assuming two virtual lines, say (i,j) and (k,/), lying in
each other’s neighborhood (see Figure Al, panel A), the first-
order information corresponds to relations between orienta-
tions of individual virtual lines—for example, orientation vari-
ance or, in our current implementation, orientation differences
[ Y. jy— V¥, 1y | In the different versions of the energy functions,
terms of the form )3(e|‘°<‘~")“‘("'“I —1) are used, expressing good
continuation or parallelism, depending on the stimulus type (e.g.,
Glass patterns, symmetric patterns, curvilinearity, etc.). The sit-
uation for the second-order term is depicted in Figure Al,
panel B. The angles ¢ cannot be defined unless a virtual line
pair has been selected (hence, second-order). They are defined
relative to the angles y and always correspond to the smallest
angle enclosed between the virtual lines. The second-order term
in our current version takes the form Ee|¢(i.k)—¢(i.l)|+|¢(k,z)—¢(u)|_
For both first- and second-order terms, only restricted neighbor-
hoods of virtual lines are taken into account. In addition to increas-
ing the algorithm’s efficiency, this has a clearcut psychological
underpinning (see, e.g., Barlow & Reeves, 1979; Jenkins, 1982).



The optimization procedure then works as follows. Given a
pattern of virtual lines x; at time ¢, (1) generate a new candidate
pattern y for x;+ by adding or removing a virtual line; (2) if
the energy value is lower, accept x;,; = y; otherwise accept the
candidate with a probability e U0 —fOVT: with T, a decreas-
ing row converging to 0.

It is useful to compare the process with the evolution in time
of a spinglass system. This is a model used in statistical physics
to study the global magnetization characteristics of some
materials in terms of the local interaction between the outer elec-
trons of each atom, represented by a vector, called spin (see,
e.g., Kirkpatrick, Gelatt, & Vecchi, 1983). With each couple
of points that can be connected, a spin can be associated with
two possible states (signs): Active (+1) means that the connec-
tion is made; passive (—1) denotes that it is not made. It is es-
sential that the spins can have a range of values between +1
and —1 so that the probability that a spin may change its sigh
is proportional to its value. For the active spins representing
the connections made, this value is proportional to the resistance
of the neighborhood on the connection (cf. the first term in the
energy function), whereas for the passive spins, this value
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denotes the potential support of the neighborhood for this con-
nection if it would be made (cf. the second term in the energy
function).

At this moment, this idea is implemented in a sequential al-
gorithm. To compute x,. 1, it is attempted as much as possible
to make the most interesting changes first in the generation
process. The latter then works as follows: (1) With probability
D, select two points randomly (in fact, one completely random
point, and a second one as the closest neighbor in a region de-
fined by two random corners, one between 0 and 2x, and the
other between /8 and x/4); (2) with probability g, add the most
promising connection (i.e., the highest passive spin); and
(3) with probability 1 —p —q, remove the most uninteresting con-
nection.

We are currently testing the energy function and the algorithm
to investigate its plausibility as a grouping or regularity-detection
mechanism. In addition, we will start with a parallel implemen-
tation of it by means of transputers.

(Manuscript received August 8, 1990;
revision accepted for publication May 21, 1991.)





