
Behavior Research Methods & Instrumentation
1982, Vol. 14 (2),241-249

Some simple Apple II software for the
collection and analysis of

observational data

JOHN H. FLOWERS
University ofNebraska, Lincoln, Nebraska 68588

Two general-purpose software packages for collecting and analyzing observational data from
a variety of settings are discussed. One package is designed for coding mutually exclusive
behavioral states using the Apple's keyboard as an input device. The other is designed to
monitor temporally overlapping behaviors, and it makes use of the Apple II's built-in game­
control button inputs to indicate up to three behavioral states that may occur simultaneously.

Personal computers can be programmed to provide
quite elaborate but highly efficient behavioral recording
and analysis routines for dedicated research projects
(Bernstein & Livingston, 1982; Hargrove & Martin,
1982). Such specialized programs are highly useful in
research projects for which the investigator intends to
collect large amounts of data over a long period of time.
In contrast, the two categories of programs described in
this paper were designed to fit a wide variety of labora­
tory settings instead of a single dedicated application.
The primary intended use of the software was for under­
graduate laboratory courses in experimental design,
animal behavior, and developmental psychology,
although several of these routines have been adapted
for advanced research. Because of the need to collect
data in very diverse settings (ranging from observation of
rats dividing their time between the activities of eating,
drinking, and grooming to assessing the interdependence
of eye contact and vocalization in a social distance
experiment), these programs have been purposefully
kept extremely simple. Thus, they essentially represent
"bare-bones" illustrations of using a small computer for
behavioral observation, and they demonstrate program­
ming principles that can be implemented in more elabo­
rate or specialized routines.

Overlapping vs. Nonoverlapping Behaviors
Two different sets of programs will be described; each

set includes both a main data acquisition program and a
sample summary and analysis routine. The two sets of
programs are each designed for use in slightly different
research settings. The first (and simplest) of these pack­
ages is designed to study the onsets, offsets, and transi­
tions among several mutually exclusive (temporally
nonoverlapping) behavioral states. These states may
include a "null" state, representing times when the

This work was supported in part by National Science
Foundation Grant SER 80-15123 to the author.

subject under observation is engaged in a behavior other
than one of interest. The second (and slightly more com­
plex) package is designed to allow the investigator to
monitor up to three behavioral states, which may
occur jointly. These temporally overlapping behaviors
may coexist within a single subject (e.g., a subject may
be simultaneously talking to and holding eye contact
with another person). Alternatively, these behaviors
may occur jointly among up to three different individual
subjects in a single setting (e.g., three ground squirrels
each giving alarm calls in response to a predator). A third
application might involve the observation of the same
behavior within the same subject by up to three indepen­
dent judges. The last application can be useful for teach­
ing students the principles of interjudge reliability and
demonstrating that certain categories of behavior can be
more reliably assessed than others. The data acquisition
routines for both the mutually exclusive and temporally
overlapping situations were written in APPLESOFT
BASIC, with machine code routines for accomplishing
the timing functions and initializing the programmable
timers used to establish the time base. Before describing
each routine in more detail, two design principles com­
man to the program should be mentioned.

Separation of Data Acquisition from
Data Analysis and Summary

For both software packages, the programs for data
acquisition were kept separate from programs used in
data analysis and summary. This principle was followed
not only for maintaining program simplicity, but also
because Widely different types of analysis may be
called for in different research applications. By providing
a highly general data acquisition program that formats
data on disks in a straightforward and well documented
manner, individual users are free to create their own
experimental analysis and summary routines. While some
research applications may require examination of
sequential dependencies between different behaviors, for
example, many applications may require little more than

Copyright 1982 Psychonomic Society, Inc. 241 0005-7878/82/020240-09$01.15/0

242 FLOWERS

a printout of the onset time and duration of each bout
of behavior. Particularly in teaching applications, in
which it is often appropriate for students to proceed on
their own through the steps involved in computing
descriptive statistics and constructing frequency distribu­
tions, one may wish to have very little "preprocessing"
of the raw data other than to present it in a highly
readable form. An additional reason for separating the
functions of data acquisition from those of data sum­
mary and analysis is that, for some applications, one
may wish to move the computer (which is highly porta­
ble) to the research site for data acquisition. With the
present routines, all that need be transported are the
computer, a video monitor, and a single disk drive;
printers (which are often bulky, heavy, and delicate)
can be left behind for use at a later time.

Interrupt-Based Timing
Both categories of observation programs make use of

computer interrupts generated by a programmable timer
located in the Apple's backplane slots. The program for
monitoring temporally overlapping behaviors comes in
two versions; one is designed to use the Mountain
Computer Apple clock, and another is designed to use
the California Computer System (CCS) Model 7440 pro­
grammable timer. Both sets of programs can be adapted
for use with other products by slight modification in
the software.

As opposed to timing routines that read a free­
running real-time clock (a procedure followed in the
software described by Bernstein & Livingston, 1982, and
by Hargrove & Martin, 1982), the interrupt timing
system uses a pair of memory locations in the computer
to keep track of elapsed time. This pair of memory
locations is incremented upon each interrupt. In order to
make use of interrupts for timing purposes, two types of
routines (written at the assembly level) are required. One
of these routines is a setup or initialization procedure
that is specific to the particular type of timer being used.
Such routines are usually provided in the documentation
obtained from the vendor of the timer card. Initializa­
tion routines, which are called at the onset of the period
of time for which the timer will be in progress, perform
several functions. First, they instruct the computer
where to find the subroutine that will be automatically
executed upon each interrupt. In an Apple II, this is
done by placing the address of the interrupt handling
subroutine (in our case, the one that will increment
the pair of memory locations serving as the internal
"clock") in hexadecimal memory locations $3FE and
$3FF. A second function of the initialization routine
is to provide the sequence of commands that tell the
timing device to generate periodic interrupts and at what
rate to do so. Finally, it is necessary for an initialization
routine to enable the interrupts (i.e., start the timing
process) by providing some type of start signal to the
timer and by allowing the Apple to accept interrupts

through execution of the clear interrupt (CLI) com­
mand. Within the same section of code con taining the
initialization procedures, it is necessary to provide a
"stop" routine, which terminates the process of inter­
rupt generation, effectively stopping the "clock." This
consists of a command to the timer that stops its inter­
rupt generation, plus a command to the computer (a set
interrupt, SEI) that stops the computer from accepting
further interrupts. The stop routine is called from the
main program at the termination of the observation
session.

The second type of routine necessary for imple­
menting interrupt-driven timing is the interrupt handler
itself. The interrupt handler is a special type of sub­
routine that is entered automatically every time an
interrupt is generated. For behavioral timing, the sim­
plest form of interrupt handler is one that simply
increments the pair of memory locations constituting
the elapsed time clock and then returns con trol to the
main program. Although a small amount of assembly
language programming is necessary to implement an
interrupt-driven timing system, there are some advan­
tages to such an approach. Since upcounting the clock
occurs automatically, the higher level language program
need not bother with special clock reading routines
other than a simple pair of peeks to a pair of memory
locations. The remainder of the main program can be
constructed as a loop that continuously updates infor­
mation for the experimental observer and looks for
special conditions, such as keypresses, and so on, that
indicate changes in behavioral states or commands to
terminate the session. Programming in the high-level
language thus becomes simpler in structure than would
be the case if a set of complex commands to a peripheral
device, such as a real-time clock, had to be programmed
by a routine imbedded within the main program struc­
ture. For some applications in which the timing of
relatively rapid behavioral events is required, or a level of
precision on the order of hundredths of a second is
required, attempting to execute the type of commands
necessary to read many of the commercially available
real-time clocks from a high-level language might be
sufficiently slow that timing errors would occur. While
the possibility of such timing errors may not be impor­
tant if behavior is measured in seconds, interrupt-driven
timing routines written at the assembly level preclude
the problem even if faster time bases are used.

BCODE: KEYBOARD CODING OF MUTUALLY
EXCLUSIVE BEHAVIORS

Listings of the BCODE program written in
APPLESOFT BASIC, together with the assembly lan­
guage that accompany it, are presented in the appendix
as Listings 1 and 2. This data acquisition program does
not include elaborate error-trapping routines or provi­
sions for on-line data analysis; it is thus an example of

an ultimately "stripped-down" behavioral recording
program.

The BCODE program is designed to record the onsets
and offsets of up to 20 or more behavioral states defined
by the observer. Each behavior is coded as a simple
character on the Apple keyboard. The observer notes the
onset of a behavior by pressing the appropriate key; a
carriage return is not required. Each key depression
causes the program to store, as a string, the character
represented by the key, together with the elapsed time
since the beginning of the observation session. A transi­
tion into a behavior not under observation (i.e., the off­
set of a behavior of interest) is keyed by striking the
space bar. Since leading space characters cannot be read
from a disk in APPLESOFT BASIC, the space bar
character is converted into an asterisk character (*)
before being stored with the elapsed time. The elapsed
time is measured in units defined by the observer prior
to beginning the session; these units can be any mul­
tiple of .1 sec from .1 to 25.5 sec. The experimental
session is terminated by pressing "control Q." At that
point, the strings are written to disk in a me named by
observer for later use by analysis in summary programs.

Timing andTime-Base Selection
The BCODE program makes use of a CCS 7440 timer

located in Slot 2 of the Apple backplane. This timer con­
tains a set of three counters, two of which are used in
the present application. The initial time base for one of
the timers (Timer 1) is taken from the Apple computer's
14-MHz internal clock and is divided into units of .1 sec.
The output of this timer (now in .l-sec cycles) is input
via a wire jumper into the second timer, which is initially
loaded with the number of .Lsec units the observer
wishes to define as the time base. Timer 2 generates an
interrupt at the point in time at which the number of
time units with which it has been loaded have been
counted out. The timers are reloaded at each interrupt.
Details of the timer commands and instructions for
installing the jumper wire are provided in detail in the
manual provided with the CCS 7440 timer card. The
assembly language code shown in Lines 2747 of
Listing 2 provides the appropriate commands to the
timers and clears the two memory locations (hexa­
decimal addresses, $FA and $FB, or decimal addresses,
250 and 251), which are used as the "clock" to measure
the elapsed time. As shown in Listing 2, the timer that
generates the interrupts is initially loaded with a value of
10. However, that command can be modified by the
APPLESOFT BASIC main program, which changes that
initial value loaded to any value between 1 and 255 (see
Lines 22-25 of Listing 1). Thus, the observer is able to
select a time base ranging from .1 sec/unit to 25.5 sec/unit.
For recording relatively fleeting behaviors in a highly
active organism (e.g., sexual behavior and aggression in
wild mice), one might wish to select a fairly short time
base, such as .2 sec. For long-term observation of more
slowly changing behavior states (e.g., documenting the

SOFTWARE FOR OBSERVATION 243

activities of a teacher in a classroom), a value of 5-10 sec/
"tick" might be appropriate. It is important that the
observer remember what time base was selected, since no
record of that value is contained in the data stored on
the disk.

The interrupt handling routine located at the hexa­
decimal address $300 (Lines 9-25 of Listing 2) is simply
a segment of code that upcounts the pair of memory
locations after having temporarily saved the values of the
compu ter 's internal registers and then restores those
registers to their original values before returning to the
main program. Upon a keypress, the two memory
locations (250 and 251 decimal) are peeked by the
APPLESOFT program. Location 251 contains the num­
ber of multiples of 256 ticks (e .g., the overflow from the
8-bit register) and Location 250 will contain the remain­
der. These two values are then converted into the total
number of time units.

Data Analysis and Summary
Data from the BCODE observation program are writ­

ten to floppy disks in the following format: The first
record contains the number of behavioral bouts during
the observation session, and the remaining records (the
number of which is equal to the number of bouts) con­
tain strings consisting of the letter code of the behavior
(including the * for the null behavior) followed by a string
of digits indicating the elapsed time since the beginning
of the session at the point when the behavior was entered.

An example of a simple data summary program,
which performs simple summary statistics, is provided as
Listing 3 of the appendix. This program, called BSUM,
consists of three subroutines, one of which inputs the
data generated by the BCODE program, the second of
which prints out the behaviors and their onset times in
order of their occurrence, and the third of which prints
the total number of episodes, cumulative time spent in
those episodes, percentage of total session time, and
mean and standard deviation of episode length for any
single behavior. The data input subroutine asks the
experimenter for the name of the data me and then
inputs the number of bouts and the string associated
with each bout from disk. The subroutine that prints the
data by sequential episodes separates each of the strings
into the label for the behavior and the elapsed time
at which it occurred (storing the latter as a floating-point
number for later use). It then prints the letter-code label,
followed by elapsed time in its order of occurrence. The
subroutine that provides descriptive statistics for individ­
ual behaviors involves a search process that selects out
those bouts in which the letter code of a behavior
matches the code supplied by the experimenter and then
calculates the descriptive statistics for that behavior. A
sample output from BSUM is shown in listing 4. One
could easily add subroutines to this program to perform
operations such as sequential dependencies, or one
could delete the descriptive statistic routines for use in
undergraduate instruction.

244 FLOWERS

Limitations
As written, the BCODE program will handle up to

500 successive bouts, including null behaviors, and the
elapsed time clock will "wrap around" to zero after
16,384 counts. At a l D-sec rate of counting, that would
amount to over 4.5 h of continuous monitoring. The
program will not terminate with the clock overflow, so
the researcher can simply correct the data by hand, at
the point at which the overflow occurs. Exceeding 500
different behavioral transitions, however, will automati­
cally terminate the program and write the existing data
to disk.

MONITORING NONEXCLUSIVE BEHAVIORS:
THE TACT3 PACKAGE

The TACT3 program and associated data analysis
routines were developed for use in any situation in
which the observer is required to monitor the occurrence
of up to three separate behaviors, each of which is either
present or absent at any point in time and each of which
may occur while any of the other behaviors is also pres­
ent. The behaviors are recorded through the Apple II
compu ter's push-button game input, which can be
attached to simple push buttons or to toggle switches to
fit the needs of a given application.' Two versions of
the TACT3 program have been written; one is designed
for use with the Mountain Hardware Apple clock, and
the other has been adapted for use with the CCS
Model 7440 timer. The version shown in Listings 5 and 6
is the Mountain Hardware version.'

Principles of Operation
The TACT3 program is, like the BCODE program,

simple to operate. After the program is loaded and run,
a simple depression of the space bar begins the observa­
tion panel. The visual information displayed to the
operator is somewhat more elaborate than in the
BCODE program, since the observer is required to moni­
tor the behaviors, which may overlap in time. While
observation is in progress, the video screen is con­
tinuously updated with the following information:
elapsed time since the beginning of the session, the state
of each of the behaviors (on or off), cumulative time
spent since the beginning of the session in each of the
behaviors, and the number of discrete episodes of each
of the behaviors. Upon session termination, which is
signaled by pressing any of the keys on the Apple's
keyboard, the onset times and episode lengths for each
bout of behavior are stored on disks for subsequent
analysis and a preliminary data summary is shown on the
video screen. This abbreviated data summary includes
the number of episodes of each of the behaviors moni­
tored, the cumulative time spent in each behavior, and
the percentage of the session time spent in each of the
behaviors. The total session time is also presented at
the bottom of the screen. This partial summary allows

the experimenter to write down relevant information at
the time of the experiment for future reference; this
information is also available in hard copy when data
analysis routines are run at a later time.

The Interplay Between the APPLESOFT TACn
Program and the Interrupt Routines

The Mountain Hardware clock and CCS timer ver­
sions of the TACT3 program differ only in the assembly
language routines that initialize and control the clock or
timer. The interrupt processing is considerably more
elaborate than in the BCODE program, since in addition
to providing an elapsed time clock, the interrupt routine
also performs the task of checking the states of the push.
button inputs to the Apple used to signal the presence or
absence of a given behavior. This checking is done once
at each l-sec interrupt, and the three switch inputs are
then scanned in rapid succession. On the Apple, the state
of each button is assessed by testing the most significant
bit of three successive memory locations, hexadecimal
$C061, $C062, $C063. Should one of the bits be set,
then that program checks to see whether or not the bit
for that memory location was also set on the previous
interrupt; if not, it indicates the onset of a new
behavioral bout, and a memory location that counts
the number of new behavior bouts for that particular
behavior is incremented. Also, if the bit indicating the
depression of the switch or button is active during an
interrupt, a pair of memory locations that serve as
a cumulative time clock for that particular behavior is
incremented. Hence, the program is time sampling for
the presence or absence of each behavior, once every
1 sec.

Unlike the BCODE program, which used a single pair
of memory locations simply as an elapsed time clock,
the TACT3 program uses four different pairs of memory
locations: one for a session elapsed time clock and the
remaining three for cumulative time clocks for each of
the three behaviors. However, in addition to keeping
track of the cumulative time spent in each behavior, the
interrupt handling routine uses three blocks of memory,
located above the locations used by the APPLESOFT
program, for storage of the onset and offset times of
each behavioral bout. Thus the interrupt handling
routine, written in assembly language, performs the
entire task of managing the data as they are obtained.
The role of the APPLESOFT main program is exclu­
sively that of updating the information on the video
screen while the observation is in progress. For this
reason, the assembly language programming is con­
siderably more complex than that used in the BCODE
program, making use of several of the 6502 processor's
more sophisticated addressing modes and data testing
capabilities.

Since the data are actually collected by machine code
routines rather than by an APPLESOFT program, it is
necessary for the APPLESOFT main program to convert

disk data (stored in binary form in specified memory
locations) to a form of data that can be used by the
APPLESOFT language for arithmetic manipulation,
and which then can be written to disk. One disadvantage
of placing a greater burden of the data collection on
machine language routines, as opposed to embedding
them within a high-level language program, is that the
program listings are less readable. For example, the high­
level language program (see Listing 5) contains a great
many peeks, pokes, and calls; one must consult the
assembly language listings to understand the effects of
these statements. However, the data sensing by machine
language routines may be necessary to avoid timing
errors if several different inputs must be scanned in rapid
succession. It may be possible to write a program
entirely in APPLESOFT BASIC that scans the state of
three button inputs and determines whether their state
has changed since the last scan, all within a l-sec period.
However, such a program would push the upper limit of
the number of tasks that could be completed in that
time interval.

Format of Data Generated by TACT3
Once the observation session has been terminated by

striking the space bar (or any key on the Apple key­
board), the TACT3 program asks for a me name for the
data. Once this has been supplied, the data from the
observation session is written to disk for later use by
another program. Record 1 contains the total session
time. The second record contains the number of activ­
ities or behaviors that were monitored during that ses­
sion. Record 3 contains the total number of separate
episodes of the first behavior. The fourth record con­
tains the length of the first episode of the first behavior,
and the fifth record contains the onset time of the first
episode of the first behavior monitored. From then on,
each successive record contains the length of each
behavioral bout of the behavior, followed by a record
containing the onset time of that bout, until all of the
episodes of the first behavior are exhausted. After that,
the next successive record contains the number of bouts
of the second behavior, followed by pairs of records
indicating the length of each bout and its onset time,
until all of the bouts of behavior of the second activity
have been described. If those behaviors are monitored,
the same procedure is followed for recording the data.

A short segment of APPLESOFT BASIC code that
retrieves these data from a disk file is provided in the
appendix, as Listing 7. This subroutine can be imbedded
in any data summary and analysis program the user
wishes to create. While we have written several different
analysis programs to be used in conjunction with the
TACT3 observation program, the programming princi­
ples involved essentially parallel those of the BSUM
program described earlier and thus will not be presented
in detail. Examples of the type of analysis performed on
data generated by the TACT3 program are described by
LaGuardia (1982).

SOFTWARE FOR OBSERVATION 245

Limitations of the BCODE Routine
In the version presented here, a maximum of 200

separate episodes or bouts of any single behavior is per­
mitted. If this limit is exceeded, the observation session
automatically terminates and the data are sent to disk
for storage. These limits may be readjusted by moving
the locations of the memory buffers for the data storage
if, for example, only two behaviors are to be monitored
and there is a need to monitor more than 200 separate
bouts of at least one of the behaviors during a session.
As with the BCODE program, the "clock" will reset to
zero after 16,384 counts.

SUMMARY AND CONCLUSIONS

This paper has described two general-purpose pro­
grams acquiring observational data using the Apple II
personal computer. These data acquisition programs
represent prototypes of routines that can be applied
to a wide variety of research and teaching applications.
In addition to being designed for slightly different appli­
cations (mutually exclusive vs. temporally overlapping
behaviors), the BCODE and TACT3 data acquisition
programs have employed slightly different programming
strategies to accomplish the task of recording the stream
of behavior in a naturalistic setting. In the BCODE
example, in which only a single behavior could occur at
a given time, the data acquisition process was accom­
plished almost entirely by high-level (APPLESOFT
BASIC) language programming, with only the elapsed
time generation performed by machine code. Such a
programming approach is easier to understand, particu­
larly by novice programmers and students who may have
a little experience with machine code or assembly-level
programming. However, the need to monitor several
events that may occur simultaneously and the need to
signal the presence of those events from several remote
locations (LaGuardia, 1982) may preclude the use of
the keyboard as a data input console. Because of time
constraints, exclusive reliance upon a highly interpreta­
tive language for data acquisition is not practical for
such application. Thus, in the example provided by the
TACT3 program, interrupt-driven assembly language
subroutines took over the primary responsibility for
data input. The role of the high-level language "host"
program was dedicated to updating information dis­
played on the video screen for the researchers' benefit
and the task of converting the machine code-generated
data into a form suitable for analysis by high-level
language summary programs. In using both approaches,
an effort was made to format the data in a straight­
forward manner to be stored on floppy disks for sub­
sequent analysis and summary by other programs.
This separation of data acquisition from analysis pro­
cedures allows the experimenter to take maximum
advantage of the high degree of flexibility and porta­
bility offered by today's personal computers.

246 FLOWERS

REFERENCES

BERNSTEIN, D. M., & LIVINGSTON, C. An interactive program
for observation and analysis of human behavior in a long-term
continuous laboratory. Behavior Research Methods & Instru­
mentation, 1982,14,231-235.

HARGROVE, D. S., & MARTIN, T. A. Development of a micro­
computer system for verbal interaction analysis. Behavior
Research Methods& Instrumentation, 1982, 14,236-239.

LAGUARDIA, R. L. The application of computer systems to

research in experimental social psychology. Behavior Research
Methods&Instrumentation, 1982, 14,249-252.

NOTES

1. Because of FCC regulations, game buttons are no longer
supplied as standard equipment on Apples. However, the con­
nector socket is still available, and instructions on how to use it
may be found in the Apple reference manual.

2. A listing of the CCS version is available from the au thor
upon request.

APPENDIX

1 REM •• ,. MUTUALLY EXCLUSIVE BEHAVIOR RECORDING
2 REM COPYRIGHT 1981, JOHN H. FLOWERS
5 DIM R$(500):D$ = Clffi$ (4):0$ = CHR$ (17),CL • 250.CH • 2~I.M • 256
6 KBD = - 16J84
10 HDM(. PRINT 0$; "IlLOAD CLOCK.OIlJO"
2<1 FRINT "CODING ROUTINE FOR EXCLUSIVE BEHAVIORS". PRINT. PRINT "THIS ROUTINE
REOUIRES A CCS 7440 IN 5#2."
21 PF<lNT "JOliN H. FLOWERS -- MAY,1981. ". PRINT
~~ VTAB (9): PRINT "ENTER TlMEIlASE IN 0.1 SEC UNITS."
24 INPUT ">";TB: IF TB < 1 OR TB > 255 THEN CALL - 198. PRINT "REENTER!". GOT
o 24
2~ FOIE 814, TB: PRINT. PRINT "ANY KEY TO BEGIN"
30 GET X$: PRINf X$. 1I0ME : PRINT "A CONTROL-Cl WILL STOP THE SESSION."
40 VTAIl (5). PRINT "CURRENT 8EHAVIOR >"
~lJ CALL 793: REM STmn TIMER
6(, I = 0: REM '*' BEHAVIOR COUNTER
70 X = PEEK (KIJD): IF X < 127 THEN 70
75 PO.:E - 16368,0, X$ ~ CIlR$ 1X - 128). VTAS I~). HTAS (22). PRINT X.

77 IF X$ = " " lHEN X$ = "."
80 1 = I + I:R$(I) • XS + STR$ 1 PEEK ICLI + M' PEEK ICHI)
9(, I F I = 500 TIIEN HOME, GOTO 199
1C") 1F X$ = OS THEN HOME, GOTO 200
110 r.nro 70
14" ,_"~I L 8~0: CALL - 198. HOME. FLASH. PRINT "MAX. 41 OF EPISODES EXCEEDED".
Nl :/.;~H:'" : GOlD 205
~', ,,, CALL 850: HOME
2u~ VTAl< (5). INPUT "DATA FILE NAME>"INS
210 PFlINT Dfl"OPEN "INS. PRINT DS;"DELETE "IN•• PRINT D.I"OPEN "IN•• PRINT 0.1"
WRITE "INS
215 PRINT I
220 FOR K • 1 TO I. PRINT RSIK). NEXT K
230 PRINT Dtl"CLOSE "IN.
240 END

Listing 1. The BCODE program.

0000. 2 ••••• CLOCK ROUTINE FOR CCS TIMER 031E:A9 03 29 LDA .$03
0000, 3 ••• KEEPS TIME IN SFA & SFB IN 0320.BD FF 03 30 STA S3FF
0000. 4 ••• UNITS SPECIFIED IN LOCATION S32E 0323,A9 71 31 LDA U71; TIMER2 CMO
0000. 5 .,. AS THE NUMBER OF TENTHS OF SECONDS 0325,BD Al CO 32 STA SCOAI
OOFA. 6 CLKL EGlU SFA 032B:A9 00 33 LDA .0
OOFB, 7 CLKH EllU SFB 032A.80 A4 CO 34 STA SCOA41 TIMER2 HIDATA
----- NEXT OBJECT FILE NAME IS CLOCK.OBJO 0320:A9 OA 35 LDA .SOA; 10 TICKS
0300, 8 ORG S300 032F:BD AS CO 3b STA SCCA5
0300:A5 4:5 9 TICK. LDA S4:5 0332,A9 93 37 LOA U93
0302:48 10 PHA 0334:80 AO CO 38 STA SCOAOI TIMERI CI1D
0303,BA 11 TXA 0337.A9 C7 39 LOA .SC7
0304,48 12 PHA 0339,80 A2 CO 40 STA SCOA21 TIMER1HI BYTE
0305:98 13 TVA 033C:A9 CO 41 LDA UCO
0306:48 14 PHA 033E.8D A3 CO 42 STA SCOA3; L09YTE
0307:20 52 03 15 JSR STOP 0341:A9 00 43 LDA .0
030A:E6 FA 16 INC CLKL CLKL 0343.85 FA 44 STA CLKL
030C:00 02 17 BNE LEAVE 0345,8~ FB 4~ STA CLKH; CLEARS CLOCKS
030E:E6 F9 lB INC CLKH 0347,20 49 03 46 JSR GO
0310,20 4B 03 19 LEAVE. JSR GO 034A'60 47 RTS
0313,68 20 PLA 1034B' 48 ... START ROUTINE
0314,A8 21 TAY 034B:A9 92 49 GO. LDA U92
0315.68 22 PLA 0340.80 AO co 50 STA SCOAO
0316:AA 23 TAX ·0350,58 51 CLl
0317.68 24 PLA 0351.60 52 RTS
0318.40 25 RTI ,0352, 53 •••• STOP ROUTINE
0319. 26 U .. SETUP ROUTH£ 0352.A9 93 54 STOP. LOA U93
0319.A9 00 27 LDA UO 0354.BO AO co 55 STA SCOAO
031B,BD FE 03 28 STA S3FE 0357.78 56 SEI

0358.60 57 RTB

Listing 2. Timing routine used by BCODE (2 days).

SOFTWARE FOROBSERVATION 247

PRINT "THIS BEHAVIOR DID NOT OCCUR", GOTO 4640

GOTO 4640

lENGTH"

ONSET"

••• PRINT BY EPISODES
•••• SUMMARY FOR INDIV. BEHAVIORS

PRINT
IF NE < 2 THEN PRINT "TOO FEW EPISODES FOR STATISTICS,',
PRINT "MEAN lENGTH STD. DEV."

MN = S I NE:V - S2 - S A 2 I NE,V - SQR (V I NE)
PRINT TAB(3),MN; TAB(IS),V
PRINT, PRINT ••
PRINT Kt: PRINT Dt,"PRIIO'
GOTO 4000
RETURN

5 DIM R~(500),BX~(200),TI200)

I 0 D~ ~ CHR~ (4) I SP~ a " ". Q~ - CHR~ I 17)
15 K~ = CHR~ (12)
20 GOSUB 1000
30 GOSUB 2000. REM
40 GOSUB 40001 REM
50 HOME. END
1000 HOME I PRINT "OBSERVATIONAL DATA CODING"
1002 PRINT "FOR DATA GENERATED BY BCODL", PRINT, PRINT 'JOHN H, FLOWERS, PlAY.
1981. "
1005 VTAB (9): INPUT "DATA FILE NAME>" I Nt
1010 PRINT D~;"OPEN ",N~. PRINT Dt,"READ ",Nt
1020 INPUT N
1030 FOR I ~ I TO N. INPUT Rtll), NEXT I
1040 PRINT Dt,"ClOSE ",Nt
1050 RETURN
2000 PRI NT D~;" PRllI "
2005 PRINT Kt. PRINT "BEHAVIOR IN ORDER OF APPEARANCE IN", PRINT 'DATA FILE ',N
t
2007 PRINT
2008 PRINT "CODE
2010 FOR I - 1 TO N
2020 Bt ~ lEFTt (RtII),I):Tt a RIGHTt IRtII), lEN IRSII» - I)
2022 BXtll) - Bt.TII) - VAL ITt)
2025 IF B~ - CHRt (17) THEN Bt - "••
2027 IF Bt - THEN Bt - •• "
2030 PRINT B~,T~

2040 NEXT I
2042 PRINT. PRINT "••••••••••••••••••••••••••••••••••••••"
2045 PRINT Kt
2050 PRINT Dt;"PRIIO"
2060 RETURN
4000 HOME: PRINT "INPUT THE LETTER CODE OF A BEHAVIOR", PRINT 'WHICH YOU WISH
TO SUMMARIZE,"
4005 PRINT, PRINT '(A '0' WILL QUIT THIS ROUTINE)'
4010 INPUT ')",Vt
4015 IF Vt - '0' THEN 4900

4020 PRINT. PRINT "DESCRIPTIVE lABEL FOR THAT BEHAVIOR?', INPUT ')',W'
4030 PRINT Dt;"PRIII". PRINT Kt
4040 PRINT "SUMMARY FOR BEHAVIOR ',Vt,' - ',Wt
4050 PRINT
4055 PRINT "EPISODE ONSET
4060 S - 0.S2 a O.NE - 0
4070 FOR I - I TO N
4080 IF BXtII) < > Vt THEN 4500
4090 NE = NE • I:P - TIl. I) - TII),S - S • P,S2 - S2 • P A 2
4100 PRINT NE" POKE 36,10, PRINT TII)" POKE 36,201 PRINT P
4500 NEXT I
4510 IF NE - 0 THEN
4550 PRINT
4560 PRINT "II EPISODES CUM. TIME Yo SESSION TIME"
4570 POKE 36,2. PRINT NE" POKE 36,15. PRINT 5" POKE 36,29' PRINT 100 • S I T(
N)
4580
4600
4610
4620
4630
4640
4650
4700
4900

Listing 3. BSUM program: Summarizes data generated by BCODE.

BEHAV J OR J N ORDER OF APPEARANCE IN
DATA FILE RATt

SUMMARY FOR BEHAVIOR 0 .- DRINt<ING SUI"lI"lARY FOR ElEHAvtOR 5 - SNIFFING

SUf1I'1ARV FOR 6EHA\!IOR E - EATING

, .

, .
• EPISODES CUM. lIHE :t SESSJON TIME

2 54 14.2480211

LENGTH
13
12
4
4
16

STD. DEY.
4. 91~28229

ONSET
22
61
118
346
363

................ ,.u .

HEAN LENGTH
9.8

• EPISODES CUM. TIME X SESSION TIf'IE
5 4'9 12.9291':599

EPISODE
I
2,
4
5

LENGTH
II
7
32

LENGTH
22
32

STD. DE\!.
10.'Y64~B9~

STD. DEY.
4.999999<15

ONSET
12>
220
234

ONSET
141
269

EPISODE
I
2
3

• EPISODES CUM. TIME 7. SESSION TIME
3 50 13.1926121

MEAN LENGTH
16.6666667

EPISODE
I
2

MEAN LENGTH
27

ONSET
22
35
49
61
73
76
91
100
119
122
123
134
141
163
179
191
220
227
234
266
269
301
341
346
350
363
379

COIl£
S

••s
•
6

••s
•
E

•
D

•••
E

•
E·D••s
•s·.......................................

Listing 4. Sample BSUM printout.

248 FLOWERS

2 REM •••• COPYRIGHT 19B1, JOHN H. FLOWERS
5 HIMEM. 32767
b HOME: PRINT "TACT3. BEHAVIOR MONITORING FOR UP TO". PRINT "THREE ACTIVITIES
OR BEHAVIOR STATES."
8 PRINT. PRINT "THIS VERSION USES A MOUNTAIN HARDWARE". PRINT "CLOCK IN SLOT.
4.": PRINT: PRINT "JOHN H. FLOWERS -- MAY, 19B1."
9 PRINT: PRINT
10 DIM PX(3,200),TX(3,200),Cl(3),CH(3),El(3),EH(3),BF(3)
15 DIM F(3),NE(3)
20 FOR I = 0 TO 2
25 F(II = 251 + I. POKE F(I),O
30 BF(I) 3276B + BOO. I,Cl(I) • 950 + I,CH(I) • 953 + I,El(I) - 95B + I.EH(I)

961 + I
32 NEXT I
35 REM •••• ESTABLISHED ADRESSES OF BUFFERS AND CLOCKS, ETC.
40 FOR I = 0 TO 2
45 H = INT «BF(I» I 256):l • BF(II - 256 • H, POKE 944 + I,H, POKE 947 + I,l.

NEXT I
47 REM ••• POKE IN BUFFER ADDRESSES
50 FOR I = 950 TO 963: POKE 1,0: NEXT I
52 REM ••• CLEAR CLOCKS AND COUNTERS
55 D$ = CHR$ (4):M = 256:Kl - - 163B4.K2 - - 16368
57 Tl = 956:TH = 957
eo PRINT D$l "BlOAD ACT3.0BJO": REM n.MACHINE PROGRAM FOR MHC

CLOCK
70 INPUT "II OF ACTIVITIES YOU WISH TO OBSERVE)";NACT
72 IF NACT < 1 OR NACT > 3 THEN CALL - 198: GOTO 70
75 POKE B63,NACT. REM ••• lOOP TERM.
BO PRINT, PRINT "ANY KEY TO llEGIN", GET X$. PRINT X•• GOSUB 5000. CAll 875
90 Q = 0
100 VTAll (2): HTAll 10. PRINT PEEK (Tl) + M' PEEK (TH)
110 FOR I = 0 TO NACT -
115 J = 10 • (l + 1)

120 VTAll (5). HTAll (J), IF PEEK (F (1)) THEN INVERSE. PRINT "ON ". NORMAL • G
OTO 130
125 PRINT "OFF"
130 VTAB (B). HTAB (J), PRINT PEEK (Cl(I» + M. PEEK (CH(I»
140 VTAll (11). HTAB (J). PRINT PEEK (El(I» + M. PEEK (EH(I»
145 IF PEEK (El(I» - 200 THEN Q - I. GOTO 200
147 NEXT I

ISO IF PEEK IKI) > 127 THEN 200
160 GOTO 100
200 CAll 896: POKE K2,O: REM INT OFF ETC.
202 IF Q THEN CAll - 19B. PRINT "nu. SESSION TERMINATED DUE TO". PRINT "TOO

MANY EPISODES OF ACTIVITY "I I. PRINT "RUN 205 TO CONTINUE'" STOP
205 REM •••• GET DATA
210 TT = PEEK (Tll + M' PEEK (TH). REM ••• SESSION TIME
220 FOR I • 0 TO NACT - 1
221 F(I) = PEEK (F(I»
225 NE(I) - PEEK (El(I». REM •• CAN'T HAVE MORE THAN 200
227 CT(I) = PEEK (CL(I» + M' PEEK (CH(I»
230 FOR K = 1 TO NE(II • J • BF (L) + 4 • (K - 1)

235 TX(I,K) = PEEK (J) + M' PEEK (J + 1)
240 IF K = NE(I) AND F(I) THEN Z - TT. GOTO 250
245 Z = PEEK (J + 2) + M. PEEK (J + 3)
250 PX(I,K) - Z - TX(I,K)
2bO NEXT K. NEXT I
299 PRINT: PRINT
300 INPUT "NAME FOR DATA FILE)".N.
310 PRINT D$;"OPEN ";N$
320 PRINT D$;"DELETE ";N.
330 PRINT D$I"OPEN "IN$
340 PRINT D$;"WRITE ";N.
350 PRINT TT. PRINT NACT
360 FOR I = 0 TO NACT - I. PRINT NE(I)
370 PRINT CT(I)
3BO FOR J = 1 TO NE(I)

.390 PRINT PX(I,J): PRINT TX(I,J)
4('0 NEXT J: NEXT I
410 PRINT D.I"ClOSE "IN.

500 HOME
510 PRINT "un. SUMMARY OF ACTIVITIES U"
520 VTAB (4). PRINT "llEPS. "II FOR - 0 TO NACT - 1: PRINT NE<I) " NEXT 1: PRI
NT
530 VTAB (B), PRINT "CUM. "" FOR - 0 TO NACT - 1: PRINT CTCI) " NEXT I. PRI
NT
540 VTAll (12). PRINT "70 TM. "I' FOR I - 0 TO NACT - 1
542 PT = CT(I) I TT • 1000,PT - INT (PT).PT - PT I 10. PRINT PT,. NEXT I. PRINT

550
600
5000
5005
5010
5020
5030
:5040

VTAll lb. PRINT "SESSION TIME - "ITT
END

HOME
VTAll (2). PRINT "T-"
VTAll (5), PRINT "ACT"
VTAB (B). PRINT "CUM"
VTAB (II). PRINT ".EP"
RETURN

Listing 5. TACn program.

SOFTWARE FOR OBSERVATION 249

0300: IB ORB 0300
0300, 19 ...
03001 20 ...
03001 21 ...
0300, 22 ... I HTERRUPT HANDLER
0300: AS 4S 23 [NTH: LOA TEI"IPA., SAVE REG"S
0302: 48 24 PHA
0303:BA 25 ItA
0304:48 26 PHA
0305:98 27 TVA
0306148 2B PHA
0307: 20 80 03 29 JSR STOP
OJOA:.E.E Be 03 30 INC TIMEL
0300: DO 03 31 BNE L1
030F:EE BD 03 32 INC Tlt'EH
0312:A2 00 33 Lt: LOX .00

0314180 83 03 34 LOOK. LOA PL,X
0317:85 F9 35 STA PTRL; I NOEX FOR BUFFER
0319: BD 80 03 36 LOA PH,X
031C:BS FA 37 STA PTRH
031E; BD 61 CO 38 LOA BUTTDN~ X; BUTTON ON?
0321:3.Q 08 39 BHI ON; YEP, mHO ON
0323:85 FB 40 LOA FLG. Xi NOPE - SEE IF OFF LAST THE
0325:FO 3S 41 BEQ NXTBi IF so, CHECK NEXT BUTTON
0327:A9 00 42 LOA .0, ELSE CLEAR FLAG
0329195 FB OJ STA FLG, ~

0328: 4C 44 03 44 JHP STORE; AND STORE OFFSET
032£;: FE Bb 03 45 ON: INC CLKL. X; INCR TIME
0331;00 03 46 BNE L2 II' SUCCESSFUl.- ASSEM9l.. Y t NO ERRORS

INT~ ADDR

ENABl-E INTERRUPTS

BUMP TWICE!

"00
"COC9
.. COC7
..coca

(PTRU ,Y
PL, X
PL, X;
NXT9
PH, X

INC CLKH, X
LDA FLG, X; ON LAST T I t1E?
BNE NxrS
INC FLG, X
INC EPL,X; NEW EPISODE
BNI;: STORE
INC EPH,X
LDV eo; STORE ONSET OR OFFSET
LDA lU1EL
STA (PTRU.Y
!NY
LOA T1MEH

47
48 L2:
49
50
51
52
53
54 STORE:
55
56
57
5B

59 STA
60 INC
61 INC
62 ONE
63 INC
64 NXTB: INX
65 TXt!
66 CNP *3; OONE YET?
67 ... MODIFIABLE BY BASIC POKE
68 fiNE LOOK
69 JSR GO;
70 PLA
71 TAY
72 PLA
73 TAX
74 f"LA
7S RTJ
76 II•• NOW SETUP ROUTINE
77 SETU?: LOA 10
78 5TA $3FE
79 LOA 't03
80 SrA t3FF;
81 JSR GO
82 RTS
83 ... START ROUTINE
84 GO: LOA '.01
85 SrA .COe9
B6 0.1
87 RTS
88 •• tt STOP ROUTINE:
69 STOP: SEl
90 LOA
91 STA
92 LOA
93 LOA
94 RTS

0333;: FE 89 03
0336: BS FB
0338: DO 22
033A;:F6 FB
033C: FE BE 03
033F:DO 03
0341 :FE Cl 03
0344:AO 00
0346;: AD Be 03
0349: 91 F9
0348:C8
034C;: AD BD 03

034F:91 F9
0351:FE 8303
0354:FE 83 03
0357; DO 03
0359;: FE BO 03
035C:£8
03'5D:8A
03'5£: C9 03
0360.
0360: DO 82
0362;: 20 79 03
0365: 68
0366:A8
0367:68
03b8:AA
0369: b8
03bA~40
036B:
03bB:A9 00
036D;: so FE 03
0370:A9 03
0372: 80 FF 03
0375:20 79 03
o:37a:M)
0379:
0379:A9 01
0378:;.80 C9 CO
037E.'58
037F:bO
0380:
0390.78
0381:A900
0393:80 C9 CO
0386: AD C7 CO
0389: AD C8 CO
Q38C1 be

2 T [ME SAMPl I NG PROGRAM
3 •• , USES MOUNTAIN HARDWARE CLOCK
4 au FOR USE WITH TACT3
5 TEMPA EQU "-45
6 PTRL [QU tF9
7 PTRH EQU $f'A
8 FLG EOU "FB
Y BUTTON [au "'COb!

10 PL EGU $383
11 PH [au t3BO
12 CLKL [QU "386
13 CLKH [OU $399
14 TINEL EOU $.lDC
IS TII1EH EGU .380
1 b EPL [au $3BE
17 EPH EOU .. Je!

OBJECT FILE NAME IS ACT3.0BJO

T~E CATEGORY SAMPLE

0000,
oooo­
OOOOr
00451
OOF91
OOFAI
OOFBI
COb!:
03B3:
03BO:
0386.:
0399.
03BC:
0380;
038£1
OXt:
----- NEXT

ACD

Listing 6. Timing and button-sensing routines used by
TACTJ.

9000 REM H' THIS ROUTINE READS DATA GENERATED BY TACT3 FROM DISK.
90(l5 REM IT CAN BE INSERTED IN ANY USER'S SUMMARY PROGRAM ..
9007 REM MAIN PROGRAM HUST DIMESION PX AND TX TO (3,200)
9010 PRINT: INPUT "DATA FILE NAME>"; Nt;
IYOZl) Of.;: CHR'$ <4>: PRINT D"i "OPEN ";N$: PRINT Dt; "READ -;Nt
90:;'-) INPUT TT: INPUT NACT
9040 FOR I ;: 0 TO NACT - 1: INPUT NE(I>
9050 I fJPUT CT (I)
9060 FOR J ::: 1 TO NE (I)
9070 INPUT PX(I,J>: INPUT TX(I,J)
9Q80 NEXT J: NEXT I
90QO PRINT os; "CLOSE "jN~

9100 RETURN

Listing 7. Sample subroutine for reading data generated by
TACTJ.

