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From algorithmic computing to direct
retrieval: Evidence from number and
alphabetic arithmetic in children and adults
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A number of theories of mental arithmetic suggest that the ability to solve simple addition and sub-
traction problems develops from an algorithmic strategy toward a strategy based on the direct re-
trieval of the result from memory. In the experiment presented here, 2nd and 12th graders were asked
to solve two tasks of number and alphabet arithmetic. The subjects transformed series of 1 to 4 num-
bers or letters (item span) by adding or subtracting an operand varying from 1 to 4 (operation span).
Although both the item and operation span were associated with major and identical effects in the
case of both numbers and letters at 2nd grade, such effects were clearly observable only in the case
of letters for the adult subjects. This suggests the use of an algorithmic strategy for both types of ma-
terial in the case of the children and for the letters only in the case of the adults, who retrieved nu-

merical results directly from memory.

During the last 20 years, a considerable body of re-
search has been devoted to the study of the development
in processing of simple addition problems (e.g., 3+2) (Ash-
craft, 1982, 1992). This research has shown that adults
possess well-developed mental representations of numer-
ical facts which enable them to retrieve the results from
memory (e.g., 3+2 = 5) instead of having to calculate them
(Ashcraft, 1982, 1987; Campbell, 1987a, 1987b; Camp-
bell & Graham, 1985; Miller, Perlmutter, & Keating, 1984).
Arithmetical facts would appear to be stored in the form of
associations between digits (in pairs) and answers. When
adult subjects solve a problem, the digits are activated, and
this activation spreads as far as the associated response (or
responses). The speed and precision of the response would
then depend on the strength of the association between the
digits and answers and the amount of interference (Ash-
craft, 1992; Siegler, 1986; Zbrodoff, 1995).

In contrast, children (i.e., from age 5 to 8) appear, for the
most part, to use a variety of counting procedures (Baroody,
1987; Carpenter & Moser, 1984; Fuson, 1982). Groen and
Parkman (1972) have demonstrated that the reaction time
(RT) required for first graders to produce a response to ad-
dition problems with a sum less than or equal to 9 increased
as a function of the size of the smaller addend (min proce-
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dure). They suggested that first graders solve simple ad-
dition problems by using increments. For example, the
mechanism used to solve the problem 3+5 is a count-up
from the larger addend (i.e., 5) through repeated incre-
ments of 1, until the number of steps equals 3, or the min
term (Groen & Resnick, 1977).

The data gathered from studies of young children sug-
gest that development of the ability to add takes the form
of a transition from a systematic algorithmic computation
to memory retrieval processes. It has been thought that up
to the age of 10, in the majority of cases, children count
before moving on to the subsequent memory retrieval
strategy (Ashcraft & Battaglia, 1978; Ashcraft & Fierman,
1982; Ashcraft & Stazyk, 1981; Svenson & Broquist, 1975).
Various empirical arguments have been advanced to sup-
port this theory (Fuson, 1982; Geary & Burlingham-
Dubree, 1989; Siegler & Shrager, 1984). But things are not
that simple.

Solving Additions and Subtractions: From
Algorithmic Computation to Memory Retrieval

The performance of young children shows that the in-
crease in RT as a function of the size of the smaller addend
is observed only for non-tie additions, whereas almost no
size effect is observed in the case of tie additions (e.g.,
2+2; 3+3) (Ashcraft & Fierman, 1982; Groen & Parkman,
1972; Hamann & Ashcraft, 1985).

Moreover, the observations and analyses undertaken by
Siegler (1987; Siegler & Shrager, 1984) have shown that
children of kindergarten age, as well as first and second
graders, use the min procedure for only a third of addi-
tions. They retrieve the results of another third of the prob-
lems directly from memory and make use of other proce-
dures to solve the final third. Thus children, even at an
early age, seem to possess a variety of procedures for solv-
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ing additions. They select these procedures in an adaptive
way—as a function of their probability of success, of the
time taken for problem solving, and of the cost of imple-
menting them (Siegler, 1986). These analyses suggest that
as a result of practice and feedback, children develop as-
sociations between problems (e.g., 4+2) and potential re-
sponses (e.g., 4 5 6 7). In this way, the distribution of as-
sociations may be restricted (i.e., the link between the
operation and the correct response would become domi-
nant) and children might then be able to retrieve the cor-
rect response rapidly from memory. To summarize, the
data show that children retrieve the results from memory
at a very early age, and that 1 by 1 incremental counting
is the less favored procedure, even among 5- to 6-year-olds.
In contrast, research has shown that adults do not system-
atically retrieve responses from memory for simple addi-
tion problems (LeFevre, Sadesky, & Bisanz, 1996; Sven-
son, 1985). Geary and Wiley (1991) have shown that in 12%
of the cases in their study, young adults used verbal count-
ing or a decomposition procedure. Moreover, the use of
backup strategies increased with the level of difficulty of
the operations.

Overall, the data from the performance of adults and
young children in tasks requiring the resolution of simple
addition problems show that: (1) at all ages, subjects pos-
sess a variety of strategies and, at a minimum, counting
and direct retrieval from memory; (2) development does
not take the form of the substitution of one strategy (i.e.,
retrieval) for another (i.e., counting) but instead consists
of a change in the probability that one strategy will be
used instead of another. The youngest subjects primarily
use a counting strategy, whereas adults primarily, but not
exclusively, retrieve results directly from memory.

The data presented above concern addition. We possess
much less information about subtraction (Siegler, 1989;
Siegler & Shrager, 1984; Steinberg, 1985; Svenson &
Hedenborg, 1979; Wood, Resnick, & Groen, 1975). Despite
this, the general observations agree with those made in the
case of addition. Subtraction problems are solved initially
by manipulating objects and subsequently by verbal count-
ing. Verbal counting strategies for subtraction (in particu-
lar, counting down) are more difficult to implement than
the verbal counting strategies for addition (e.g., counting
up). In effect, subjects are less successful in counting n
steps backward than in counting » steps forward (Fuson,
Richards, & Briars, 1982). The errors made by subjects us-
ing counting strategies are of the same type as those ob-
served in the case of addition (Ilg & Ames, 1951).

The resolution of simple subtraction problems through
the direct retrieval of the responses associated with the
operands (e.g., 6 — 2 = 4) is thought to occur at a later
stage than that for addition, but chronometric studies pro-
vide complex data for interpretation (Siegler, 1989; Sven-
son & Hedenborg, 1979). Geary, French, and Wiley (1993)
have discovered a very high level of variation in the pro-
portions of subjects who retrieve subtractive number facts
from memory (between 30% and 80%, depending on the
age of the subjects). The detection of subtraction errors

that are characteristic of memory retrieval, such as cross-
operation errors (e.g., providing the additive response, 8,
to the subtractive problem 6 — 2), or the existence of a
problem-size effect, is not sufficient to allow us to state
that the resolution of subtraction problems does not pri-
marily depend on an algorithmic procedure.

Subtraction is more difficult than addition, possibly be-
cause it is practised less frequently (Fuson, 1984). This
greater level of difficulty becomes apparent as soon as
young children start to use a verbal counting procedure,
and it is perpetuated by the fact that there are fewer direct
memory retrievals than in the case of addition (Fuson &
Kwon, 1984). Subtraction problems may therefore con-
tinue to be solved most frequently by means of an algo-
rithmic procedure, even among adult subjects. Subtraction
would therefore continue to impose a greater cognitive
cost than addition, which is more frequently associated
with direct memory retrieval (see below).

To summarize, the development of strategies for the
resolution of simple addition problems appears to be char-
acterized by a gradual transition from a counting strategy,
which is predominant in young children, to a strategy for
the direct retrieval of the results from memory, which is the
most common strategy among adult subjects. This transi-
tion takes place later and is less clear-cut in the case of
subtraction.

Our aim in this study was to provide evidence to sup-
port this theory by comparing the performance of second
graders and university students in two tasks, one involv-
ing number arithmetic and the other alphabet arithmetic,
using series of addition and subtraction problems (Compton
& Logan, 1991; Klapp, Boches, Trabert, & Logan, 1991;
Logan & Klapp, 1991; Zbrodoff, 1995). The number
arithmetic task consisted of asking subjects to transform,
in their heads, series of one to four numbers by adding or
subtracting an operand of the value 1, 2, 3, or 4 (e.g., the
series 7, 17, 12 together with the operand +2 gives 9, 19,
14). In the second task, alphabet arithmetic, the subjects
had to perform the same transformations on a series of let-
ters in order to obtain other letters (e.g., the letter C to-
gether with the operand +2 gives E; the series F, D, T to-
gether with the operand —3 gives C, 4, Q). Comparing the
performances of the same subjects in these two tasks, one
that necessarily requires algorithmic computation (i.e., al-
phabet arithmetic) because subjects rarely use the alphabet
for counting, and one that may mobilize either algorithmic
knowledge or the possibly automatized retrieval of numer-
ical facts, should make it possible to determine the extent
to which the solving of addition and subtraction problems
is automatized at the two grade levels studied here.

Automaticity and the Problem of Resources

Logan and Klapp (1991) used alphabet arithmetic tasks
to study automaticity in adults. In effect, alphabet arith-
metic is to adults what number arithmetic is to children. It
therefore makes it possible to study the strategies used by
novices. The authors asked subjects to check the correct-
ness of problems such as C+2 = E (true response) as op-
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posed to C+2 = F (false response) (Compton & Logan,
1991; Logan & Klapp, 1991). The subjects had to evalu-
ate their responses as rapidly as possible (their response
times [RTs] were recorded) and also state whether they
had solved each problem by counting or memory retrieval.
The results showed that at the start of the trial, subjects
worked by counting through the alphabet: Their verifica-
tion time was a linear function of the size of the number
to be added. They were thus able to mobilize the same types
of procedure based on letter-line associations as those of
children who use number-line associations (LeFevre, Ku-
lak, & Bisanz, 1991). After extended practice, the subjects
claimed to retrieve the results directly from memory, and
as a result, the slope of the function linking the RTs to the
size of the addend was very close to zero. Klapp et al.
(1991) suggested that the transition from counting to re-
trieval corresponds to the same processes as those that un-
derlie the same transition in children in the case of numbers.
Consequently, these experiments simulated children’s
learning of number arithmetic.

In a second series of experiments, Klapp et al. (1991)
used the same tasks in order to study the sensitivity of per-
formance to the (potential) interference caused by com-
peting tasks. They considered that performance becomes
automatic when memory retrieval replaces algorithmic
counting and that the effect of the size of the addend on
evaluation time disappears. The results suggested that
subjects can perform arithmetical operations at three lev-
els. At Level I (novice), the verification of the operations
takes the form of step-by-step counting through the alpha-
betical sequence: It is slow, and its duration increases as a
linear function of the size of the addends. Moreover, it is
easily disrupted by a simple secondary interference task
(e.g., the repetition of the same word). At Level II (au-
tomatized), the verification times become rapid and inde-
pendent of the size of the addends. A secondary, repetitive
task no longer produces any interference. According to
Logan and Klapp (1991), memory retrieval has now re-
placed the algorithmic procedure. Nevertheless, at this
level a secondary task necessitating concurrent retrievals
from memory (e.g., listing the months of the year) impairs
performance. At Level III (beyond automaticity), verifi-
cation times are even shorter than in Level II, and no fur-
ther interference is detected as a result of the secondary
task, even when this task is costly.

These data demonstrate that the learning of arithmeti-
cal operations takes the form of a transition from algo-
rithmic counting to rapid, direct retrieval from memory,
which becomes increasingly fast and insensitive to inter-
ference. Logan (1988b) distinguishes between this ap-
proach to automaticity (i.e., automaticity-as-memory
view) and the approach that juxtaposes automatic processes
and cognitively costly processes (Hasher & Zacks, 1979;
Posner & Snyder, 1975), and he lists his reservations about
the notion of resources. According to him, this concept
has particular trouble explaining the development of au-
tomaticity and the fact that automaticity does not com-
pletely eliminate interference resulting from a secondary
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task. However, Logan (1988a) also suggests that the two
approaches are not incompatible (Brown & Carr, 1989).

Indeed, a number of recent models combine the idea of
cognitive resources with the ideas of activation and mem-
ory retrieval (Anderson, Reder, & Lebiere, 1996; Cantor
& Engle, 1993; Conway & Engle, 1994; Engle, Cantor, &
Carullo, 1992; Just & Carpenter, 1992). The model of
working memory proposed by Anderson et al. (1996), which
is based on the ACT-R model (Anderson, 1993), seems to
be particularly well suited to formalizing problems relat-
ing to the limitation of cognitive resources and the automa-
tion of retrieval processes.

ACT-R is a model in which a production system acts on
declarative memory. Declarative knowledge (e.g., 3+4 =
7) is viewed in terms of a schematic structure (chunk) that
specifies the category to which the knowledge belongs
(e.g., additive fact number) and that contains units that en-
code the contents of this knowledge (i.e., 3, 4, sum = 7).
Items of knowledge can be activated by the production
rules if they correspond to the goals that form part of these
rules (e.g., calculating a sum) and to the data that are to be
processed during the current task (i.e., 3 and 4). According
to the ACT-R theory, the activation of a chunk depends on
the sources of activation which it receives from the ele-
ments which are currently present in the field of attention
and the strength of the associations between these cle-
ments and the chunk. The activation 4; of a chunk is spec-
ified by the equation 4, =3, W, S,;, where W, represents the
level of activation of the elements for processing and S;; is
the strength of the association between these elements and
the chunk. The probability that an item of knowledge will
be retrieved from long-term memory is an exponential
function of its activation 4;; the access time is a negative
exponential function of this activation. As the level of the
activation received rises, the probability that the knowl-
edge will be activated increases, and the access time falls.

Anderson et al. (1996) insist on the difference between
activations, which control retrieval from declarative mem-
ory, and the sources of activation, which reflect the
salience of an element in the situation in which attention
is focused on it. The authors believe that what is limited is
not so much the maximum level of activation, which de-
pends in part on the strength of the associations Sj;, but
the total quantity of the sources of activation (i.e., the at-
tentional resources: % ). Thus, when subjects simulta-
neously have to perform two tasks that both require the al-
location of attentional resources, the total quantity of the
sources of activation is shared between the elements that
have to be processed in each of the two tasks. The subse-
quent limitation of each of the sources of activation would
therefore have a direct impact on the activation of the items
of knowledge and, consequently, on their accessibility.

In order to demonstrate that the limitation of working
memory capacity is due to memory retrieval problems,
Anderson et al. (1996) followed Carlson, Sullivan, and
Schneider (1989) in using a dual-task paradigm in which
subjects had to retain a series of numbers (of varying span)
in memory while solving an equation (of varying diffi-
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culty). After solving the equation, the subjects were asked
to recall the series of numbers. The authors observed that
an increase in the memory span resulted in longer problem-
solving times and that this effect increased as the prob-
lems became more difficult. The distribution of sources
of activation to a growing number of elements that form
part of either the memory load or the problem that is to be
processed makes it possible to explain the memory span
effect in terms of the mechanical reduction of the activa-
tion levels.

The ACT-R model may allow us to conclude that auto-
maticity, as described by Logan (i.e., through direct mem-
ory retrieval) is cognitively less costly than implementing
a counting algorithm. In effect, an algorithmic procedure
for adding » requires n successive memory retrievals (in
the alphabet or number chain) plus the monitoring of the
number of steps performed, thus resulting in a greater
cognitive cost. This model also makes it possible to explain
why at Level 2 (automatized) as defined by Klapp et al.
(1991), sequential month saying interferes with the veri-
fication of alphabet arithmetic. The memory retrieval of the
list of words would require the allocation of resources, and
this would diminish the level of activation of the result that
is to be verified. Similarly, training beyond what is needed
for automaticity (i.e., direct retrieval) would lead to the
strengthening of the link between the operands and the re-
sult (e.g., 4, 2, and C when the problem for verification is
A + 2 = C). Activation of the result (i.e., C) beyond the
threshold required for retrieval would then require the al-
location of a lower level of resources, and the interference
caused by sequential month saying would disappear.

To summarize, Anderson’s ACT-R model allows us to
integrate Logan’s automaticity-as-memory view with the
conception of automaticity as a reduction of cognitive load.
In our experiment, subjects had to resolve series of oper-
ations on either numbers or letters, while maintaining the
results in memory. This paradigm is akin to the task used
by Anderson et al. (1996), and the same phenomenon (i.e.,
the effect of memory load and problem difficulty) should
result from the tradeoff between processing and storage.

The Present Study

The aim of our research was to confirm that algorithmic
procedures dominate in the solving of addition and sub-
traction problems (with a sum varying between 2 and 26)
in children (second graders), whereas adults (university
students) most frequently solve the same problems by
means of the direct retrieval of the results from memory.!
Thus, when subjects have to apply an operation (e.g., +3)
to a series of numbers (e.g., 13, 7, 18, 22) while retaining
the result ¢."each transformation in memory, it should be-
come more difficult to retain the results as the cognitive
cost of the successive calculations increases.

We assume that the algorithmic resolution of a problem
is cognitively costly and that this procedure limits the num-
ber of items of information that can be stored or processed
in working memory. In contrast, the cost of resolution
through direct memory retrieval is much lower and there-

fore places fewer constraints on the number of items that
can be stored and/or processed in working memory. In con-
sequence, the effect on performance of the number of
items to be transformed and results to be retained in mem-
ory (item span, IS) should decrease as processing becomes
increasingly automatized. Moreover, the effect of the size
of the operand (operation span, OS) should be more
marked in the case of algorithmic strategies than for direct
memory retrieval. In effect, OS determines the number of
steps that subjects have to perform and monitor during
computation when they employ an algorithmic strategy
(e.g.,8+4:9,10, 11, 12; result, 12). In contrast, memory
retrieval should not be sensitive to OS (Klapp et al., 1991;
Logan & Klapp, 1991).

The hypothesis that there is a transition from algorith-
mic processing to direct memory retrieval predicts that
children should employ an algorithmic procedure when
solving addition and subtraction problems involving the
numbers 1-26 as well as the 26 letters of the alphabet. In
consequence, performance patterns should be approxi-
mately equivalent (or at least very similar) for letters and
numbers, additions and subtractions. This is because the
systematic use of counting algorithms and the rare inter-
vention of direct retrieval should mean that there is no, or
only a low level of, interaction between the type of mate-
rial for transformation (numbers vs. letters) and the OS or
IS on the one hand and, on the other, between the opera-
tions (addition vs. subtraction) and the OS or IS.

In contrast, adults should only systematically apply
an algorithmic procedure in the case of alphabetical prob-
lems (given that the subjects are tested during a single ses-
sion only and are therefore unable to achieve a sufficient
level of automaticity, unlike in Klapp et al., 1991). In con-
sequence, performance in number arithmetic, which is
probably heavily based on direct retrieval, should differ
considerably from the performance observed for alphabet
arithmetic. These differences should also be more accen-
tuated for addition than for subtraction. We predicted
interactions between the IS and the material, on the
one hand, and the OS on the other. In effect, since the
adults rely very heavily on algorithmic procedures for al-
phabet arithmetic and direct retrieval for number arith-
metic, their letter performance should be significantly
weaker than their number performance. Furthermore, this
decline in performance as OS and IS increase should be
more accentuated in the case of letters (i.e., when the use
of the algorithm imposes a greater cognitive cost) than in
the case of numbers. Finally, performance differences
between numbers and letters should be greater for addition
problems (greater automation with numbers) than for sub-
traction problems (more frequently solved using an
algorithm).

Anderson’s model predicts an interaction between OS
(i.e., the difficulty of the problem) and IS. This interaction
should be more marked in the 2nd-grade subjects than in
the 12th-grade subjects. Two factors may contribute to this
phenomenon. The first is the possible growth in atten-
tional resources with age, which may result in a reduction
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of the IS and OS effects. The second is the automation of
the task of verbally working through the alphabet or per-
forming numerical calculations. As far as the alphabet is
concerned, automation would result from the strengthen-
ing of associations between successive terms. Thus the
term n+1 would reach the threshold necessary for its re-
trieval more rapidly and easily the stronger its association
with the term »n. Consequently, the cognitive cost of trans-
formations should be less for the adults than for the chil-
dren, and the former should be less sensitive than the lat-
ter to variations in OS.

In short, adult performance on letter problems should
resemble children’s performance on number problems.

METHOD

Subjects

Twenty children in 2nd grade (mean age = 7,5 years, min = 6,11,
max = 7,10) and 20 adolescents in 12th grade (mean age = 17,5
years, min = 16,4, max = 19,4) took part in the experience. There
were 10 females and 10 males in each group.

Material

The material took the form of cards measuring 15 X 10 cm on
which were printed series of letters or numbers 12 mm tall. These se-
ries contained from one to four items (e.g., a series of four letters
could be CKQH; a series of four numbers, 13—18-5-9). The num-
ber of items constituted the item span. To the right of the series were
an operator sign (+ or —) and an operand of the value 1, 2, 3, or 4.
The latter two specifications indicated the direction and size (span)
of the operation that the subjects had to apply to each of the items in
the series. In the case of the letters, the signs + and — referred to the
direction in which subjects had to move through the alphabet (i.c.,
forward for + and backward for —). The operand (1-4) indicated the
number of steps to be performed. For example, the series 4 H T
transformed through the operation +2 gives CJ V. In the case of the
numbers, the signs referred to addition and subtraction operations.
Thus the series 3—18-9 transformed through the operation +2 gives
5-20-11. The letter series were formed from the 26 letters of the al-
phabet and the number series from the whole numbers 1-26.

Four letter series, one for each IS (from 1 to 4), were formed for
each OS (from 1 to 4) and each direction (+ or —). The series were
formed at random, in accordance with the following constraints:
(1) The same letter was not allowed to occur in two series assigned
to the same operation; (2) letters requiring impossible transforma-
tions were removed (e.g., 4 —1 or ¥+3); (3) the result of the opera-
tion was not allowed to contain more than one letter from the origi-
nal series; (4) any series containing two successive letters was
removed. For the letters, a total of 8 sets (4 operation spans X 2 di-
rections) of 4 series (span of 1-4) were formed. The number series
were then formed by substituting the number corresponding to the
position in the alphabet of each letter in the letter series (e.g.,
6-24-20 for F X T). The material therefore contained a total of 64
series (4 item spans X 4 operation spans X 2 directions X 2 types of
material: letters or numbers). These 64 series were divided into four
blocks, which were determined by combining the direction of trans-
formation with the type of material.

Four presentation sequences were constructed for these blocks
(Latin square). In each of the two age groups, 5 subjects were as-
signed to each of the four sequences. Within each block, the series
were presented in ascending order of OS (i.e., 1,2, 3, and 4) and, for
each OS, by ascending order of item span. For example, for the let-
ter + block, the subjects were presented with the series of one, two,
three, and then four letters assigned to +1 and then the four-letter se-
ries assigned to +2 and so on.
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Procedure

The trial took the form of an individual session conducted in a
quiet school room. The subjects were instructed that the task con-
sisted of transforming numbers or letters by addition or subtraction.
In the case of the letters, the experimenter explained that the opera-
tions could be performed by considering the alphabetical order as a
numerical order and gave an example for each direction of transfor-
mation. Two sets of four series consisting of the days of the week or
the months of the year were used in a training phase, and the subjects
were given feedback until they reached a completely correct answer.
All the subjects perfectly understood the principle of transforming
the nonnumerical series.

The experimenter then presented the cards specifying the series
for transformation and the associated operations one at a time. The
subjects performed these operations in their heads while continuing
to view the series for transformation. When they thought that they
had finished, they told the experimenter, who then turned the card
face down on the table as the subject wrote his or her response in a
notebook. The subjects had to write the result of transforming each
item in the order in which these items appeared in the series. Any in-
version was considered to be an error (e.g., for F X T+2, the response
HV Zwas deemed to be an error, the correct response being HZ V).
If the subjects were unable to transform an item in the series or had
forgotten the result, they replaced it with a dash (e.g., H- V).

A stop criterion was used in order to shorten the testing session.
For a given OS, the series were presented in increasing order of size
(one, two, three, four items). When, for a given IS, subjects replaced
one or more items with a dash, the series with larger item spans were
not presented and were scored as failures. In contrast, presentation
was not interrupted if the subjects made an error. For example, fol-
lowing the response H— V'to the item F" X T, the four-letter series was
not presented. In contrast, presentation was not suspended following
the response H U V to the same series, even though this response
was incorrect. We proceeded in this way because we considered that
the absence of a response indicated that the subject’s processing ca-
pacities were saturated at this size of transformation, whereas an in-
correct response could be due to a simple computation error. Indeed,
a preexperiment had shown that when subjects failed to transform a
series for a given OS (forgetting a result), they also failed systemat-
ically on larger series. The dependent variable was the number of se-
ries transformed correctly.

RESULTS

Each subject solved a maximum of 64 problems. The
global success level for all ages combined was 65.4%.
Table 1 gives the number and percentage of errors ob-
served (series not transformed correctly) in each experi-
mental condition. As in the table, the percentages speci-
fied in the remainder of the text are percentages of errors.

A 2 (grade: 2nd and 12th) X 4 (IS: from 1 to 4) X 4
(OS: from 1 to 4) X 2 (operation: addition and subtrac-
tion) X 2 (material: letters and numbers) analysis of vari-
ance was performed with repeated measures on the last four
factors (see Tables Al and A2). All the main effects were
significant. The 2nd-grade subjects made more errors
(49.7%) than did the 12th graders (19.6%) [F(1,38) =
77.54, MS. =751, p < .001]. The series of numbers were
easier to process (24.3%) than the series of letters (45.1%)
[F(1,38)=119.80, MS,=.231, p < .001]. The proportion
of errors increased both with IS (8%, 24%, 45%, and 63%
of errors for the spans 1, 2, 3, and 4, respectively)
[F(3,114) = 186.44, MS, = .198, p < .001], and with the
OS (21%, 33%, 42%, and 43% for the spans 1, 2, 3, and 4)
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Table 1
Numbers of Errors Observed for Each Problem,
With Percentages of Errors, as a Function of Grade

Item Span
Numbers Letters
Grade Operation Span 1 2 3 4 %Emmor 1 2 3 4 %Error % Error
Addition
1 1 01 3 16 25 0 1 6 17 30 28
2 2 1 11 18 40 0 9 16 19 55 48
3 0 5 11 18 43 2 10 18 20 63 53
4 0 5 1519 49 2 11 17 20 63 56
% Error 2 15 50 89 5 39 71 95
Subtraction
1 0 1 10 14 31 0 5 7 19 39 35
2 0 5 13 17 44 0 7 16 18 51 48
3 2 9 14 20 56 7 14 19 19 74 65
4 3 10 15 19 59 8 16 18 19 76 68
% Error 6 31 65 88 19 53 75 94
Total % Error 4 23 58 88 12 46 73 94
Addition
12 1 0 0 0 2 3 1 3 4 5 16 9
2 00 0 1 1 2 0 6 9 21 11
3 01 1 5§ 9 4 7 9 11 39 24
4 00 1 2 4 3 5 6 10 30 17
% Error 01 3 13 13 19 31 44
Subtraction
1 1 1 1 0 4 2 2 8 7 24 14
2 0 0 1 5§ 8 0 5 13 16 43 25
3 01 0 4 6 4 S5 12 14 4 25
4 02 2 3 9 6 9 15 14 55 32
% Error 1 5 5 15 12 26 60 64
Total % Error 1 3 4 14 14 23 46 54

[F(3,114) = 54.87, MS, = .115, p < .001]. Finally, addi-
tions resulted in fewer errors (30.5%) than did subtrac-
tions (38.8%) [F(1,38) = 22.87, MS, = .192, p < .001].
These effects were significant within each grade consid-
ered separately.

As predicted by the hypotheses, the level X material and
level X material X IS interactions were significant. The
effect of the type of material for processing was weaker
among 2nd-grade subjects (56% errors on letters, 43% er-
rors on numbers) than among 12th-grade subjects (34%
errors on letters, only 5% errors on numbers) [F(1,38) =
16.93, MS, = 231, p < .001]. At both levels, the number
of errors increased as a function of IS. However, the inter-
action between the material and the IS took different
forms, depending on the level of the subjects [F(3,114) =
7.81, MS, = .153, p < .001]. In the case of the 2nd-grade
subjects, the difference between numbers and letters did
not increase regularly with the increase in IS (differences
of 8%, 23%, 15%, and 6% for spans of 1, 2, 3, and 4). In
contrast, an increase in this difference was observed among
the 12th-grade subjects (13%, 20%, 42%, and 42%).

These effects suggest that when OS was held constant,
the increase in IS (i.e., the working memory load due to
the increase in the information to be stored) affected
young children’s calculations of number and letters to a
very similar extent. The material X IS interaction was due

to an increase in the number/letter difference between
spans of 1 and 2 as well as to a reduction in this difference
for spans of 3 and 4. The form of this interaction did not
allow us to reject the hypothesis that the two types of ma-
terial are processed in the same way. Indeed, the IS effect
was extremely strong for both letters and numbers. In con-
trast, 12th-grade subjects were largely insensitive to the
increase in IS in the case of numbers (1%, 3%, 4%, and
14% errors for ISs of 1, 2, 3, and 4, respectively), whereas
increasing this span resulted in a marked decline in per-
formance in the case of letters (14%, 23%, 46%, and 54%
errors for ISs of 1, 2, 3, and 4, respectively). The form of
this interaction suggests that the adults were using a more
costly strategy for the letters than for the numbers.

The OS effect was large for both types of material at
grade 2 and, as predicted, the material X OS interaction was
not significant [F(3,57) = 1.98]. In contrast, the OS effect
was observed for the letters only at 12th grade. At this level,
the OS effect on numbers was practically zero (3%, 4%,
7.5%, and 6% errors for spans 1, 2, 3, and 4, respectively;
the linear tendency was not significant, F < 1), whereas
there was a strong effect on letters (20%, 32%, 41%, and
43% errors for spans 1, 2, 3, and 4, respectively) and the
material X OS interaction was significant [F(3,57)=6.47,
MS,=.092, p < .001]. The weak OS and IS effects on the
resolution of series of numbers suggests that the 12th-
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Table 2
R? Values (Percentage of Experimental Variance
Explained by Each Source) Obtained as Part of the
ANOVAs Presented in Table A2 for the Various
Sources of Variation as a Function of Grade

Sources Grade 2 Grade 12
Material .003 431
Operation 012 .040
Operation span (OS) 110 059
Item span (IS) 759 225
Material X Operation .000 020
Material X OS .004 .030
Material X [S .008 .083
Operation X OS 005 .018
Operation X IS .007 .015
OS X IS .034 .030
Material X Operation X OS .001 .004
Material X Operation X IS .003 .014
Material X OS X IS 01 .009
Operation X OS X IS .007 .016
Material X Operation X OS X IS .007 .009

grade subjects were using a strategy that differed from that
which they employed for letters as well as from that used
by the 2nd-grade subjects for numbers and letters. This
strategy, which is insensitive to OS, could be the direct re-
trieval of the result from memory (i.e., 16+3 = 19). Accord-
ingly, the absence of an OS effect is interpreted by Logan
and Klapp (1991) and Klapp'et al. (1991) to be an index
of the automatic direct retrieval of results from memory.

The operation type effect was significant and, consis-
tent with our hypothesis, the operation did not interact
with the material to be transformed in grade 2 (F < 1),
whereas this interaction was significant in adults [F(1,19)=
4.87, MS, = 244, p < .05]. In grade 2, subtractions
elicited more errors than additions, but this difference was
the same for letters (60% and 53% errors for subtraction
and addition, respectively) and numbers (48% and 39%).
In grade 12, the effect of operation was nill for numbers
(7% and 4%), whereas subtraction elicited more errors
(41%) than did addition (27%) on letters. The disappear-
ance of the operation effect on numbers suggested that
adult subjects used the same strategy for both the addi-
tions and subtractions—namely, a direct retrieval from
memory. As a result, both the IS and the OS effects were
weak for subtraction on numbers (see Table 1).

As far as letters are concerned, the operation effect in-
teracted weakly with IS for 2nd-grade subjects (5%, 39%,
71%, and 95% errors for addition, and 19%, 53%, 75%,
and 94% for subtraction for IS of 1, 2, 3, and 4, respectively).
The cognitive cost associated with the processing em-
ployed by subjects was greater in the case of subtraction
than addition; but this difference remained approximately
constant whatever the IS, and the interaction was probably
the result of a ceiling effect. In contrast, the IS effect was
stronger for subtraction (12%, 26%, 60%, and 64% errors
for ISs of 1, 2, 3, and 4, respectively) than for addition
(13%, 19%, 31%, and 44% errors for ISs of 1, 2, 3, and 4,
respectively) in grade 12, and the operation X IS X level
interaction was significant [F(3,114) = 4.91, MS, = .141,
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p < .01]. The results suggest that the 12th graders con-
tinue to employ a step by step strategy for working through
the alphabetical sequence. However, the differential effect
of the operation as a function of IS may result from the
fact that the age-related automation of the alphabetical se-
quence is more pronounced in the forward than in the
backward direction.

The hypothesis of a tradeoff between processing and
storage predicts two interactions: IS X OS and level X IS
X 08. As predicted, the IS X OS interaction was signif-
icant at both levels separately {for grade 2, F(9,171) =
5.44, MS,=.106, p < .001; for grade 12, F(9,171)=2.02,
MS, = .099, p < .05] or globally [F(9,342) =4.21, MS, =
.106, p < .001], and the level X IS X OS interaction was
significant [F(9,342) = 3.49, MS, = .106, p < .001]. The
OS effect increased with increases in IS. This was partic-
ularly clear for 2nd-grade subjects with an IS of 1 (from
0% errors for OS1 to 16% errors for OS4), an IS of 2
(from 10% for OS1 to 53% for OS4), and an IS of 3 (from
33% for OS1 to 81% for OS4). Subjects almost never suc-
ceeded in the four-item tests whatever the OS (83%, 90%,
96%, and 96% errors for OS1, 2, 3, and 4, respectively),
whether they were dealing with numbers or letters. Ac-
cording to the hypothesis that this tradeoff occurs in a re-
source pool the capacity of which grows with age, the
slopes due to the increase in OS were shallower for the
12th-grade subjects. The OS effect (i.e., the increase in
percentage errors from OS1 to OS4) was 6% on IS1, 12%
on IS2, 14% on IS3, and 16% on IS4.

The results suggest that adults employ different pro-
cessing strategies for numbers and letters, whereas identi-
cal strategies are used by 2nd-grade subjects. This results
in the variability of the respective importance of each of
the sources of variation as a function of age (Table 2).

The factor that has the greatest effect on the perfor-
mance of 2nd-grade subjects is the IS (R? = .759). This is
followed by the OS (R? = .110). The factor of material is
of minimal importance (R? = .033) as are the IS X mate-
rial (.008) and OS X material (.004) interactions, even
though the effects of these three factors are significant.
The effect of the type of material is weak in comparison
with the IS and OS effects. In contrast, the performance of
adult subjects is primarily affected by the type of material
for processing (.431), while the importance of IS falls con-
siderably at this level (.225). The change from numbers to
letters has only a small impact on the performance of 2nd-
grade subjects but a considerable impact on 12th-grade
subjects (for whom the [S X material interaction is the third
largest source of variation [R2 = .083], with all the simple
interactions involving the factor of material having a con-
siderably greater effect than at grade 2).

To summarize, the results confirmed the main hypotheses
underlying this experiment. Processing and storage activ-
ities are in competition for a single resource pool, thus
leading to an OS X IS interaction in particular when pro-
cessing imposes a high cognitive load (i.e., at 2nd grade).
At this level, there appears to be no difference between the
strategies used for processing the alphabetical and nu-
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Table 3
R? Values From the Application of Anderson’s
ACT-R Model and Multiple Regression Slopes Between
Operation Span (OS) and Item Span (IS) on the One Hand
and, on the Other, the Probability of Error Observed
as a Function of the Material and Grade

Slope
Grade Material R2 IS IS X 0S
2 Numbers 879 206 .031
Letters 922 184 .037
Overall 916 197 .034
12 Numbers 607 025 .006
Letters .864 076 027
Overall .863 050 017

merical sequences. It is therefore likely that subjects per-
form transformations by working step by step through
both the numerical and alphabetical sequences and moni-
toring the number of steps that they have completed. This
results in a major OS effect.

Although the letter processing strategy appears to be
the same at the 12th-grade level, the same is not the case
for numbers. The error level on number problems no
longer increases as a function of OS, and processing is
sufficiently automatized for IS to have only a weak effect
on performance. Since only minimal resources are allo-
cated to processing, retention in memory and the retrieval
of the results pose few problems. The error level was very
low, peaking at 15% (subtraction, IS 4) as against 88% in
the same condition at grade 2. Finally, we observed an au-
tomation of the alphabetical chain during the course of de-
velopment, and the IS and OS effects were consequently
weaker in 12th-grade than in 2nd-grade subjects.

The facts observed here help us explain three problems.
The first is related to the evaluation of the model of a
tradeoff between processing and storage. The second is re-
lated to the reasons behind the superiority of 12th-grade
over 2nd-grade subjects. It is possible to point to two rea-
sons for this superiority. The first is the automation of pro-
cessing. Since the cognitive cost of processing is less,
there is more space available for storage, and this leads to
improved performance. This hypothesis does not require
us to assume that the resource pool also grows with age
(Case, 1985). The second reason may be that, alongside
automation and the associated effects, there is growth in
the pool of cognitive resources (Halford, 1993; Pascial
Leone, 1970, 1988). The superiority of 12th-grade sub-
jects would then be due to the cumulated effects of an in-
creased volume of resources and greater automation. The
third problem concerns the relationship between auto-
maticity and cognitive resources. We shall analyze these
three problems in the light of the ACT-R model.

DISCUSSION
Anderson et al. (1996) suggest that their model may be

able to account for the limitation of a single resource pool
within a processing unit such as the central processor pro-

posed by Baddeley (1986). We can use this model directly
to investigate the tasks studied here. The subjects in our
experiment were asked to transform series of items (letters
or numbers) and store the results of these transformations.
Here the transformations play the same role as equation
solving in the Anderson et al. (1996) experiment, while
the size of the transformation (i.e., from 1 to 4) corresponds
to the difficulty of the problems. The results that the sub-
jects have to retain in memory correspond to the memory
load, and the item span is the equivalent of the lists for
memorization.

Evaluation of the Tradeoff Model

The ACT-R model stipulates that the probability of a
correct response is a function of both the number of oper-
ations that have to be performed (i.e., the number of steps
by which each element has to be modified, which is de-
pendent on OS) and the number of items that have to be
retrieved from memory. Anderson et al. (1996) suggest that
the probability P(s) of finding the solution is given by the
equation

P(s) = (Pp)" X (Pp)™,

where Py, is the probability of retrieving an item, » is the
number of items, Pp is the probability of correctly imple-
menting a procedure (here, one step in the sequence), and
m is the number of procedures to be implemented. The
probability of success is an exponential function of the
number of items to be retrieved and the number of proce-
dures to be implemented, and the log probability of suc-
cess is therefore a linear function of these parameters. In
consequence, the model can be simply tested by using a
multiple linear regression on log probabilities of success.

Concerning the variable n, we shall restrict ourselves to
the number of results that have already been calculated
and that have to be retrieved from memory in order to pro-
duce the final response (i.e., IS). Of course, processing it-
self requires retrievals from long-term memory both in the
case of a step by step (i.e., given item x in the sequence,
what is item x + 1?) and a direct memory retrieval strategy
(e.g., 9+4 = 7). However, these retrievals and the difficul-
ties that they may cause are already included in the OS in
cases where subjects use a step by step algorithmic strategy.

The variable m is the number of times that the step by
step procedure has to be used in a given test. We assume
that each step in a series requires the firing of the proce-
dure. The value m, which is dependent on IS and OS, is
therefore IS X OS (e.g., if IS=2 and OS = 3, subjects have
to use the procedure for moving one step in the relevant
series six times). The slopes associated with each of these
variables will provide an estimation of the probability of
the failure to retrieve a result that is stored in memory and
an estimation of the probability of the failure to imple-
ment a procedure for moving within the (alphabetical or
numerical) sequence that is to be processed. These slopes
are therefore indicators of the cognitive cost incurred by
the retrieval of an item and the movement of one step
through the sequence. Table 3 gives (1) the values of R? for
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the multiple linear regression testing the ACT-R model,
where n=1S and m =1IS X OS; and (2) the slopes associ-
ated with the IS (i.e., the probability of the failure to re-
trieve a result) and IS X OS parameters (i.e., the proba-
bility of the failure to implement a procedure for moving
one step in the relevant series) as a function of the material
for processing and the level.

Anderson’s model has proved to be particularly power-
ful by accounting for 92% of variance on the letter prob-
lems and 88% of the variance on the number problems at
grade 2. It should be noted that at this level, the IS and IS
X OS slopes for the numbers and letters are very similar.
The addition of an item to the series for transformation re-
sulted in an increase of approximately .20 (.209 and .184)
in the probability of error, and the system was saturated at
ISs of 4. The retention and retrieval of 4 memory items
left only a very low level of resources available for com-
putation, even in the case of OSs of 1, thus resulting in the
observed ceiling effect.

In contrast, the slopes for the 12th-grade subjects are
much shallower and the model accounts only poorly for
the performances observed for numbers (R? = .607), al-
though it continues to explain letter performance (R2 =
.864). As seemed likely from a simple observation of the
results, this suggests that the strategy that these subjects
use when transforming series of numbers is different from
that used for letters.

We have suggested that OS no longer has any effect on
number computations at this level because subjects re-
trieve the results directly from memory and the associated
cognitive cost is no longer a direct function of the size of
the OS. The fall in the IS X OS slope for letters between
the two levels (from .037 to .027) may point to an automa-
tion of the alphabetical sequence, primarily in the canon-
ical (forward) direction.

Superiority of Adults to Children

The regression analysis also made it possible to give an
answer to the second question—namely, that relating to
the reasons for the better performances observed among
the 12th-grade subjects. Can this be explained simply in
terms of the automation process, which frees up resources
that are then allocated to storage requirements, or is there
a simultaneous increase in total processing capacity? We
have suggested that the slopes associated with IS X OS
represent an estimation of the parameter Pp in Anderson’s
model (or, more precisely, 1 — Pp, since we are measuring
errors rather than successes). This probability that the step
by step procedure will fail is an indicator of the cognitive
cost of moving one step in the numerical or alphabetical
sequence.

The data indicate that at grade 2 and for the numbers,
the slope associated with OS (.031) was similar to that ob-
served for letters at grade 12 (.027). If our analysis is cor-
rect, it follows that the cognitive cost of moving through
the number sequence at 2nd grade is comparable to that of
moving through the alphabetical sequence at 12th grade.
In other words, children in the 2nd grade appear to use the
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number sequence as a simple, ordered series that they can
work through in either direction by monitoring the num-
ber of steps that they have completed in the same way as
12th-grade subjects perform calculations within the al-
phabetical sequence. Thus, the cognitive load imposed on
12th-grade subjects asked to perform calculations within
the alphabetical sequence is similar to that on younger
children who are asked to perform numerical calculations.

This situation is comparable to the one designed by
Case, Kurland, and Goldberg (1982), who asked adults to
perform a counting span task in which the subjects had to
count sets by using a series of arbitrary terms that they had
learned earlier. The authors observed that the working
memory spans measured for the adults were comparable
to those exhibited by 6-year-old children who performed
the task while counting the objects by using the normal
number sequence. Case (1985) used these results to argue
that total processing space remained constant throughout
development. When adults’ counting efficiency is rendered
comparable to that of young children, the space that re-
mains available for the storage of the results should be
comparable and the observed span identical.

This argument can only carry conviction if we make
certain that the cognitive cost linked to the counting ac-
tivity is identical in the two groups (i.e., for the children
in the case of the traditional sequence of numbers, and for
the adults, using random terms learned beforehand). This
level of control is possible with the paradigm that we
adopted. The IS X OS slopes for numbers at 2nd grade
and letters at 12th grade are almost identical. This sug-
gests that the cognitive cost associated with number arith-
metic at 2nd grade is identical to that associated with
alphabet arithmetic at 12th grade. If Case’s (1985) reas-
oning is correct, we should expect to observe comparable
performances. However, the 12th-grade subjects made far
fewer errors on the letter problems (33.9%) than did the
2nd-grade subjects on the number problems (43.3%).
Table 3 shows that the IS X OS slopes are comparable,
but that the slope associated with IS is steeper for 2nd-
grade subjects in the number condition (.206) than for
12th-grade subjects in the letter condition (.076). Thus,
despite the fact that the cognitive cost of processing was
comparable, the effect of the number of items to be pro-
cessed was greater in the younger subjects.

Two hypotheses can be advanced to explain this phe-
nomenon. The first supposes that 12th-grade subjects pos-
sess a larger pool of resources, which allows them to store
and retrieve more items even when the cognitive cost of
processing is identical. According to this hypothesis, our
results contradict Case’s (1985) hypothesis of constant
total processing space during development. Two processes
would then account for the improved performance of the
12th-grade subjects: the automation of processing (visi-
ble in the letter condition, where the slope associated with
OS fell from .037 at 2nd grade to .027 at 12th grade) to-
gether with an increase in processing capacity, which
would result in improved performance even if processing
efficiency remained constant.
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In contrast, the second hypothesis is compatible with
Case’s (1985) model. This holds that in the same way that
processing (i.e., calculating results) becomes increasingly
efficient and therefore less costly with age, the processes
involved in the memory storage and retrieval of informa-
tion are also subject to improvement or automatization.2
In effect, it is possible that the activities of storage and re-
trieval involve strategies for the retention and retrieval of
information. The implementation of these strategies could
become automatized with age, or more effective strategies
could be used. In both cases, this would result in improved
recall performance even if the processing required to ob-
tain the results for memorization involved the same cog-
nitive cost, which, as we have seen, is indeed the case.
Thus it might be supposed that adults perform better than
children simply because they have automatized the activ-
ities necessary for the completion of the task. This au-
tomation would relate to both the processing necessary for
the calculation of the results and the activities necessary
for their retention and retrieval.

In the ACT-R model, the automation of processing can
be thought of as a strengthening of the links between the
successive terms in the sequence through which the sub-
ject is working (numerical or alphabetical). If we assume
equal attentional resources, a given stimulus (e.g., the let-
ter G) would activate the following stimulus (i.e., H) more
strongly, and this would lead to improved performance in
the calculation of the results. In effect, this greater ease in
working through the sequence could free up resources and
thus improve the monitoring of the number of steps to be
performed. When adults are confronted with number
problems, this automation will cause the automatic acti-
vation of the result by the term that is to be transformed
and the operator that is to be applied to it. This view is
compatible with Case’s (1985) model. Similarly, a self-
repetition strategy would result in a modification in the
strength of the links between the various terms for recall.
The same quantity of attentional resources would there-
fore lead to a higher level of activation of the set of terms
for recall and thus result in improved performance.

In fact, in Anderson’s (1993) model, the level of activa-
tion of a given item and the probability that it will be ac-
cessed depend both on the quantity of attentional resources
and on the strength of the link between this item and the in-
put items. Thus the model is compatible with the hypoth-
esis of improved performance due either to a global in-
crease in capacity (i.e., an increase in attentional resources)
or to the strengthening of the associative links in the net-
work, or, of course, to the two factors combined. Nothing
in the obtained resuits allows us to decide between these
two hypotheses. Although the second is compatible with
Case’s (1985) model, it presupposes not only that the effi-
ciency of processing improves but also that the efficiency
of all the activities used in solving the task improves.

Automation, Memory Retrieval, and Resources
In our introduction we emphasized that Logan (1988a)
suggested that his automation as memory model might be

compatible with models that mobilize the concept of re-
sources. A comparison of the performance in alphabet and
number arithmetic at the two ages in question makes this
type of synthesis conceivable. Our results clearly indicate
that letter and number calculations at 2nd grade and letter
calculations alone at 12th grade are accompanied by a
high cognitive cost, but that this cost is considerably lower
in the case of numbers at 12th grade. This is entirely com-
patible with the hypothesis of the direct retrieval of results
from memory in the case of numbers at 12th grade.

However, Anderson’s memory model supposes that
memory retrieval, however automatized it may be, requires
the allocation of resources. Klapp et al. (1991) observed
that at Level I1I, subjects’ RTs were no longer affected by
the secondary task of sequential month saying. We ob-
served that IS had an effect on performance at 12th grade,
even in the case of numbers. Thus, a competing memory
load would appear to affect an automatized process (Fayol,
Largy, & Lemaire, 1994; Largy, Fayol, & Lemaire, 1996;
Lemaire, Abdi, & Fayol, 1996). However, Table 1 shows
that the effect of IS on numbers is primarily due to the IS
of 4. This suggests that the automatized process of mem-
ory retrieval is not affected unless the competing memory
load is high, an observation that can also be derived from
Anderson’s model. Since the associations are probably
very strong (S, ), even weak sources of activation are likely
to cause activation of the result at a level that is sufficient
for its retrieval. Only a high competing memory load (e.g.,
IS =4) is likely to disturb this process. In contrast, the com-
putation strategy used by the 2nd graders for both letters
and numbers and by the 12th graders for letters only is sen-
sitive to even the slightest increase in the competing mem-
ory load, as is shown by the regular increase in the failure
rates as a function of IS in the three situations (see Table 1).
This suggests a high cognitive cost.

Moreover, the perception of automation as memory re-
trieval (Logan, 1988b), together with the hypothesis that
learning strengthens the associative links between items
in long-term memory (Anderson, 1993), makes it possible
to account for the differences that exist between children
and adults in the processing of both numbers and letters.
In the first case, as predicted by Logan’s model, there
would be a shift from algorithmic computation to memory
retrieval, and this would result in the disappearance of the
OS effect and a considerable reduction in the IS effect.
Note that these two phenomena affected addition and sub-
traction in the same way, suggesting that the shift from al-
gorithmic computation to direct retrieval occurs in both
operations. In the second case (i.e., letters), the supposi-
tion of a similar change of strategy is rendered impossible
by the persistence of strong IS and OS effects. However,
the automation of the verbal sequence in adults (as a result
of the stronger association between successive items)
helps to explain why the OS effect is weaker. In this case,
it is easier for subjects to work through the alphabet. The
reduced cognitive cost that results from this automation
would then explain why the IS effect is weaker for letters
in the adult subjects.
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Thus, by introducing the concept of resources into a
memory retrieval model, it is possible to think in terms of
two types of automation which may occur during devel-
opment or learning. One takes the form of the substitution
of memory retrieval strategies for algorithmic strategies,
as is suggested by Logan. The other appears to affect the
algorithmic strategies themselves by permitting the faster
and less costly memory retrieval of the items of informa-
tion that are necessary for the implementation of these
strategies as Anderson’s ACT-R model suggests. The
ACT-R model supposes that the learning mechanism is
based on a variation in the strength of the connections be-
tween items. When we consider the automation of the al-
phabetical sequence, it would appear that this model is
more appropriate to the instance theory of automaticity put
forward by Logan (1988b, 1992).

In conclusion, taken overall, these results confirm the
hypothesis that development in solving simple addition
and subtraction problems takes the form of a change of
strategy, with child subjects moving from an algorithmic
strategy of counting up or counting down toward a strat-
egy for the direct retrieval of results from memory at the
adult level. The similarity of the performance patterns ex-
hibited by the 2nd graders on numbers and the 12th graders
on letters points to the existence of a step by step move-
ment strategy through the sequence of numbers in young
children. The considerable effect of the type of material to
be processed on adult subjects suggests that this strategy
is replaced by a strategy for the direct retrieval of results
in the case of numbers but not of letters. As suggested by
Logan (1988a), the introduction of the idea of resources
into a memory retrieval model provides a promising start-
ing point for the explanation of these phenomena. Never-
theless, the detailed functional analysis of this transition
will require further study.
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NOTES

1. Of course, the data in the literature are primarily related to additions
of numbers between 1 and 9 and it is possible that additions of larger
numbers are not automatized, even in adult subjects. This is the reason
why we have limited ourselves to small operands (from 1 to 4), for which
the majority of adults probably employ a retrieval strategy.

2. This alternative hypothesis was suggested to us by E. Sieroff, to
whom we are most grateful.
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APPENDIX
Table A1
Summarized Table of ANOVAs
Sources df MS, F
Level 1,38 0.7506 77.54%
Material 1,38 0.2307 119.80%
Operation 1,38 0.1919 22.87%
Operation span (OS) 3,114 0.1150 54.87%
Item span (IS) 3,114 0.1984 186.44%
Level X Material 1,38 0.2307 16.93%
Level X Operation 1,38 0.1919 0.03
Level X OS 3,114 0.1150 8.23%
Level X IS 3,114 0.1984 47.991
Material X Operation 1,38 0.2021 2.50
Level X Material X Operation 1,38 0.2021 3.41
Material X OS 3,114 0.1058 7.23%
Level X Material X OS 3,114 0.1058 0.64
Material X IS 3,114 0.1525 6.25%
Level X Material X IS 3,114 0.1525 7.81%
Operation X OS 3,114 0.0945 2.03
Level X Operation X OS 3,114 0.0945 4711
Operation X IS 3,114 0.1005 220
Level X Operation X IS 3,114 0.1005 4.36t
OS X IS 9,342 0.1064 4.21%
Level X OS X IS 9,342 0.1064 3.49%
Material X Operation X OS 3,114 0.0732 0.98
Level X Material X Operation X OS 3,114 0.0732 0.89
Material X Operation X IS 3,114 0.1246 041
Level X Material X Operation X IS 3,114 0.1246 3.05*
Material X OS X IS 9,342 0.1038 1.60
Level X Material X OS X IS 9,342 0.1038 0.86
Operation X OS X IS 9,342 0.0923 1.52
Level X Operation X OS X IS 9,342 0.0923 1.06
Material X Operation X OS X IS 9,342 0.0867 0.85
Level X Material X Operation X OS X IS 9,342 0.0867 1.36

*» < 05. p < .01. ip < .00L.

(Continued on next page)
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Table A2
Tables of ANOVASs Performed for each Grade Separately
Sources df MS, F

Grade 2
Material 1,19 0.219 24.55%
Operation 1,19 0.215 9.47%
Operation span (OS) 3,57 0.097 62.41%
Item span (IS) 3,57 0.212 197.94%
Material X Operation 1,19 0.160 0.04
Material X OS 3,57 0.119 1.98
Material X IS 3,57 0.156 2.96*
Operation X OS 3,57 0.095 2.80*
Operation X IS 3,57 0.125 2.93*
0S X IS 9,171 0.113 5.44%
Material X Operation X OS 3,57 0.085 0.62
Material X Operation X IS 3,57 0.176 0.87
Material X OS X IS 9,171 0.095 2.04*
Operation X OS X IS 9,171 0.079 1.67
Material X Operation X OS X IS 9,171 0.085 1.56

Grade 12
Material 1,19 0.242 180.01%
Operation 1,19 0.169 13.97%
08 3,57 0.133 9.02%
IS 3,57 0.185 24.61%
Material X Operation 1,19 0.244 4.87*
Material X OS 3,57 0.092 6.47%
Material X IS 3,57 0.149 11.28%
Operation X OS 3,57 0.094 3.94*
Operation X IS 3,57 0.076 3.86*
OS X IS 9,171 0.099 2.02*
Material X Operation X OS 3,57 0.073 1.38
Material X Operation X IS 3,57 0.073 3.82*
Material X OS X IS 9,171 0.113 0.55
Operation X OS X IS 9,171 0.105 1.00
Material X Operation X OS XIS 9,171 0.089 0.67

*p <.05. Tp <.01. ¥p < .001.

(Manuscript received July 22, 1996;
revision accepted for publication January 11, 1997.)





