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From algorithmic computing to direct
retrieval: Evidence from number and

alphabetic arithmetic in children and adults

PIERRE BARROUILLET and MICHEL FAYOL
Uniuersite de Bourgogne, Dijon, France

A number of theories of mental arithmetic suggest that the ability to solve simple addition and sub
traction problems develops from an algorithmic strategy toward a strategy based on the direct re
trieval of the result from memory. In the experiment presented here, 2nd and 12th graders were asked
to solve two tasks of number and alphabet arithmetic. The subjects transformed series of 1to 4 num
bers or letters (item span) by adding or subtracting an operand varying from 1 to 4 (operation span).
Although both the item and operation span were associated with major and identical effects in the
case of both numbers and letters at 2nd grade, such effects were clearly observable only in the case
of letters for the adult subjects. This suggests the use of an algorithmic strategy for both types of ma
terial in the case of the children and for the letters only in the case of the adults, who retrieved nu
merical results directly from memory.

During the last 20 years, a considerable body of re
search has been devoted to the study of the development
in processing ofsimple addition problems (e.g., 3+2) (Ash
craft, 1982, 1992). This research has shown that adults
possess well-developed mental representations ofnumer
ical facts which enable them to retrieve the results from
memory (e.g., 3+2 = 5) instead ofhaving to calculate them
(Ashcraft, 1982, 1987; Campbell, 1987a, 1987b; Camp
bell & Graham, 1985; Miller, Perlmutter, & Keating, 1984).
Arithmetical facts would appear to be stored in the form of
associations between digits (in pairs) and answers. When
adult subjects solve a problem, the digits are activated, and
this activation spreads as far as the associated response (or
responses). The speed and precision ofthe response would
then depend on the strength ofthe association between the
digits and answers and the amount of interference (Ash
craft, 1992; Siegler, 1986; Zbrodoff, 1995).

In contrast, children (i.e., from age 5 to 8) appear, for the
most part, to use a variety ofcounting procedures (Baroody,
1987; Carpenter & Moser, 1984; Fuson, 1982). Groen and
Parkman (1972) have demonstrated that the reaction time
(RT) required for first graders to produce a response to ad
dition problems with a sum less than or equal to 9 increased
as a function of the size ofthe smaller addend (min proce-
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dure). They suggested that first graders solve simple ad
dition problems by using increments. For example; the
mechanism used to solve the problem 3+5 is a count-up
from the larger addend (i.e., 5) through repeated incre
ments of I, until the number of steps equals 3, or the min
term (Groen & Resnick, 1977).

The data gathered from studies of young children sug
gest that development of the ability to add takes the form
ofa transition from a systematic algorithmic computation
to memory retrieval processes. It has been thought that up
to the age of 10, in the majority of cases, children count
before moving on to the subsequent memory retrieval
strategy (Ashcraft & Battaglia, 1978; Ashcraft & Fierman,
1982; Ashcraft & Stazyk, 1981; Svenson & Broquist, 1975).
Various empirical arguments have been advanced to sup
port this theory (Fuson, 1982; Geary & Burlingham
Dubree, 1989; Siegler & Shrager, 1984). But things are not
that simple.

Solving Additions and Subtractions: From
Algorithmic Computation to Memory Retrieval

The performance of young children shows that the in
crease in RT as a function ofthe size ofthe smaller addend
is observed only for non-tie additions, whereas almost no
size effect is observed in the case of tie additions (e.g.,
2+2; 3+3) (Ashcraft & Fierman, 1982; Groen & Parkman,
1972; Hamann & Ashcraft, 1985).

Moreover, the observations and analyses undertaken by
Siegler (1987; Siegler & Shrager, 1984) have shown that
children of kindergarten age, as well as first and second
graders, use the min procedure for only a third of addi
tions. They retrieve the results ofanother third ofthe prob
lems directly from memory and make use ofother proce
dures to solve the final third. Thus children, even at an
early age, seem to possess a variety ofprocedures for solv-
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ing additions. They select these procedures in an adaptive
way-as a function of their probability of success, of the
time taken for problem solving, and of the cost of imple
menting them (Siegler, 1986). These analyses suggest that
as a result of practice and feedback, children develop as
sociations between problems (e.g., 4+2) and potential re
sponses (e.g., 4 5 6 7). In this way, the distribution of as
sociations may be restricted (i.e., the link between the
operation and the correct response would become domi
nant) and children might then be able to retrieve the cor
rect response rapidly from memory. To summarize, the
data show that children retrieve the results from memory
at a very early age, and that 1 by 1 incremental counting
is the less favored procedure, even among 5- to 6-year-olds.
Incontrast, research has shown that adults do not system
atically retrieve responses from memory for simple addi
tion problems (LeFevre, Sadesky, & Bisanz, 1996; Sven
son, 1985).Geary and Wiley (1991) have shown that in 12%
ofthe cases in their study, young adults used verbal count
ing or a decomposition procedure. Moreover, the use of
backup strategies increased with the level of difficulty of
the operations.

Overall, the data from the performance of adults and
young children in tasks requiring the resolution ofsimple
addition problems show that: (1) at all ages, subjects pos
sess a variety of strategies and, at a minimum, counting
and direct retrieval from memory; (2) development does
not take the form of the substitution of one strategy (i.e.,
retrieval) for another (i.e., counting) but instead consists
of a change in the probability that one strategy will be
used instead of another. The youngest subjects primarily
use a counting strategy, whereas adults primarily, but not
exclusively, retrieve results directly from memory.

The data presented above concern addition. We possess
much less information about subtraction (Siegler, 1989;
Siegler & Shrager, 1984; Steinberg, 1985; Svenson &
Hedenborg, 1979; Wood,Resnick, & Groen, 1975). Despite
this, the general observations agree with those made in the
case ofaddition. Subtraction problems are solved initially
by manipulating objects and subsequently by verbal count
ing. Verbal counting strategies for subtraction (in particu
lar, counting down) are more difficult to implement than
the verbal counting strategies for addition (e.g., counting
up). In effect, subjects are less successful in counting n
steps backward than in counting n steps forward (Fuson,
Richards, & Briars, 1982). The errors made by subjects us
ing counting strategies are of the same type as those ob
served in the case of addition (Ilg & Ames, 1951).

The resolution of simple subtraction problems through
the direct retrieval of the responses associated with the
operands (e.g., 6 - 2 = 4) is thought to occur at a later
stage than that for addition, but chronometric studies pro
vide complex data for interpretation (Siegler, 1989; Sven
son & Hedenborg, 1979). Geary, French, and Wiley (1993)
have discovered a very high level of variation in the pro
portions ofsubjects who retrieve subtractive number facts
from memory (between 30% and 80%, depending on the
age of the subjects). The detection of subtraction errors

that are characteristic of memory retrieval, such as cross
operation errors (e.g., providing the additive response, 8,
to the subtractive problem 6 - 2), or the existence of a
problem-size effect, is not sufficient to allow us to state
that the resolution of subtraction problems does not pri
marily depend on an algorithmic procedure.

Subtraction is more difficult than addition, possibly be
cause it is practised less frequently (Fuson, 1984). This
greater level of difficulty becomes apparent as soon as
young children start to use a verbal counting procedure,
and it is perpetuated by the fact that there are fewer direct
memory retrievals than in the case of addition (Fuson &
Kwon, 1984). Subtraction problems may therefore con
tinue to be solved most frequently by means of an algo
rithmic procedure, even among adult subjects. Subtraction
would therefore continue to impose a greater cognitive
cost than addition, which is more frequently associated
with direct memory retrieval (see below).

To summarize, the development of strategies for the
resolution ofsimple addition problems appears to be char
acterized by a gradual transition from a counting strategy,
which is predominant in young children, to a strategy for
the direct retrieval ofthe results from memory, which is the
most common strategy among adult subjects. This transi
tion takes place later and is less clear-cut in the case of
subtraction.

Our aim in this study was to provide evidence to sup
port this theory by comparing the performance of second
graders and university students in two tasks, one involv
ing number arithmetic and the other alphabet arithmetic,
using series ofaddition and subtraction problems (Compton
& Logan, 1991; Klapp, Boches, Trabert, & Logan, 1991;
Logan & Klapp, 1991; Zbrodoff, 1995). The number
arithmetic task consisted of asking subjects to transform,
in their heads, series ofone to four numbers by adding or
subtracting an operand of the value 1,2,3, or 4 (e.g., the
series 7, 17, 12 together with the operand +2 gives 9, 19,
14). In the second task, alphabet arithmetic, the subjects
had to perform the same transformations on a series oflet
ters in order to obtain other letters (e.g., the letter C to
gether with the operand +2 gives E; the series F, D, Tto
gether with the operand - 3 gives C, A, Q). Comparing the
performances ofthe same subjects in these two tasks, one
that necessarily requires algorithmic computation (i.e., al
phabet arithmetic) because subjects rarely use the alphabet
for counting, and one that may mobilize either algorithmic
knowledge or the possibly automatized retrieval ofnumer
ical facts, should make it possible to determine the extent
to which the solving ofaddition and subtraction problems
is automatized at the two grade levels studied here.

Automaticity and the Problem ofResources
Logan and Klapp (1991) used alphabet arithmetic tasks

to study automaticity in adults. In effect, alphabet arith
metic is to adults what number arithmetic is to children. It
therefore makes it possible to study the strategies used by
novices. The authors asked subjects to check the correct
ness of problems such as C+2 = E (true response) as op-
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posed to C+2 = F (false response) (Compton & Logan,
1991; Logan & Klapp, 1991). The subjects had to evalu
ate their responses as rapidly as possible (their response
times [RTs] were recorded) and also state whether they
had solved each problem by counting or memory retrieval.
The results showed that at the start of the trial, subjects
worked by counting through the alphabet: Their verifica
tion time was a linear function of the size of the number
to be added. They were thus able to mobilize the same types
of procedure based on letter-line associations as those of
children who use number-line associations (LeFevre, Ku
lak, & Bisanz, 1991). After extended practice, the subjects
claimed to retrieve the results directly from memory, and
as a result, the slope ofthe function linking the RTs to the
size of the addend was very close to zero. Klapp et al.
(1991) suggested that the transition from counting to re
trieval corresponds to the same processes as those that un
derlie the same transition in children in the case ofnumbers.
Consequently, these experiments simulated children's
learning ofnumber arithmetic.

In a second series of experiments, Klapp et al. (1991)
used the same tasks in order to study the sensitivity ofper
formance to the (potential) interference caused by com
peting tasks. They considered that performance becomes
automatic when memory retrieval replaces algorithmic
counting and that the effect of the size of the addend on
evaluation time disappears. The results suggested that
subjects can perform arithmetical operations at three lev
els. At Level I (novice), the verification of the operations
takes the form ofstep-by-step counting through the alpha
betical sequence: It is slow, and its duration increases as a
linear function of the size of the addends. Moreover, it is
easily disrupted by a simple secondary interference task
(e.g., the repetition of the same word). At Level II (au
tomatized), the verification times become rapid and inde
pendent ofthe size ofthe addends. A secondary, repetitive
task no longer produces any interference. According to
Logan and Klapp (1991), memory retrieval has now re
placed the algorithmic procedure. Nevertheless, at this
level a secondary task necessitating concurrent retrievals
from memory (e.g., listing the months ofthe year) impairs
performance. At Level III (beyond automaticity), verifi
cation times are even shorter than in Level II, and no fur
ther interference is detected as a result of the secondary
task, even when this task is costly.

These data demonstrate that the learning of arithmeti
cal operations takes the form of a transition from algo
rithmic counting to rapid, direct retrieval from memory,
which becomes increasingly fast and insensitive to inter
ference. Logan (1988b) distinguishes between this ap
proach to automaticity (i.e., automaticity-as-memory
view) and the approach that juxtaposes automatic processes
and cognitively costly processes (Hasher & Zacks, 1979;
Posner & Snyder, 1975), and he lists his reservations about
the notion of resources. According to him, this concept
has particular trouble explaining the development of au
tomaticity and the fact that automaticity does not com
pletely eliminate interference resulting from a secondary

task. However, Logan (l988a) also suggests that the two
approaches are not incompatible (Brown & Carr, 1989).

Indeed, a number of recent models combine the idea of
cognitive resources with the ideas ofactivation and mem
ory retrieval (Anderson, Reder, & Lebiere, 1996; Cantor
& Engle, 1993; Conway & Engle, 1994; Engle, Cantor, &
Carullo, 1992; Just & Carpenter, 1992). The model of
working memory proposed by Anderson et al. (1996), which
is based on the ACT-R model (Anderson, 1993), seems to
be particularly well suited to formalizing problems relat
ing to the limitation ofcognitive resources and the automa
tion ofretrieval processes.

ACT-R is a model in which a production system acts on
declarative memory. Declarative knowledge (e.g., 3+4 =

7) is viewed in terms ofa schematic structure (chunk) that
specifies the category to which the knowledge belongs
(e.g., additive fact number) and that contains units that en
code the contents of this knowledge (i.e., 3,4, sum = 7).
Items of knowledge can be activated by the production
rules ifthey correspond to the goals that form part ofthese
rules (e.g., calculating a sum) and to the data that are to be
processed during the current task (i.e., 3 and 4). According
to the ACT-R theory, the activation ofa chunk depends on
the sources of activation which it receives from the ele
ments which are currently present in the field ofattention
and the strength of the associations between these ele
ments and the chunk. The activation Ai ofa chunk is spec
ified by the equation Ai = I »;Sij' where »; represents the
level ofactivation ofthe elements for processing and Sij is
the strength ofthe association between these elements and
the chunk. The probability that an item ofknowledge will
be retrieved from long-term memory is an exponential
function of its activation Ai; the access time is a negative
exponential function ofthis activation. As the level of the
activation received rises, the probability that the knowl
edge will be activated increases, and the access time falls.

Anderson et al. (1996) insist on the difference between
activations, which control retrieval from declarative mem
ory, and the sources of activation, which reflect the
salience of an element in the situation in which attention
is focused on it. The authors believe that what is limited is
not so much the maximum level of activation, which de
pends in part on the strength of the associations Sij, but
the total quantity of the sources of activation (i.e., the at
tentional resources: I »j). Thus, when subjects simulta
neously have to perform two tasks that both require the al
location of attentional resources, the total quantity of the
sources of activation is shared between the elements that
have to be processed in each of the two tasks. The subse
quent limitation ofeach ofthe sources ofactivation would
therefore have a direct impact on the activation ofthe items
ofknowledge and, consequently, on their accessibility.

In order to demonstrate that the limitation of working
memory capacity is due to memory retrieval problems,
Anderson et al. (1996) followed Carlson, Sullivan, and
Schneider (1989) in using a dual-task paradigm in which
subjects had to retain a series ofnumbers (ofvarying span)
in memory while solving an equation (of varying diffi-
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culty). After solving the equation, the subjects were asked
to recall the series ofnumbers. The authors observed that
an increase in the memory span resulted in longer problem
solving times and that this effect increased as the prob
lems became more difficult. The distribution of sources
of activation to a growing number of elements that form
part ofeither the memory load or the problem that is to be
processed makes it possible to explain the memory span
effect in terms of the mechanical reduction of the activa
tion levels.

The ACT-R model may allow us to conclude that auto
maticity, as described by Logan (i.e., through direct mem
ory retrieval) is cognitively less costly than implementing
a counting algorithm. In effect, an algorithmic procedure
for adding n requires n successive memory retrievals (in
the alphabet or number chain) plus the monitoring ofthe
number of steps performed, thus resulting in a greater
cognitive cost. This model also makes it possible to explain
why at Level 2 (automatized) as defined by Klapp et al.
(1991), sequential month saying interferes with the veri
fication ofalphabet arithmetic. The memory retrieval ofthe
list ofwords would require the allocation ofresources, and
this would diminish the level ofactivation ofthe result that
is to be verified. Similarly, training beyond what is needed
for automaticity (i.e., direct retrieval) would lead to the
strengthening ofthe link between the operands and the re
sult (e.g., A, 2, and C when the problem for verification is
A + 2 = C). Activation of the result (i.e., C) beyond the
threshold required for retrieval would then require the al
location ofa lower level ofresources, and the interference
caused by sequential month saying would disappear.

To summarize, Anderson's ACT-R model allows us to
integrate Logan's automaticity-as-memory view with the
conception ofautomaticity as a reduction ofcognitive load.
In our experiment, subjects had to resolve series of oper
ations on either numbers or letters, while maintaining the
results in memory. This paradigm is akin to the task used
by Anderson et al. (1996), and the same phenomenon (i.e.,
the effect ofmemory load and problem difficulty) should
result from the tradeoff between processing and storage.

The Present Study
The aim ofour research was to confirm that algorithmic

procedures dominate in the solving of addition and sub
traction problems (with a sum varying between 2 and 26)
in children (second graders), whereas adults (university
students) most frequently solve the same problems by
means of the direct retrieval of the results from memory.'
Thus, when subjects have to apply an operation (e.g., +3)
to a series ofnumbers (e.g., 13, 7, 18,22) while retaining
the result c;each transformation in memory, it should be
come more difficult to retain the results as the cognitive
cost of the successive calculations increases.

We assume that the algorithmic resolution ofa problem
is cognitively costly and that this procedure limits the num
ber ofitems ofinformation that can be stored or processed
in working memory. In contrast, the cost of resolution
through direct memory retrieval is much lower and there-

fore places fewer constraints on the number of items that
can be stored and/or processed in working memory. In con
sequence, the effect on performance of the number of
items to be transformed and results to be retained in mem
ory (item span, IS) should decrease as processing becomes
increasingly automatized. Moreover, the effect of the size
of the operand (operation span, OS) should be more
marked in the case ofalgorithmic strategies than for direct
memory retrieval. In effect, as determines the number of
steps that subjects have to perform and monitor during
computation when they employ an algorithmic strategy
(e.g., 8 + 4: 9, 10, 11, 12; result, 12). In contrast, memory
retrieval should not be sensitive to as (Klapp et aI., 1991;
Logan & Klapp, 1991).

The hypothesis that there is a transition from algorith
mic processing to direct memory retrieval predicts that
children should employ an algorithmic procedure when
solving addition and subtraction problems involving the
numbers 1-26 as well as the 26 letters of the alphabet. In
consequence, performance patterns should be approxi
mately equivalent (or at least very similar) for letters and
numbers, additions and subtractions. This is because the
systematic use of counting algorithms and the rare inter
vention ofdirect retrieval should mean that there is no, or
only a low level of, interaction between the type of mate
rial for transformation (numbers vs. letters) and the as or
IS on the one hand and, on the other, between the opera
tions (addition vs. subtraction) and the as or IS.

In contrast, adults should only systematically apply
an algorithmic procedure in the case ofalphabetical prob
lems (given that the subjects are tested during a single ses
sion only and are therefore unable to achieve a sufficient
level ofautomaticity, unlike in Klapp et aI., 1991). In con
sequence, performance in number arithmetic, which is
probably heavily based on direct retrieval, should differ
considerably from the performance observed for alphabet
arithmetic. These differences should also be more accen
tuated for addition than for subtraction. We predicted
interactions between the IS and the material, on the
one hand, and the as on the other. In effect, since the
adults rely very heavily on algorithmic procedures for al
phabet arithmetic and direct retrieval for number arith
metic, their letter performance should be significantly
weaker than their number performance. Furthermore, this
decline in performance as as and IS increase should be
more accentuated in the case ofletters (i.e., when the use
ofthe algorithm imposes a greater cognitive cost) than in
the case of numbers. Finally, performance differences
between numbers and letters should be greater for addition
problems (greater automation with numbers) than for sub
traction problems (more frequently solved using an
algorithm).

Anderson's model predicts an interaction between as
(i.e., the difficulty ofthe problem) and IS. This interaction
should be more marked in the 2nd-grade subjects than in
the 12th-grade subjects. Twofactors may contribute to this
phenomenon. The first is the possible growth in atten
tional resources with age, which may result in a reduction
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of the IS and OS effects. The second is the automation of
the task of verbally working through the alphabet or per
forming numerical calculations. As far as the alphabet is
concerned, automation would result from the strengthen
ing of associations between successive terms. Thus the
term n+1 would reach the threshold necessary for its re
trieval more rapidly and easily the stronger its association
with the term n. Consequently, the cognitive cost of trans
formations should be less for the adults than for the chil
dren, and the former should be less sensitive than the lat
ter to variations in OS.

In short, adult performance on letter problems should
resemble children's performance on number problems.

METHOD

Subjects
Twenty children in 2nd grade (mean age = 7,5 years, min = 6,11,

max = 7,10) and 20 adolescents in 12th grade (mean age = 17,5
years, min = 16,4, max = 19,4) took part in the experience. There
were 10 females and 10 males in each group.

Material
The material took the form of cards measuring 15 X 10 em on

which were printed series ofletters or numbers 12 mm tall. These se
ries contained from one to four items (e.g., a series of four letters
could be CKQH; a series offour numbers, 13-18-5-9). The num
ber of items constituted the item span. To the right ofthe series were
an operator sign (+ or -) and an operand of the value 1,2,3, or 4.
The latter two specifications indicated the direction and size (span)
ofthe operation that the subjects had to apply to each ofthe items in
the series. In the case ofthe letters, the signs + and - referred to the
direction in which subjects had to move through the alphabet (i.e.,
forward for + and backward for -). The operand (1-4) indicated the
number of steps to be performed. For example, the series A H T
transformed through the operation +2 gives C J V. In the case of the
numbers, the signs referred to addition and subtraction operations.
Thus the series 3-18-9 transformed through the operation +2 gives
5-20-11. The letter series were formed from the 26 letters ofthe al
phabet and the number series from the whole numbers 1-26.

Four letter series, one for each IS (from I to 4), were formed for
each as (from I to 4) and each direction (+ or -). The series were
formed at random, in accordance with the following constraints:
(I) The same letter was not allowed to occur in two series assigned
to the same operation; (2) letters requiring impossible transforma
tions were removed (e.g., A -lor Y+3); (3) the result of the opera
tion was not allowed to contain more than one letter from the origi
nal series; (4) any series containing two successive letters was
removed. For the letters, a total of 8 sets (4 operation spans x 2 di
rections) of 4 series (span of 1-4) were formed. The number series
were then formed by substituting the number corresponding to the
position in the alphabet of each letter in the letter series (e .g.,
6-24-20 for F X T). The material therefore contained a total of 64
series (4 item spans X 4 operation spans x 2 directions X 2 types of
material: letters or numbers). These 64 series were divided into four
blocks, which were determined by combining the direction of trans
formation with the type of material.

Four presentation sequences were constructed for these blocks
(Latin square). In each of the two age groups, 5 subjects were ~s

signed to each of the four sequences. Within each block, the senes
were presented in ascending order ofas (i.e., 1,2,3, and 4) and, for
each as, by ascending order of item span. For example, for the let
ter + block, the subjects were presented with the series of one, two,
three, and then four letters assigned to + I and then the four-letter se
ries assigned to +2 and so on.

Procedure
The trial took the form of an individual session conducted in a

quiet school room. The subjects were instructed that the task con
sisted oftransforming numbers or letters by addition or subtraction.
In the case of the letters, the experimenter explained that the opera
tions could be performed by considering the alphabetical order as a
numerical order and gave an example for each direction oftransfor
mation. Two sets offour series consisting ofthe days of the week or
the months ofthe year were used in a training phase, and the subjects
were given feedback until they reached a completely correct answer.
All the subjects perfectly understood the principle of transforming
the nonnumerical series.

The experimenter then presented the cards specifying the series
for transformation and the associated operations one at a time. The
subjects performed these operations in their heads while continuing
to view the series for transformation. When they thought that they
had finished, they told the experimenter, who then turned the card
face down on the table as the subject wrote his or her response in a
notebook. The subjects had to write the result oftransfonning each
item in the order in which these items appeared in the series. Any in
version was considered to be an error (e.g., for F XT+2, the response
H V Z was deemed to be an error, the correct response being HZ V).
If the subjects were unable to transform an item in the series or had
forgotten the result, they replaced it with a dash (e.g., H - V).

A stop criterion was used in order to shorten the testing session.
For a given as, the series were presented in increasing order of size
(one, two, three, four items). When, for a given IS, subjects replaced
one or more items with a dash, the series with larger item spans were
not presented and were scored as failures. In contrast, presentation
was not interrupted if the subjects made an error. For example, fol
lowing the response H - Vto the item F X T, the four-letter series was
not presented. In contrast, presentation was not suspended following
the response H U V to the same series, even though this response
was incorrect. We proceeded in this way because we considered that
the absence ofa response indicated that the subject's processing ca
pacities were saturated at this size oftransfonnation, whereas an in
correct response could be due to a simple computation error. Indeed,
a preexperiment had shown that when subjects failed to transform a
series for a given as (forgetting a result), they also failed systemat
ically on larger series. The dependent variable was the number ofse
ries transformed correctly.

RESULTS

Each subject solved a maximum of 64 problems. The
global success level for all ages combined was 65.4%.
Table I gives the number and percentage of errors ob
served (series not transformed correctly) in each experi
mental condition. As in the table, the percentages speci
fied in the remainder of the text are percentages oferrors.

A 2 (grade: 2nd and 12th) X 4 (IS: from 1 to 4) X 4
(OS: from 1 to 4) X 2 (operation: addition and subtrac
tion) X 2 (material: letters and numbers) analysis of'vari
ance was performed with repeated measures on the last four
factors (see Tables Al and A2). All the main effects were
significant. The 2nd-grade subjects made more errors
(49.7%) than did the 12th graders (19.6%) [F(1,38) =
77.54, MSe = .751,p < .001]. The series of numbers were
easier to process (24.3%) than the series ofletters (45.1%)
[F(1,38) = 119.80,MSe=.231,p < .001]. The proportion
oferrors increased both with IS (8%, 24%, 45%, and 63%
of errors for the spans 1, 2, 3, and 4, respectively)
[F(3,114) = 186.44, MSe = .198,p < .001], and with the
OS (21%, 33%, 42%, and 43% for the spans 1,2,3, and 4)
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Table 1
Numbers of Errors Observed for Each Problem,

With Percentages of Errors, as a Function of Grade

Item Span

Numbers Letters

Grade Operation Span 2 3 4 % Error 2 3 4 % Error % Error

Addition

1 0 1 3 16 25 0 1 6 17 30 28
2 2 1 11 18 40 0 9 16 19 55 48
3 0 5 11 18 43 2 10 18 20 63 53
4 0 5 15 19 49 2 11 17 20 63 56

% Error 2 15 50 89 5 39 71 95

Subtraction

1 0 1 10 14 31 0 5 7 19 39 35
2 0 5 13 17 44 0 7 16 18 51 48
3 2 9 14 20 56 7 14 19 19 74 65
4 3 10 15 19 59 8 16 18 19 76 68

% Error 6 31 65 88 19 53 75 94
Total % Error 4 23 58 88 12 46 73 94

Addition

12 1 0 0 0 2 3 1 3 4 5 16 9
2 0 0 0 1 1 2 0 6 9 21 11
3 0 1 1 5 9 4 7 9 11 39 24
4 0 0 1 2 4 3 5 6 10 30 17

% Error 0 1 3 13 13 19 31 44

Subtraction

1 1 1 1 0 4 2 2 8 7 24 14
2 0 0 1 5 8 0 5 13 16 43 25
3 0 1 0 4 6 4 5 12 14 44 25
4 0 2 2 3 9 6 9 15 14 55 32

% Error 1 5 5 15 12 26 60 64
Total % Error 1 3 4 14 14 23 46 54

[F(3,114) = 54.87, MSe = .115, p < .001]. Finally, addi
tions resulted in fewer errors (30.5%) than did subtrac
tions (38.8%) [F(I,38) = 22.87, MSe = .192, p < .001].
These effects were significant within each grade consid
ered separately.

As predicted by the hypotheses, the level X material and
level X material X IS interactions were significant. The
effect of the type of material for processing was weaker
among 2nd-grade subjects (56% errors on letters, 43% er
rors on numbers) than among 12th-grade subjects (34%
errors on letters, only 5% errors on numbers) [F(1,38) =
16.93, MSe = .231,p < .001]. At both levels, the number
of errors increased as a function ofIS. However, the inter
action between the material and the IS took different
forms, depending on the level of the subjects [F(3,114) =
7.81, MSe = .l53,p < .001]. In the case of the 2nd-grade
subjects, the difference between numbers and letters did
not increase regularly with the increase in IS (differences
of8%, 23%, 15%, and 6% for spans of 1,2,3, and 4). In
contrast, an increase in this difference was observed among
the 12th-grade subjects (13%, 20%,42%, and 42%).

These effects suggest that when as was held constant,
the increase in IS (i.e., the working memory load due to
the increase in the information to be stored) affected
young children's calculations of number and letters to a
very similar extent. The material X IS interaction was due

to an increase in the number/letter difference between
spans of 1 and 2 as well as to a reduction in this difference
for spans of 3 and 4. The form of this interaction did not
allow us to reject the hypothesis that the two types ofma
terial are processed in the same way. Indeed, the IS effect
was extremely strong for both letters and numbers. In con
trast, 12th-grade subjects were largely insensitive to the
increase in IS in the case of numbers (1%, 3%, 4%, and
14% errors for ISs of 1,2,3, and 4, respectively), whereas
increasing this span resulted in a marked decline in per
formance in the case ofletters (14%, 23%, 46%, and 54%
errors for ISs of 1,2,3, and 4, respectively). The form of
this interaction suggests that the adults were using a more
costly strategy for the letters than for the numbers.

The OS effect was large for both types of material at
grade 2 and, as predicted, the material X OS interactionwas
not significant [F(3,57) = 1.98]. In contrast, the OS effect
was observed for the letters only at 12th grade. At this level,
the OS effect on numbers was practically zero (3%, 4%,
7.5%, and 6% errors for spans 1,2,3, and 4, respectively;
the linear tendency was not significant, F < 1), whereas
there was a strong effect on letters (20%, 32%, 41%, and
43% errors for spans 1, 2, 3, and 4, respectively) and the
material X OS interaction was significant [F(3,57) = 6.47,
MSe = .092,p < .001]. The weak OS and IS effects on the
resolution of series of numbers suggests that the 12th-
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Table 2
R2 Values (Percentage ofExperimental Variance

Explained by Each Source) Obtained as Part ofthe
ANOVAs Presented in Table A2 for the Various

Sources of Variation as a Function of Grade

grade subjects were using a strategy that differed from that
which they employed for letters as well as from that used
by the 2nd-grade subjects for numbers and letters. This
strategy,which is insensitive to as, could be the direct re
trievalof the result from memory (i.e., 16+3 = 19).Accord
ingly, the absence of an as effect is interpreted by Logan
and Klapp (1991) and Klapp' et al. (1991) to be an index
of the automatic direct retrieval of results from memory.

The operation type effect was significant and, consis
tent with our hypothesis, the operation did not interact
with the material to be transformed in grade 2 (F < 1),
whereas this interaction was significant in adults [F(1,19)=
4.87, MSe = .244, p < .05]. In grade 2, subtractions
elicited more errors than additions, but this difference was
the same for letters (60% and 53% errors for subtraction
and addition, respectively) and numbers (48% and 39%).
In grade 12, the effect of operation was nill for numbers
(7% and 4%), whereas subtraction elicited more errors
(41%) than did addition (27%) on letters. The disappear
ance of the operation effect on numbers suggested that
adult subjects used the same strategy for both the addi
tions and subtractions-namely, a direct retrieval from
memory. As a result, both the IS and the as effects were
weak for subtraction on numbers (see Table 1).

As far as letters are concerned, the operation effect in
teracted weakly with IS for 2nd-grade subjects (5%, 39%,
71%, and 95% errors for addition, and 19%,53%, 75%,
and94% for subtractionfor IS of l , 2, 3, and 4, respectively).
The cognitive cost associated with the processing em
ployed by subjects was greater in the case of subtraction
than addition; but this difference remained approximately
constant whatever the IS, and the interaction was probably
the result of a ceiling effect. In contrast, the IS effect was
stronger for subtraction (12%, 26%, 60%, and 64% errors
for ISs of I, 2, 3, and 4, respectively) than for addition
(13%,19%,31%, and 44% errors for ISs ofl, 2, 3, and 4,
respectively) in grade 12, and the operation X IS X level
interaction was significant [F(3,114) = 4.91, MSe = .141,

Sources

Material
Operation
Operation span (OS)
Item span (I S)
Material x Operation
Material X OS
Material x IS
Operation X OS
Operation X IS
OS X IS
Material X Operation X OS
Material X Operation X IS
Material X OS X IS
Operation X OS X IS
Material X Operation X OS X IS

Grade 2

.003

.012

.IlO

.759

.000

.004

.008

.005

.007

.034

.001

.003

.0II

.007

.007

Grade 12

.431

.040

.059

.225

.020

.030

.083

.018

.015

.030

.004

.014

.009

.016

.009

p < .01]. The results suggest that the 12th graders con
tinue to employ a step by step strategy for working through
the alphabetical sequence. However, the differential effect
of the operation as a function of IS may result from the
fact that the age-related automation ofthe alphabetical se
quence is more pronounced in the forward than in the
backward direction.

The hypothesis of a tradeoff between processing and
storage predicts two interactions: IS X as and level X IS
X as. As predicted, the IS X as interaction was signif
icant at both levels separately [for grade 2, F(9, I71) =
5.44,MSe = .I06,p < .001; for grade 12,F(9,171)= 2.02,
MSe = .099,p < .05] or globally [F(9,342) = 4.21, MSe =
.106,p < .001], and the level X IS X as interaction was
significant [F(9,342) = 3.49, MSe = .106,p < .001]. The
as effect increased with increases in IS. This was partic
ularly clear for 2nd-grade subjects with an IS of I (from
0% errors for OSI to 16% errors for OS4), an IS of 2
(from 10% forOSl to 53% forOS4), and an IS 00 (from
33% for OSI to 81% for OS4). Subjects almost never suc
ceeded in the four-item tests whatever the as (83%, 90%,
96%, and 96% errors for OSI, 2, 3, and 4, respectively),
whether they were dealing with numbers or letters. Ac
cording to the hypothesis that this tradeoffoccurs in a re
source pool the capacity of which grows with age, the
slopes due to the increase in as were shallower for the
12th-grade subjects. The as effect (i.e., the increase in
percentage errors from as 1 to OS4) was 6% on IS1, 12%
on IS2, 14% on IS3, and 16% on IS4.

The results suggest that adults employ different pro
cessing strategies for numbers and letters, whereas identi
cal strategies are used by 2nd-grade subjects. This results
in the variability of the respective importance of each of
the sources of variation as a function ofage (Table 2).

The factor that has the greatest effect on the perfor
mance of2nd-grade subjects is the IS (R2 = .759). This is
followed by the as (R2 = .110). The factor of material is
of minimal importance (R2 = .033) as are the IS X mate
rial (.008) and as X material (.004) interactions, even
though the effects of these three factors are significant.
The effect of the type of material is weak in comparison
with the IS and as effects. In contrast, the performance of
adult subjects is primarily affected by the type ofmaterial
for processing (.431), while the importance ofIS falls con
siderably at this level (.225). The change from numbers to
letters has only a small impact on the performance of 2nd
grade subjects but a considerable impact on 12th-grade
subjects (for whom the IS X material interaction is the third
largest source ofvariation [R2 = .083], with all the simple
interactions involving the factor ofmaterial having a con
siderably greater effect than at grade 2).

Tosummarize, the resultsconfirmed the main hypotheses
underlying this experiment. Processing and storage activ
ities are in competition for a single resource pool, thus
leading to an as X IS interaction in particular when pro
cessing imposes a high cognitive load (i.e., at 2nd grade).
At this level, there appears to be no difference between the
strategies used for processing the alphabetical and nu-
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DISCUSSION

Anderson et al. (1996) suggest that their model may be
able to account for the limitation ofa single resource pool
within a processing unit such as the central processor pro-

Table 3
R2 Values From the Application of Anderson's

ACT-R Model and Multiple Regression Slopes Between
Operation Span (OS) and Item Span (IS) on the One Hand

and, on the Other, the Probability of Error Observed
as a Function of the Material and Grade

merical sequences. It is therefore likely that subjects per
form transformations by working step by step through
both the numerical and alphabetical sequences and moni
toring the number of steps that they have completed. This
results in a major as effect.

Although the letter processing strategy appears to be
the same at the 12th-grade level, the same is not the case
for numbers. The error level on number problems no
longer increases as a function of as, and processing is
sufficiently automatized for IS to have only a weak effect
on performance. Since only minimal resources are allo
cated to processing, retention in memory and the retrieval
ofthe results pose few problems. The error level was very
low, peaking at 15% (subtraction, IS 4) as against 88% in
the same condition at grade 2. Finally, we observed an au
tomation ofthe alphabetical chain during the course ofde
velopment, and the IS and as effects were consequently
weaker in 12th-grade than in 2nd-grade subjects.

The facts observed here help us explain three problems.
The first is related to the evaluation of the model of a
tradeoffbetween processing and storage. The second is re
lated to the reasons behind the superiority of 12th-grade
over 2nd-grade subjects. It is possible to point to two rea
sons for this superiority. The first is the automation ofpro
cessing. Since the cognitive cost of processing is less,
there is more space available for storage, and this leads to
improved performance. This hypothesis does not require
us to assume that the resource pool also grows with age
(Case, 1985). The second reason may be that, alongside
automation and the associated effects, there is growth in
the pool of cognitive resources (Halford, 1993; Pascual
Leone, 1970, 1988). The superiority of 12th-grade sub
jects would then be due to the cumulated effects of an in
creased volume of resources and greater automation. The
third problem concerns the relationship between auto
maticity and cognitive resources. We shall analyze these
three problems in the light ofthe ACT-R model.

Evaluation of the Tradeoff Model
The ACT-R model stipulates that the probability of a

correct response is a function ofboth the number ofoper
ations that have to be performed (i.e., the number of steps
by which each element has to be modified, which is de
pendent on OS) and the number of items that have to be
retrieved from memory. Anderson et al. (1996) suggest that
the probability P(s) offinding the solution is given by the
equation

P(s) = (PR)n X (pp)m,

where PR is the probability of retrieving an item, n is the
number of items, Pp is the probability ofcorrectly imple
menting a procedure (here, one step in the sequence), and
m is the number of procedures to be implemented. The
probability of success is an exponential function of the
number of items to be retrieved and the number of proce
dures to be implemented, and the log probability of suc
cess is therefore a linear function of these parameters. In
consequence, the model can be simply tested by using a
multiple linear regression on log probabilities of success.

Concerning the variable n, we shall restrict ourselves to
the number of results that have already been calculated
and that have to be retrieved from memory in order to pro
duce the final response (i.e., IS). Ofcourse, processing it
selfrequires retrievals from long-term memory both in the
case of a step by step (i.e., given item x in the sequence,
what is item x + 1?) and a direct memory retrieval strategy
(e.g., 9+4 = ?). However, these retrievals and the difficul
ties that they may cause are already included in the as in
cases where subjects use a step by step algorithmic strategy.

The variable m is the number of times that the step by
step procedure has to be used in a given test. We assume
that each step in a series requires the firing of the proce
dure. The value m, which is dependent on IS and as, is
therefore IS X as (e.g., inS =2 and as = 3, subjects have
to use the procedure for moving one step in the relevant
series six times). The slopes associated with each ofthese
variables will provide an estimation of the probability of
the failure to retrieve a result that is stored in memory and
an estimation of the probability of the failure to imple
ment a procedure for moving within the (alphabetical or
numerical) sequence that is to be processed. These slopes
are therefore indicators of the cognitive cost incurred by
the retrieval of an item and the movement of one step
through the sequence. Table 3 gives (1) the values ofR2for

posed by Baddeley (1986). We can use this model directly
to investigate the tasks studied here. The subjects in our
experiment were asked to transform series ofitems (letters
or numbers) and store the results ofthese transformations.
Here the transformations play the same role as equation
solving in the Anderson et al. (1996) experiment, while
the size ofthe transformation (i.e., from 1to 4) corresponds
to the difficulty ofthe problems. The results that the sub
jects have to retain in memory correspond to the memory
load, and the item span is the equivalent of the lists for
memorization.

.031

.037

.034

.006

.027

.017

IS xOS

Slope

IS

.206

.184

.197

.025

.076

.050

.879

.922

.916

.607

.864

.863

Material

Numbers
Letters

Overall

Numbers
Letters

Overall

2

12

Grade
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the multiple linear regression testing the ACT-R model,
where n = IS and m = IS X as; and (2) the slopes associ
ated with the IS (i.e., the probability of the failure to re
trieve a result) and IS X as parameters (i.e., the proba
bility of the failure to implement a procedure for moving
one step in the relevant series) as a function of the material
for processing and the level.

Anderson's model has proved to be particularly power
ful by accounting for 92% of variance on the letter prob
lems and 88% of the variance on the number problems at
grade 2. It should be noted that at this level, the IS and IS
X as slopes for the numbers and letters are very similar.
The addition ofan item to the series for transformation re
sulted in an increase ofapproximately .20 (.209 and .184)
in the probability oferror, and the system was saturated at
ISs of 4. The retention and retrieval of 4 memory items
left only a very low level of resources available for com
putation, even in the case ofass of I, thus resulting in the
observed ceiling effect.

In contrast, the slopes for the 12th-grade subjects are
much shallower and the model accounts only poorly for
the performances observed for numbers (R2 = .607), al
though it continues to explain letter performance (R2 =
.864). As seemed likely from a simple observation of the
results, this suggests that the strategy that these subjects
use when transforming series ofnumbers is different from
that used for letters.

We have suggested that as no longer has any effect on
number computations at this level because subjects re
trieve the results directly from memory and the associated
cognitive cost is no longer a direct function of the size of
the as. The fall in the IS X as slope for letters between
the two levels (from .037 to .027) may point to an automa
tion of the alphabetical sequence, primarily in the canon
ical (forward) direction.

Superiority ofAdults to Children
The regression analysis also made it possible to give an

answer to the second question-namely, that relating to
the reasons for the better performances observed among
the 12th-grade subjects. Can this be explained simply in
terms of the automation process, which frees up resources
that are then allocated to storage requirements, or is there
a simultaneous increase in total processing capacity? We
have suggested that the slopes associated with IS X as
represent an estimation of the parameter Pp in Anderson's
model (or, more precisely, I - Pp, since we are measuring
errors rather than successes). This probability that the step
by step procedure will fail is an indicator ofthe cognitive
cost of moving one step in the numerical or alphabetical
sequence.

The data indicate that at grade 2 and for the numbers,
the slope associated with as (.031) was similar to that ob
served for letters at grade 12 (.027). If our analysis is cor
rect, it follows that the cognitive cost of moving through
the number sequence at 2nd grade is comparable to that of
moving through the alphabetical sequence at 12th grade.
In other words, children in the 2nd grade appear to use the

number sequence as a simple, ordered series that they can
work through in either direction by monitoring the num
ber of steps that they have completed in the same way as
l Zth-grade subjects perform calculations within the al
phabetical sequence. Thus, the cognitive load imposed on
12th-grade subjects asked to perform calculations within
the alphabetical sequence is similar to that on younger
children who are asked to perform numerical calculations.

This situation is comparable to the one designed by
Case, Kurland, and Goldberg (1982), who asked adults to
perform a counting span task in which the subjects had to
count sets by using a series ofarbitrary terms that they had
learned earlier. The authors observed that the working
memory spans measured for the adults were comparable
to those exhibited by 6-year-old children who performed
the task while counting the objects by using the normal
number sequence. Case (1985) used these results to argue
that total processing space remained constant throughout
development. When adults' counting efficiency is rendered
comparable to that of young children, the space that re
mains available for the storage of the results should be
comparable and the observed span identical.

This argument can only carry conviction if we make
certain that the cognitive cost linked to the counting ac
tivity is identical in the two groups (i.e., for the children
in the case ofthe traditional sequence ofnumbers, and for
the adults, using random terms learned beforehand). This
level of control is possible with the paradigm that we
adopted. The IS X as slopes for numbers at 2nd grade
and letters at 12th grade are almost identical. This sug
gests that the cognitive cost associated with number arith
metic at 2nd grade is identical to that associated with
alphabet arithmetic at 12th grade. If Case's (1985) reas
oning is correct, we should expect to observe comparable
performances. However, the 12th-grade subjects made far
fewer errors on the letter problems (33.9%) than did the
2nd-grade subjects on the number problems (43.3%).
Table 3 shows that the IS X as slopes are comparable,
but that the slope associated with IS is steeper for 2nd
grade subjects in the number condition (.206) than for
12th-grade subjects in the letter condition (.076). Thus,
despite the fact that the cognitive cost of processing was
comparable, the effect of the number of items to be pro
cessed was greater in the younger subjects.

Two hypotheses can be advanced to explain this phe
nomenon. The first supposes that 12th-grade subjects pos
sess a larger pool ofresources, which allows them to store
and retrieve more items even when the cognitive cost of
processing is identical. According to this hypothesis, our
results contradict Case's (1985) hypothesis of constant
total processing space during development. Twoprocesses
would then account for the improved performance of the
12th-grade subjects: the automation of processing (visi
ble in the letter condition, where the slope associated with
as fell from .037 at 2nd grade to .027 at 12th grade) to
gether with an increase in processing capacity, which
would result in improved performance even if processing
efficiency remained constant.
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In contrast, the second hypothesis is compatible with
Case's (1985) model. This holds that in the same way that
processing (i.e., calculating results) becomes increasingly
efficient and therefore less costly with age, the processes
involved in the memory storage and retrieval of informa
tion are also subject to improvement or automatization.s
In effect, it is possible that the activities of storage and re
trieval involve strategies for the retention and retrieval of
information. The implementation ofthese strategies could
become automatized with age, or more effective strategies
could be used. In both cases, this would result in improved
recall performance even if the processing required to ob
tain the results for memorization involved the same cog
nitive cost, which, as we have seen, is indeed the case.
Thus it might be supposed that adults perform better than
children simply because they have automatized the activ
ities necessary for the completion of the task. This au
tomation would relate to both the processing necessary for
the calculation of the results and the activities necessary
for their retention and retrieval.

In the ACT-R model, the automation ofprocessing can
be thought of as a strengthening of the links between the
successive terms in the sequence through which the sub
ject is working (numerical or alphabetical). Ifwe assume
equal attentional resources, a given stimulus (e.g., the let
ter G) would activate the following stimulus (i.e., H) more
strongly, and this would lead to improved performance in
the calculation of the results. In effect, this greater ease in
working through the sequence could free up resources and
thus improve the monitoring of the number of steps to be
performed. When adults are confronted with number
problems, this automation will cause the automatic acti
vation of the result by the term that is to be transformed
and the operator that is to be applied to it. This view is
compatible with Case's (1985) model. Similarly, a self
repetition strategy would result in a modification in the
strength of the links between the various terms for recall.
The same quantity of attentional resources would there
fore lead to a higher level of activation of the set of terms
for recall and thus result in improved performance.

In fact, in Anderson's (1993) model, the level ofactiva
tion of a given item and the probability that it will be ac
cessed depend both on the quantity ofattentional resources
and on the strength ofthe link between this item and the in
put items. Thus the model is compatible with the hypoth
esis of improved performance due either to a global in
crease in capacity (i.e., an increase in attentional resources)
or to the strengthening of the associative links in the net
work, or, of course, to the two factors combined. Nothing
in the obtained results allows us to decide between these
two hypotheses. Although the second is compatible with
Case's (1985) model, it presupposes not only that the effi
ciency ofprocessing improves but also that the efficiency
ofall the activities used in solving the task improves.

Automation, Memory Retrieval, and Resources
In our introduction we emphasized that Logan (1988a)

suggested that his automation as memory model might be

compatible with models that mobilize the concept of re
sources. A comparison ofthe performance in alphabet and
number arithmetic at the two ages in question makes this
type of synthesis conceivable. Our results clearly indicate
that letter and number calculations at 2nd grade and letter
calculations alone at 12th grade are accompanied by a
high cognitive cost, but that this cost is considerably lower
in the case ofnumbers at 12th grade. This is entirely com
patible with the hypothesis ofthe direct retrieval ofresults
from memory in the case of numbers at 12th grade.

However, Anderson's memory model supposes that
memory retrieval, however automatized it may be, requires
the allocation of resources. Klapp et al. (1991) observed
that at Level III, subjects' RTs were no longer affected by
the secondary task of sequential month saying. We ob
served that IS had an effect on performance at 12th grade,
even in the case of numbers. Thus, a competing memory
load would appear to affect an automatized process (Fayol,
Largy, & Lemaire, 1994; Largy, Fayol, & Lemaire, 1996;
Lemaire, Abdi, & Fayol, 1996). However, Table 1 shows
that the effect of IS on numbers is primarily due to the IS
of 4. This suggests that the automatized process of mem
ory retrieval is not affected unless the competing memory
load is high, an observation that can also be derived from
Anderson's model. Since the associations are probably
very strong (Sj), even weak sources ofactivation are likely
to cause activation of the result at a level that is sufficient
for its retrieval. Only a high competing memory load (e.g.,
IS = 4) is likely to disturb this process. In contrast, the com
putation strategy used by the 2nd graders for both letters
and numbers and by the 12th graders for letters only is sen
sitive to even the slightest increase in the competing mem
ory load, as is shown by the regular increase in the failure
rates as a function ofIS in the three situations (see Table 1).
This suggests a high cognitive cost.

Moreover, the perception ofautomation as memory re
trieval (Logan, 1988b), together with the hypothesis that
learning strengthens the associative links between items
in long-term memory (Anderson, 1993), makes it possible
to account for the differences that exist between children
and adults in the processing of both numbers and letters.
In the first case, as predicted by Logan's model, there
would be a shift from algorithmic computation to memory
retrieval, and this would result in the disappearance ofthe
OS effect and a considerable reduction in the IS effect.
Note that these two phenomena affected addition and sub
traction in the same way, suggesting that the shift from al
gorithmic computation to direct retrieval occurs in both
operations. In the second case (i.e., letters), the supposi
tion ofa similar change ofstrategy is rendered impossible
by the persistence of strong IS and OS effects. However,
the automation ofthe verbal sequence in adults (as a result
of the stronger association between successive items)
helps to explain why the OS effect is weaker. In this case,
it is easier for subjects to work through the alphabet. The
reduced cognitive cost that results from this automation
would then explain why the IS effect is weaker for letters
in the adult subjects.
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Thus, by introducing the concept of resources into a
memory retrieval model, it is possible to think in terms of
two types of automation which may occur during devel
opment or learning. One takes the form ofthe substitution
of memory retrieval strategies for algorithmic strategies,
as is suggested by Logan. The other appears to affect the
algorithmic strategies themselves by permitting the faster
and less costly memory retrieval of the items of informa
tion that are necessary for the implementation of these
strategies as Anderson's ACT-R model suggests. The
ACT-R model supposes that the learning mechanism is
based on a variation in the strength of the connections be
tween items. When we consider the automation of the al
phabetical sequence, it would appear that this model is
more appropriate to the instance theory ofautomaticity put
forward by Logan (I 988b, 1992).

In conclusion, taken overall, these results confirm the
hypothesis that development in solving simple addition
and subtraction problems takes the form of a change of
strategy, with child subjects moving from an algorithmic
strategy of counting up or counting down toward a strat
egy for the direct retrieval of results from memory at the
adult level. The similarity of the performance patterns ex
hibited by the 2nd graders on numbers and the 12th graders
on letters points to the existence of a step by step move
ment strategy through the sequence of numbers in young
children. The considerable effect ofthe type ofmaterial to
be processed on adult subjects suggests that this strategy
is replaced by a strategy for the direct retrieval of results
in the case of numbers but not of letters. As suggested by
Logan (1988a), the introduction of the idea of resources
into a memory retrieval model provides a promising start
ing point for the explanation of these phenomena. Never
theless, the detailed functional analysis of this transition
will require further study.
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NOTES

I. Of course, the data in the literatureare primarilyrelated to additions
of numbers between I and 9 and it is possible that additions of larger
numbers are not automatized, even in adult subjects. This is the reason
whywe have limited ourselvesto smalloperands (from I to 4), for which
the majority of adults probably employa retrieval strategy.

2. This alternative hypothesis was suggested to us by E. Sieroff, to
whom we are most grateful.
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APPENDIX

Table Al
Summarized Table of ANOVAs

Sources df MSe F
Level
Material
Operation
Operation span (OS)
Item span (IS)

Level X Material
Level X Operation
Level X OS
Level X IS

Material X Operation
Level X Material X Operation
Material X OS
Level X Material X OS
Material X IS
Level X Material X IS
Operation X OS
Level X Operation X OS
Operation X IS
Level X Operation X IS
OS X IS
Level X OS X IS

Material X Operation X OS
Level X Material X Operation X OS
Material X Operation X IS
Level X Material X Operation X IS
Material X OS X IS
Level X Material X OS X IS
Operation X OS X IS
Level X Operation X OS X IS

Material X Operation X OS X IS
Level X Material X Operation X OS X IS

"p < .05. tp < .01. tp < .001.

1,38 0.7506
1,38 0.2307
1,38 0.1919
3,114 0.1150
3,114 0.1984

1,38 0.2307
1,38 0.1919
3,114 0.1150
3,114 0.1984

1,38 0.2021
1,38 0.2021
3,114 0.1058
3,114 0.1058
3,114 0.1525
3,114 0.1525
3,114 0.0945
3,114 0.0945
3,114 0.1005
3,114 0.1005
9,342 0.1064
9,342 0.1064

3,114 0.0732
3,114 0.0732
3,114 0.1246
3,114 0.1246
9,342 0.1038
9,342 0.1038
9,342 0.0923
9,342 0.0923

9,342 0.0867
9,342 0.0867

77.54t
119.80t
22.87t
54.87t

I86.44t

16.93t
0.03
8.23t

47.99t

2.50
3.41
7.23t
0.64
6.25t
7.8q
2.03
4.71t
2.20
4.36t
4.2q
3.49t

0.98
0.89
0.41
3.05*
1.60
0.86
1.52
1.06

0.85
1.36

(Continued on next page)
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TableA2
Tables of ANOVAs Performed for each Grade Separately

Sources df MS e F

Grade 2
Material 1,19 0.219 24.55t
Operation 1,19 0.215 9.47t
Operation span (OS) 3,57 0.097 62.4Jt
Item span (IS) 3,57 0.212 197.94t

Material X Operation 1,19 0.160 0.04
Material X OS 3,57 0.119 1.98
Material X IS 3,57 0.156 2.96*
Operation X OS 3,57 0.095 2.80*
Operation X IS 3,57 0.125 2.93*
OS X IS 9,171 0.113 5.44t

Material X Operation X OS 3,57 0.085 0.62
Material X Operation X IS 3,57 0.176 0.87
Material X OS X IS 9,171 0.095 2.04*
Operation X OS X IS 9,171 0.079 1.67

Material X Operation X OS X IS 9,171 0.085 1.56

Grade 12
Material 1,19 0.242 180.01t
Operation 1,19 0.169 13.97t
OS 3,57 0.133 9.02t
IS 3,57 0.185 24.6It

Material X Operation 1,19 0.244 4.87*
Material X OS 3,57 0.092 6.47t
Material X IS 3,57 0.149 11.28t
Operation X OS 3,57 0.094 3.94*
Operation X IS 3,57 0.076 3.86*
OS X IS 9,171 0.099 2.02*

Material X Operation X OS 3,57 0.073 1.38
Material X Operation X IS 3,57 0.073 3.82*
Material X OS X IS 9,171 0.113 0.55
Operation X OS X IS 9,171 0.105 1.00

Material X Operation X OS XIS 9,171 0.089 0.67
*p < .05. tp < .01. tp < .001.

(Manuscript received July 22, 1996;
revision accepted for publication January 11, 1997.)




