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METHODS & DESIGNS

A blueprint of ELI: A new method for eliciting
subjective probability distributions

JELLE VAN LENTHE
University of Groningen, Groningen, The Netherlands

A blueprint of a new method for eliciting uncertain knowledge about continuous quantities
is presented. The direct realization of a proper scoring rule in a graphically oriented interactive
computer program is one of the central features of the new elicitation methodology. Uncertain
knowledge is internally represented through subjective probability distributions. However, in
its interaction with assessors, the elicitation method uses a score representation. A proper scor
ing rule is applied to transform probability density functions into score functions. In order to
study its merits, central ideas for the new method were implemented in an experimental version
of the elicitation technique ELI. The results were promising and encouraged further develop
ment of the technique.

Decision and risk analysts often need information about
certain quantities to perform their analyses. When there
are insufficient data to determine the quantities of interest
objectively, they often call on human subjects as a source
of information. Unfortunately, human knowledge nor
mally is uncertain and more qualitative than quantitative
in character. The analysts, on the other hand, usually
prefer their input data in a quantitative mode. For this
reason, the formalization of uncertain knowledge is an
important topic in decision theory, in risk analysis, and
in Bayesian statistics. Most research deals with uncertainty
related to a particular event (e.g., the likelihood that X
will be elected president). Less attention has been paid
to the subject of the present paper, uncertainty related to
a continuous quantity (e.g., the proportion of the electorate
that will vote for Y as president). Probability distribu
tions are one of the most commonly used representations
of uncertain knowledge about a continuous quantity. The
mental transformation of subjective knowledge in a prob
ability distribution appears to be a difficult task, and sev
eral elicitation techniques that support the specification
of subjective probability distributions have been proposed.
From the discussion below, it will appear that the quality
of the elicitation techniques is often disappointing.

The purpose of this paper is to develop a new method
for eliciting uncertain knowledge that will meet the funda-
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mental quality requirements to a more satisfactory degree.
The next section of the paper provides a discussion of sub
jective probability distributions. It is followed by a review
of the quality of elicitation techniques, and the conclu
sion will be that a new elicitation methodology is needed.
The subsequent section is devoted to the development of
a blueprint of a new elicitation method. Proper scoring
rules playa central role in the blueprint. In the following
section, the choice for a particular proper scoring rule
is discussed. Next, it will be demonstrated how the
blueprint is realized in a first experimental version of the
elicitation technique ELI.

Subjective Probability Distributions
Uncertain knowledge about continuous quantities is

usually represented through a probability distribution. The
expression subjective probability distribution (SPD) is
used to emphasize that the distribution reflects the sub
jective beliefs of a human subject. Figure 1 presents two
SPD examples in a probability density mode: a discrete
SPD A and a continuous SPD B. The top of the density
function reflects the best guess, and the dispersion of the
function corresponds with the uncertainty about the best
guess. So, the steep SPD A represents knowledge that is
relatively certain, whereas the flat SPD B represents
knowledge that is much more uncertain. Throughout this
paper, especially in the illustrative examples, a propor
tion or percentage will be the quantity of interest.

For decision or risk analysts, it is important to consider
the quality of SPDs because it determines to a large ex
tent the value of their analyses. One could argue that SPDs
are merely formal expressions of what an assessor thinks
or knows and that SPDs cannot be judged as right or
wrong. Wallsten and Budescu (1983) demonstrated that
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Density

Figure 1. A steep SPD A representing subjective knowledge about
a proportion that is quite certain and a flat SPD B representing
knowledge that is much more uncertain.

ask for probabilities or values. The probability-oriented
methods require assessors to assign probabilities to fixed
values of the continuous quantity. For example, after sub
dividing the range of possible values, assessors are re
quested to assign their subjective probabilities to the in
tervals. This histogram method yields discrete density
functions like, for example, that depicted for SPD A in
Figure 1. Value-oriented methods require the subject to
give values for fixed probabilities. The percentile method
is such a value-oriented method. It asks for specific per
centile points, usually the Ist, 5th, 25th, 50th, 75th, 95th,
and 99th percentile. With indirect techniques, assessors
are usually requested to consider alternatives. For exam
ple, they are asked to choose between bets or are required
to make paired comparisons. More complete classifica
tions, together with detailed descriptions of the elicitation
techniques, are given by, among others, Schutt (1981),
Spetzler and Stael von Holstein (1975), and Van Steen
and Oortman Gerlings (1988).

Reviews of evaluation and comparison studies reveal
that different techniques elicit different distributions
(Lichtenstein et al., 1982; Ludke, Stauss, & Gustafson,
1977; Van Steen & Oortman Gerlings, 1988; Von Winter
feldt & Edwards, 1986). Given this state of the art, which
technique and which distributions should be preferred?
Schutt (1981) explored the practical usefulness of a large
number of elicitation techniques. Generally, direct tech
niques seem to be more efficient than indirect techniques,
because the procedures are rather straightforward and in
expensive and do not require much time. Unfortunately,
the straightforward direct procedures do not automatically
constitute assessment tasks that are easy for the assessors.
On the contrary, direct techniques, which usually require
values or probabilities as answers, seem to be difficult
for statistically naive assessors. On the average, indirect
techniques are less efficient but, at the same time, require
hardly any statistical knowledge (usually, assessors are
asked to consider alternatives).

The quality of resulting SPDs is another, and probably
more important, requirement for elicitation techniques.
From the recurrent observation of poor SPD quality, one
might conclude that most elicitation techniques apparently
are inadequate. Surprisingly little attention is paid to the
possibility of method-induced bias-that is, that poor SPD
quality originates from the particular elicitation technique
used (Fischer, 1982; Hogarth, 1980; Lourens, 1984).
More often, cognitive-induced biases are held to be
responsible. For example, Koriat, Lichtenstein, and Fisch
hoff (1980) showed that overconfidence might originate
from the tendency to selectively focus on evidence sup
porting a best guess and disregard evidence contradicting
it. Others have demonstrated item-induced biases and
shown, for example, that general knowledge questions fre
quently produce overconfidence (Ronis & Yates, 1987;
Wright & Wisudha, 1982). In our opinion, however, the
question of method-induced biases is basic. Only after a
thorough examination of method-induced biases is it pos
sible to draw unambiguous conclusions about cognitive
and item-induced biases.
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SPD assessment is much like other forms of psychologi
cal measurement, and they claimed that SPDs should be
judged on the criteria of reliability and validity. The reli
ability of SPDs can be determined by assessing their sta
bility in time and their consistency across methods. Strictly
speaking, an SPD is valid if it accurately reflects the un
certain knowledge of a person. It is difficult to examine
this internal validity. From a pragmatic point of view,
it is also important that SPDs correspond to events in the
external world. This external validity of SPDs can be de
termined afterwards, when actual values are available.

From previous research it is known that, in general,
the quality of SPDs is poor. There has been relatively lit
tle research dealing with the problem of reliability. The
few available data suggest that SPDs are only moderately
reliable (Lourens, 1984; Terlouw, 1989; Wallsten &
Budescu, 1983). Much more is known about the external
validity of SPDs. Numerous studies have shown that as
sessors display a systematic overconfidence bias. Their
SPDs tend to be too tight, and an unduly large percent
age of actual values fall into the extreme tails. For an ex
cellent review, see Lichtenstein, Fischhoff, and Phillips
(1982). Often the surprise index-that is, the percentage
of actual values falling outside the 98 % credibility inter
vals of the SPDs-is used to examine overconfidence. This
surprise index should be 2 %, but frequently values as high
as 30% or 40% are observed.

Elicitation Techniques
The assessment of SPDs appears to be a demanding task

for both statistically naive assessors and statistically expert
assessors. Therefore, several techniques that support the
specification of SPDs have been suggested. These elici
tation techniques range from methods that directly ask for
certain distribution characteristics to indirect procedures
with a less clear relationship between response and re
sulting distribution. Direct elicitation techniques typically



As far as the relative merits of elicitation techniques
are concerned, results have been contradictory (Lichten
steinet al., 1982; Seaver, Von Winterfeldt, & Edwards,
1978; Van Steen & Oortman Gerlings, 1988; Von Winter
feldt & Edwards, 1986). Each technique has problems of
its own, and there is apparently no elicitation technique
that meets to a sufficient degree the fundamental require
ments of reliability and validity of assessments and prac
tical usefulness of the technique. There exists overwhelm
ing evidence that, in particular, the elicitation technique
most commonly used with continuous quantities, the frac
tile method, yields overconfident assessments (Alpert &
Raiffa, 1982; Lichtenstein et al., 1982; Pickhardt & Wal
lace, 1974). The SPDs over the continuous quantities are
far too tight.

For the present, the question of which elicitation tech
nique should be used remains unanswered. There appar
ently exists no elicitation technique that results in suffi
ciently reliable and valid SPDs. In our opinion, poor SPD
quality is at least in part an artifact of the particular tech
niques used; equipped with a more appropriate elicitation
tool, assessors might prove to be more capable probability
estimators than has been suggested by research thus far.
For this reason, a new method for eliciting uncertain
knowledge will be proposed.

Blueprint For A New Elicitation Method
The research reported here was motivated by the desire

to devise an innovative elicitation method that would con
tribute to the assessment of reliable and valid SPDs and
that would meet the requirement of practical usefulness.
Several recommendations concerning appropriate tech
niques guided the search for a new elicitation methodology
(Hogarth, 1975, 1980; Huber, 1974; Lourens, 1984; Stael
von Holstein, 1970a; Terlouw, 1989). These recommen
dations can be summarized in two important guidelines.
First, the new method should be efficient and acceptable
for assessors with different (statistical) backgrounds. Sec
ond, proper scoring rules should playa regular and cen
tral role.

Cognitive studies suggest that the human being is a
selective and stepwise information-processing system with
limited capacity. An appropriate elicitation method there
fore should place a minimum of information-processing
demands on assessors' cognitiveresources (Hogarth, 1975).
It should allow these resources to be directed to the task
of estimating the uncertain quantity. A new elicitation
method ideally should combine the positive aspects of both
direct and indirect elicitation procedures. It should be
straightforward, inexpensive, and fast and, at the same
time, it should be easy to handle and not difficult to learn.
So, preferably the new technique should require assessors
to consider alternatives rather than to specify probabilities
or values.

In the early stages of the development, it was considered
to provide assessors with several probability distributions
and ask them to select the distribution corresponding most
closely with their subjective knowledge. To keep the as
sessment task as simple as possible, graphical displays of
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probability distributions were used. A computerized pro
cedure was considered an effective means for displaying
the graphs and for providing assessors with an appropriate
selection mechanism. As in Bayesian statistics, a particular
natural conjugate family of probability distributions (No
vick & Jackson, 1974) was chosen for representing uncer
tain knowledge about a particular uncertain quantity. The
beta distribution, for example, is the natural conjugate dis
tribution for proportions. Empirical research revealed that
this family is sufficiently rich and flexible for representing
uncertain knowledge about a proportion (Terlouw, 1989).

A disadvantage of the method described thus far is that
it still uses the concept of probability distributions. Psycho
logical studies of judgmental processes reveal that human
subjects have several shortcomings in acting as intuitive
statisticians (Hogarth, 1980;Kahneman, Slovic,& Tversky,
1982). So, in its interaction with assessors, the new elici
tation method preferably should not use statistical concepts
or methods. With the discussion of the second guideline,
the central role of proper scoring rules, it will become
clear how this suggestion was realized.

Scoring rules involve the computation of a score based
on the relation between the stated SPD and the value that
actually occurs. Scoring rules are important SPD assess
ment tools for several reasons (Murphy & Winkler, 1970;
Stael von Holstein, 1970a, 1970b; Van Naerssen, 1962;
Winkler, 1971, 1986). First, after an SPD is assessed and
the uncertain quantity of interest is observed, scoring rules
can be used to evaluate the accuracy of the SPD in terms
of an association between the stated SPD and the value
that actually occurs. Second, these accuracy scores can
be useful in a training situation for giving accuracy feed
back. Thus far, however, empirical evidence concerning
the effects of scoring-rule feedback is scarce and incom
plete (Fischer, 1982; Stael von Holstein, 1971, 1972).
Third, announcing the use of the class of proper (also
called reproducing) scoring rules might encourage asses
sors to be honest and careful during the specification of
an SPD. During the assessment task-that is, when actual
values are unknown-the expected rather than the actual
scores are of primary interest. With proper scoring rules,
assessors can maximize their expected score if their stated
SPD corresponds with their subjective beliefs.

Suppose, uncertain knowledge about a continuous quan
tity is formalized by asking assessors to assign their sub
jective probabilities to N mutually exclusive and collec
tively exhaustive outcomes (the histogram method); r,
denotes the assigned probability, and Pi denotes the true
subjective judgment for outcome i. Letr = (r"r2" .. , rN),
and let p = (PI ,P2, ... ,pN). The expected score is given
by ES(r,p) = '£ipiS(r,i) , in which S(r,t) denotes the
score for a stated r and the actual outcome t. A scoring
rule is proper if ES(P,p) ~ ES(r,p) for r e p, It is said
to be strictly proper when the expected score is maximized
if and only ifr=p, that is, ES(P,p) > ES(r,p) for r e p
(Murphy & Winkler, 1970; Van Naerssen, 1962). In this
way, internal validity of assessments might be enhanced
because assessors are encouraged to state SPDs that cor
respond with their subjective judgment.
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and

Which Proper Scoring Rule?
Another issue was to choose a proper scoring rule for

generating the score curves. Strictly proper scoring rules
that are well known and appealing because of their rela
tively simple structure are the logarithmic, the quadratic,
and the spherical scoring rule, which are, respectively,

(1)

(2)

(6)

SL(r,t) = Iogfr-),

SQ(r,t) = (1+2rt-E;rl)/2,

and

Ss(r,t) = rtl(E;dt s
. (3)

If t is the actual value of the interest and /(x) represents
the stated SPD, continuous analogues of the logarithmic,
quadratic, and spherical scoring rules are (Matheson &
Winkler, 1976), respectively,

SL(f,t) = log /(t), (4)

SQ(f,t) = (1+2/(t) -C",f2 (x )dx)/2, (5)

matches their uncertain knowledge and, at the same time,
they have to consider a corresponding score function to
examine possible consequences of their assessments. On
reflection, however, providing the score function might
be sufficient because it is merely another representation
of uncertain knowledge. Considering the problems that
assessors might have interpreting the density functions,
it is probably preferable to use the score representation
that might be more compatible with their capacities than
the usual probability representation. Another advantage
of using score functions instead of probability density
functions is that the score functions provide feedforward
information about possible consequences of the assess
ment. One of the recommendations found in the literature
is that assessors should reconsider their assessments
(Hogarth, 1975; Laurens, 1984;Terlouw, 1989). The feed
forward feature of the score function might stimulate as
sessors to reflect on the implications of their assessments
before making a final choice.

In short, in the new elicitation method, proper scoring
rules play the central role of generating score curves from
underlying probability density functions. In its interaction
with assessors, the new method uses these score curves
instead of the probability density functions. Assessors are
asked to consider several score curves, and they are pro
vided with a simple selection mechanism to choose the
curve that matches their subjectiveknowledge most closely.

Results of studies considering the relative merits of
proper scoring rules have been inconclusive (e.g., Jensen
& Peterson, 1973; Murphy & Winkler, 1970). Meteorol
ogists seem to favor the quadratic scoring rule-or the
Brierscore, as they call it-which can be decomposed into
several useful components (Yates, 1982, 1988). Others
have argued on both theoretical and empirical grounds
that the logarithmic scoring rule is superior (for a short
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Figure 2. The beta density fp.q(x) = xP-1(l-x)q-I/B{p,q) with°:S x :S 1, P > 0, q > 0, and beta function B(p,q) for p = 16
and q = 11, and its corresponding score function Sdfp.q,t) =

Ln(fp,q(t».
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Studies of proper scoring rules have been mainly theo
retical. In the rare occasion of a practical application, they
function merely as extra help and mainly for training pur
poses. In the new method, proper scoring rules should
playa more regular and central role. In particular, the
elicitation method should exploit the properness charac
teristic of proper scoring rules. So, the next problem was
to give proper scoring rules a central role in the graphi
cally oriented interactive computer program mentioned
before. Of course, one could try to instruct subjects to
consider a particular scoring rule while selecting an SPD,
but then things become very complicated. Let us assume
that an assessor is asked to estimate a particular propor
tion and that he/she answers by selecting the beta density
function/p,q(x) of Figure 2. Let us also assume that as
sessors are asked to consider the strictly proper logarith
mic scoring rule SLCfp,q,t) = in (fP,q(t», in which in
denotes the natural logarithm, for possible actual values
t. To appreciate the implications of the SPD in terms of
scores, the assessor should (1) grasp the statistics ofprob
ability density functions, (2) understand the mathematics
of the scoring rule, and (3) apply the scoring rule to the
selected SPD to calculate in advance several scores for
assumed actual values t. Figure 2 shows logarithmic
scores (0.0, 1.3, -3.2) for three assumed actual values
(0.43, 0.55, 0.85).

As stated before, an elicitation technique should place
a minimum of information-processing demands on the as
sessors' cognitive resources. So, the new method should
take care of necessary calculations. Hofstee (1987) sug
gested that a computer program would be an ideal means
for calculating, in advance, scores, not only for a few as
sumed actual values, but for all possible actual outcomes
t. The computerized technique could display these scores
graphically with a curve SL(fp,q,t) (see Figure 2). Un
fortunately, now assessors have to consider two graphi
cal displays. They have to select a density function that
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Figure 3. (A) A flat beta density and its transformations accord
ing to the ranked probability, the logarithmic, the quadratic, and
the spherical scoring rule. (B) A steep beta density and its trans
formations according to the scoring rules of Figure 3A.

®

to make more flat assessments only because they want to
avoid negative scores, in which case, the method would
operate like the Alpert and Raiffa (1982) instruction to
"spread out those distributions." Fischer (1982) observed
that logarithmic scoring rule payoffs reduced only the ten
dency to use zero probabilities, which in turn led to an
improvement on only one dependent criterium variable,
the logarithmic score itself. He found no improvement
on any other quality criteria (e.g., the spherical scoring

review see, e.g., Stael von Holstein, 1970a, 1970b).
Stael von Holstein (1970b, 1977) also introduced the re
quirement of sensitivity to distance-that is, a scoring rule
should reward putting density mass near the actual value.
The ranked probability score

SR(j,t) = L,.,<F(x)Ydx + J;""(1-F(x)Ydx, (7)

with F(x) = e~ j(y)dy, appears to meet this requirement.
Jensen and Peterson (1973) observed that linear transfor
mations of proper scoring rules-the properness character
istic remains with a linear transformation with a positive
multiplicativeconstant-had a larger effect than the partic
ular typeof proper scoring rule. For example, scoring rules
containing both positive and negative scores appeared to
induce suboptimal strategies. Unfortunately, research con
cerning the relative merits of different scoring rules is
almost completely restricted to the case of two possible
events, and it appears to be difficult to generalize the re
sultsbeyondthe two-statecase (Murphy& Winkler, 1970).

Figures 3A and 3B present a flat and a steep beta den
sity function, respectively. Both SPDs are transformed
according to four proper scoring rules: the logarithmic,
the quadratic, the spherical, and the ranked probability
scoring rule. The first three rules were transformed
linearly in a manner that would (1) yield zero scores for
a uniform distribution and (2) allow the score curves to
be considered on about the same score scale. Inspection
of the score curves reveals that none of the scoring rules
is sensitive to small deviations of the actual values from
the best guess. Important differences arise for the tails
of the distributions. The logarithmic scoring rule appears
to be especially sensitive in the tail areas. For example,
an actual value slightly smaller than the lower bound can
result in a highly negative score.

At this stage, it was decided to use the logarithmic rule
for generating score curves because it is conceptually as
well as computationally the most simple scoring rule. The
score for an actual value t depends only on the density
associated with the actual outcome and, unlike the other
above-mentioned proper scoring rule, the logarithmic rule
does not require integral calculus. Generating curves with
other than logarithmic scoring rules is more laborious,
which might be a problem for on-line graphical presen
tation of the score functions. Besides, the logarithmic
transformation of beta density functions provides a con
venient operationalization for the concepts of lower and
upper bound. The ignorance assessment of the uniform
beta density always results in a zero score. So, the zero
score points of the score curve, which correspond with
density 1, define quite naturally a lower and an upper
bound. Actual values outside the interval between lower
and upper bound result in scores that are worse than the
zero scores of the ignorance strategy of assessing a uni
form distribution.

There are also arguments against the use of the logarith
mic scoring rule. First, one might argue that its simplicity
is also a disadvantage and that an appropriate scoring rule
should consider the entire distribution. Second, it might
be that the logarithmic scoring rule stimulates assessors
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Figure 4. Example of an ELI instruction screen. With the dis
played curve, assessors can indicate their best guess as well as their
uncertainty.

The Best Guess correspands with the top of the cur\lt aKl is indicated with
the central dotted vertical line in the diagrall. FurtherllOre, it is printed
out on the left of the screen (Best Guess: 2' x),

The Best Guess can be indicated by shifting the curve (and the Best Guess)
to the right or to the left with the '~key' or the '+ key' respectively
IIove the curve to 3D'/', then to 20x, and finally back to 26x,

'POOl'
Step SIZe : •

'M"1

Lower bound : 11 x
Best guess: 26 x
Upper bound: 47 X

ing rules. The computer program takes care of necessary
calculations. The only thing assessors have to do is to se
lect, from a large number of alternatives, the score curve
corresponding most closely to their uncertain knowledge.

Each score curve represents a best guess, as well as
the uncertainty about the best guess (see Figure 4). The
best guess corresponds to the top of the score curve, and
the uncertainty is related to the dispersion of the curve.
With the preliminary ELI version, assessors can choose
from a grid of 99 x 24 score curves that correspond to a
predetermined set of 99 x 24 beta density functions. The
best guess can take on 99 values (.01, .02, ... , .99); for
each best guess, there are 24 degrees of uncertainty. The
interactive computer program provides a simple mecha
nism for selecting a particular curve from the set of 99 X24
score curves. The left-arrow and right-arrow keys con
trol the horizontal position of the curve and can be used
for choosing a best guess. For example, pressing the left
arrow key erases the current curve and results immedi
ately in a new curve with a best guess that is decreased
by .01. Holding the left-arrow key has an animation ef
fect: the curve walks to the left.

The uncertainty about the best guess corresponds with
the steepness of the curve and is explained to assessors
in terms of a lower and an upper bound-that is, what
they think is the lowest and the highest possibly correct
answer. The up-arrow and down-arrow key control the
steepness of the curve. Uncertainty can be increased by
using the down-arrow key. The curve then grows flatter,
and the interval between lower and upper bound becomes
larger. Using the up-arrow key reduces the uncertainty
of the response. The curve grows more steep, and the dis
tance between the bounds becomes smaller.

In an interactive instruction, assessors are informed
about the score interpretation of the curve. It is explained
that the curve returns scores for all possible actual values
of the percentage. So, assessors know that actual values
equal to the lower or upper bound will yield zero scores.
They also can infer from the curve that positive scores
will be obtained with actual values between lower and up-

rule). Jensen and Peterson (1973) concluded that scoring
rules containing both positive and negative scores might
result in suboptimal strategies. They recommended re
stricting the scoring to all-positive or all-negative scores.

Recent empirical results do not support the ideas con
cerning potential artificial effects of the logarithmic scoring
rule in ELI (Van Lenthe, in press). An experiment, in
which 304 subjects participated, was carried out to study
the effects of using different scoring rules for generating
the score curves. Differences were observed only for
proper scoringrules on the one hand and an improper linear
scoring rule on the other. The three proper scoring rules
(logarithmic, quadratic, spherical) appeared to produce
similar external validity scores, and the external validity
scores for the improper linear scoring rule were signifi
cantly worse. The score curves containedboth positive and
negative scores. To explore possible artificial effects of a
mixed-score range, four additional conditions were con
structedby using an additiveconstantto transform the score
curves to the positive domain. No differences were ob
served between ELI versions with mixed-score curves and
ELI versionswith positive-score curves. Using proper scor
ing rules to provide feedforward information appeared to
be a promising method for improving the quality of prob
ability assessments. This scoring rule approach appeared
to be robust with respect to different types of proper scor
ing rules and with respect to different score ranges.

The Elicitation Technique ELI
To study their merits, central ideas of the blueprint were

implemented in an experimental version of the elicitation
technique ELI. This preliminary ELI version was re
stricted to the estimation of proportions (or percentages).
So, the family of beta distributions

!p,q(x) = xP-1(1-x)q-1IB(p,q), (8)

with 0 :5 x:5 I, P > 0, q > 0, and beta function
B(p,q), was used for representing uncertain knowledge.
A logarithmic scoring rule was implemented to generate
score curves from the underlying beta density functions.
To prevent practical and motivational difficulties as
sociated with bankruptcies of assessors, the following
truncated version of the logarithmic scoring rule was used:

S(fp,q,t) = lO*max{ln(iP,q(t), -8}. (9)

Strictly speaking, this truncated version is not quite
proper. However, its deviation from properness seems
to be very small and next to negligible. A score of -8
corresponds to a density of e -8 (= .0003). The contribu
tion of the probability areas with a density of e -8 or
smaller to the subjectively expected score ES(r,p) appears
to be negligibly small-irrespective of whether or not the
logarithmic score is truncated. The multiplicative constant
of 10 was used to avoid decimals in the scoring.

The direct implementation of the logarithmic scoring
rule in a graphically oriented interactive computer pro
gram results in a rather easy assessment task. Assessors
are not required to key in numbers, and they do not have
to bother about probabilities or transformations with scor-
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Figure 5. The steep curve A yields higher scores only with actual
values within the two points of intersection of the two curves.

The empirical results revealed that ELI support con
tributed to reliable and externally valid SPDs. ELI also
appeared to be an efficient and acceptable method. Com
pared with the other techniques, the reliability and exter
nal validity of ELI SPDs appeared to be superior. ELI
also turned out to be the most useful technique. Its cog
nitive support was rated much higher, and its cognitive
load was rated much lower. Two external validity out
comes in particular are noteworthy. First, in correspon
dence with past research, outcomes with the two existing
techniques pointed to a strong overconfidence bias. With
ELI, overconfidence appeared to be almost eliminated.
Second, ELI support produced the highest accuracy
scores. Only with ELI were the mean accuracy scores
greater than the mean accuracy score of a hypothetical
subject applying the ignorance strategy of assessing uni
form distributions all the time. As a matter of fact, per
formance with the other techniques appeared to be much
worse than the performance of this hypothetical subject.
This observation resembles results of past research
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Figure 6. (A) Example of an ELI training question. The curve pro
vides scores for all possible values of the actual value and can be
manipulated with the cursor keys. (B) Example of trial-by-trial out
come and scoring-rule feedback with a training question.

per bound and that actual values outside this interval will
yield negative scores. Figure 5 presents two score curves:
The steep curve A with a small interval between lower
and upper bound represents knowledge that is quite cer
tain, and the flat curve B reflects knowledge that is much
more uncertain. The maximal attainable score is higher
for the steep curve than for the flat curve. But, the steep
curve only yields higher scores with actual values within
the two points of intersection of the two score curves; the
flat curve yields higher scores with actual values outside
this interval. To obtain optimal scores, assessors should
not only avoid the use of steep curves when they are not
sure, but they also should avoid unduly flat curves. Try
ing to express their actual uncertainty appears to be the
optimal strategy for assessors.

An elicitation session typically consists of an interactive
instruction, a few practice items, and the questions of in
terest. In the instruction part, assessors become familiar
with the manipulation and interpretation of the score
curve. For each question, assessors then have to select
a curve that corresponds most closely with their subjec
tive knowledge (Figure 6A). Assessors might be provided
with outcome and scoring-rule feedback when the question
at stake is a practice item and when the actual value is
known (see Figure 6B). The feedback involves the com
munication of the actual consequence of an assessment.
From the curve of possible scores, one is pointed out as
the score actually obtained. It is possible to construct a
training session in which assessors have to complete a set
of practice items and in which they are provided with trial
by-trial outcome and scoring-rule feedback.

An experiment was carried out to evaluate ELI on the
criteria of reliability and validity of assessments and prac
tical usefulness of the technique (Van Lenthe, 1993). In
this study, ELI performance was compared with the per
formance of a classical elicitation technique and a simple
technique that asked subjects to key in numerical values
only for the best guess and the lower and upper bound.



432 VAN LENTHE

(Fischer, 1982; Lourens, 1984; Schaefer, 1976; Stael
von Holstein, 1970a; Winkler, 1971; Yateset al., 1989).

Conclusion and Discussion
The development of a blueprint for a completely new

way of eliciting uncertain knowledge was motivated by
the notion that the recurrent observation of poor SPD qual
ity might be attributed to the poor quality ofexisting elic
itation techniques. It was anticipated that, equipped with
a more appropriate elicitation tool, assessors might prove
to be more competent probability assessors than has been
suggested by research thus far. In the search for a new
elicitation methodology, uncertain knowledge was rep
resented through specific natural conjugate probability dis
tributions. In its interaction with assessors, however, the
method uses a score representation instead of a probability
representation. A strictly proper scoring rule was applied
to transform probability density functions into score func
tions. An interactive computer program was considered
an adequate device for showing graphical displays of al
ternative score functions and for providing assessors with
a selection mechanism to choose the most appropriate one.

There are several reasons for expecting that the ELI
procedure, with feedforward based on proper scoring rules,
will contribute to improved SPDs. First, the score curves
provide an alternative score representation of uncertain
knowledge that might be more compatible with the ca
pacities of assessors than is the usual probability repre
sentation. Second, with proper scoring rules, assessors
can maximize their subjectively expected score by mak
ing their SPDs correspond to their subjective knowledge.
So, as far as assessors are responsive to the properness
characteristic of the scoring rule, they are encouraged to
report their true uncertainty. Third, the scoring-rule feed
forward characteristic of the score curves may stimulate
assessors to reflect on the consequences of their assess
ment and to reconsider it before making a final choice.
Fourth, scoring-rule feedback in a training context fits in
adequately with the scoring-rule feedforward interpretation
of the curve. From the curve with possible scores, one
is pointed out as the score actually obtained. Finally, the
logarithmic transformation of the beta density function
provides a natural operationalization for the often rather
loosely defined concepts of lower and upper bounds.

It is crucial for the new elicitation methodology that a
proper scoring rule is used for generating the score curves.
It is less important which particular one is used, as long
as the rule is proper (Van Lenthe, in press). So, it is not
likely that the superior ELI performance found in the ELI
evaluation study (Van Lenthe, 1993) originates from an
artifact of the implementation of especially the logarith
mic scoring curve. The logarithmic scoring rule appar
ently achieves more than a reduction in the tendency to
use extreme responses. It is possible that the visualized
scoring-rule feedforward about the consequences of the
assessments stimulates assessors to be careful about the
specification of uncertainty and to reconsider their assess
ment. The resulting increased amount of cognitive pro-

cessing might be responsible for the positive external va
lidity results with ELI and, it also might enhance the
internal validity of assessments (Sniezek, Pease, & Swit
zer, 1990). So, even when the strictly proper characteristic
of the logarithmic scoring rule fails to work, the increased
amount of cognitive processing might do the job of en
hancing internal validity.

The positive results of the ELI evaluation study en
courage a further development of the technique. I The ex
perimental version was established mainly to study the
merits of the central ideas for the new technique. Future
advancement will be aimed at making ELI more flexible
and more suitable for different applied and experimental
settings. For example, the grid of possible curves will be
extended, allowing the estimation of very small propor
tions and the specification of more extreme certainties.
Moreover, support will be not restricted to percentages;
other continuous quantities will also be included.

In the experimental ELI version, the course of an elic
itation session is fixed. With the next version, it will be
possible for experimenters or decision analysts to imple
ment their own instructions, their own training items, and
their own questions of interest (see Note 1). In other
words, the next ELI version will support the construction
of complete elicitation sessions. The next version is in
tended to support different groups of users: (1) individual
estimators who use ELI mainly as an elicitation aid (i.e.,
for the specification of their own uncertain knowledge),
(2) experimenters or decision analysts who use ELI
primarily as a tool to design an elicitation session, and
(3) subjects (e.g., substantive experts) who are asked to
complete a particular ELI session. The next ELI version
will consist of three central parts that correspond with the
three groups of users: (1) an estimate part for the indi
vidual estimator, (2) a design part for the experimenter,
and (3) an option to run a particular elicitation session.
Furthermore, the technique will have a statistics option
to examine the characteristics of a particular score func
tion and the corresponding probability distribution. And,
of course, an output option will be included for saving
relevant data and characteristics in an optional format.
An example of a situation in which ELI might be useful
is in a medical context to contrast the preconceptions of
physicians, surgeons, and nurses about the surgical mor
tality of some of the serious congenital heart lesions
(C. Bull, personal communication, June 1991). A database
with information about the surgical mortality can be used
to evaluate the assessments. It is also conceivable to use
ELI to estimate in advance the surgical mortality of inter
ventions about which no empirical data are available.

In view of the potential advantages of using graphical
displays of score functions and in view of the positive ex
perimental results thus far, it is expected that in the future
ELI will contribute to the assessment of reliable and valid
SPDs. Furthermore, it is anticipated that the technique
will be efficient, acceptable, and suitable for different ap
plied and experimental settings. Such an elicitation tech
nique is of both scientific and practical interest. Theoret-



ically or experimentally oriented studies as well as the
analyses of decision or risk analyst can profit from the
availability of an appropriate elicitation technique.
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NOTE

1. The development of the next ELI version is a combined effort with
the interuniversity expertise center ProGAMMA, a nonprofit center es
tablished by a group of Dutch universities to stimulate the development
and diffusion of computer applications in the behavioral and social sci
ences. lecProGAMMA has the copyrights and is the distributor of the
next ELI version. This version will be available by the end of 1993 from
lee ProGAMMA, P.O. Box 841, 9700 AV Groningen, The Nether
lands (e-mail: gamma.post@gamma.rug.nl).
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