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When to trust the data: Further investigations of
system error in a scientific reasoning task
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When evaluating experimental evidence, how do people deal with the possibility that some of the
feedback is erroneous? The potential for error means that evidence evaluation must include decisions
about when to "trust the data." In this paper we present two studies that focus on subjects' responses
to erroneous feedback in a hypothesis testing situation-a variant of Wason's (1960) 2-4-6 rule dis­
covery task in which some feedback was subject to system error: "hits" were reported as "misses" and
vice versa. Our results show that, in contrast to previous research, people are equally adept at identi­
fying false negatives and false positives; further, successful subjects were less likely to use a positive
test strategy (Klayman & Ha, 1987) than were unsuccessful subjects, Finally, although others have
found that generating possible hypotheses prior to experimentation increases success and task effi­
ciency, such a manipulation did little to mitigate the effects of system error.

Understanding our world often takes the form of hy­
pothesis testing. We formulate hypotheses about why the
car will not start and about the origins of the universe.
We test these hypotheses with data from observations and
experiments. However, like the Hubble Space Telescope,
the observational instruments may be flawed, or the ex­
perimental equipment may be faulty. Indeed, one of the
principle difficulties we face in both everyday and sci­
entific reasoning is that ofdealing with data that are not
necessarily veridical.

Twotypes oferrors can degrade evidence: measurement
error and system error. Measurement error is usually char­
acterized as random noise added to a continuous variable.
In contrast, system error is characterized as categorical
error in which a signal is changed so that it indicates a
different category than the one from which it actually
came, For example, in a nuclear reactor, measurement error
in a thermocouple reading would result in a distribution
of temperature readings around the true temperature,
whereas system error would result in a signal light indi­
cating that a valve was open when it was, in fact, closed.

Although the study ofmeasurement error has long been
a source of interest to researchers (e.g., Brehmer, 1979,
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1980, 1987; Castellan, 1977; Einhorn & Hogarth, 1981;
Klayman, 1984, 1988; Slovic, Fischhoff, & Lichtenstein,
1971; York,Doherty, & Kamouri, 1987), the effects ofsys­
tem error on reasoning processes have only relatively re­
cently attracted attention (e.g., Doherty & Tweney, 1988;
Gorman, 1986, 1989; Kern, 1982). The possibility ofsys­
tem error suggests that the evidence interpretation pro­
cess includes a phase in which the veridicality of the
evidence must be evaluated. Usually, such decisions are
implicit. However, there are important circumstances when
one must make an explicit determination about whether
or not system error has occurred. Moreover, this deter­
mination may interact with the consequences ofaccepting
or rejecting the evidence. In this paper, we report on two
experiments in which we investigated the cognitive strate­
gies that people use to deal with the possibility of system
error. We employed a laboratory task that has been
widely used in investigations ofthe psychology ofscien­
tific reasoning: the Wason (1960) rule discovery task.

In the Wason task, subjects are presented with a num­
ber triple, [2-4-6], and are told that it is a positive in­
stance ofa general rule which they are to discover. Subjects
generate a hypothesis and an "experiment" (a number
triple) to test their hypothesis. After each experiment, sub­
jects are told whether or not their triple conforms to the
rule. Subjects continue in this manner until they are sure
they know the rule. The usual measures of interest are the
number, type, and pattern of subjects' experiments and
hypotheses.

One consistent finding from studies using the Wason
task is that people overwhelmingly prefer to use what Klay­
man and Ha (1987) called a positive test strategy. Sub­
jects using this strategy generate instances that are posi-
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tive exemplars ofthe currently hypothesized rule (+Htests)
rather than instances that are negative exemplars of the
hypothesized rule ( - Htests). For example, if one's cur­
rent hypothesis is "even numbers," then [4-10-8] would
be a +Htest, while [3-4-11] would be a - Htest.

Nearly all previous investigations of the Wason task
(e.g., Gorman, 1986, 1989; Wason, 1960) concluded that
subjects approach this rule discovery task with a strong
"confirmation bias": a desire to select instances that con­
firm rather than disconfirm the current hypothesis. The
conclusion is based on the consistent tendency for sub­
jects to choose triples that are positive instances of the
current hypothesis. However, as Klayman and Ha's (1987)
analysis clearly demonstrated, there is no logical basis for
interpreting +Htests as attempts to confirm, nor - Htests
as attempts to disconfirm. Depending on the relation be­
tween the hypothesized rule and the true rule, both +Htests
and - Htests can provide either conclusive falsification
or ambiguous verification ofthe current hypothesis. Con­
clusive falsification occurs when a +Htest receives "no"
feedback, or a - Htest receives "yes" feedback. Ambigu­
ous verification occurs when a +Htest receives "yes" feed­
back, or a - Htest receives "no" feedback. Thus, it is im­
possible to determine whether subjects are attempting to
confirm or disconfirm simply by noting whether or not
their triples are instances of the current hypothesis.

Klayman and Ha (1987) argued that a major problem
in testing hypotheses is deciding whether, on average,
conducting +Htests or - Htests will be most informative.
They suggested that people tend to use a simple approach:
Select the strategy that is likely to have the greatest im­
pact on your belief in the current hypothesis. Moreover,
Klayman and Ha argued that in the majority ofreal-world
situations a +Htest strategy is just such a strategy. That is,
even in nondeterministic environments (which could in­
clude system error) a +H strategy remains appropriate,
since, in such situations

falsifications are not conclusive but merely constitute some
evidence against the hypothesis, and verifications must
also be considered informative, despite their logical am­
biguity. Ultimately, it can never be known with certainty
that any given hypothesis is or is not the best possible. One
can only form a belief about the probability that a given
hypothesis is correct, in light of the collected evidence.
(p.219)

Consequently, in the real world, where error is always
possible, scientists must decide not only how a particu­
lar datum bears on their hypotheses, but also how their
hypotheses, plus all the accumulated evidence, bear on
the reliability ofthe datum. That is, they must decide when
to "trust the data."

STUDIES OF SYSTEM ERROR

The experiments reported in this paper extend earlier
work on the effects of system error during scientific rea­
soning tasks (e.g., Doherty & Tweney, 1988; Gorman,
1986, 1989, 1992; Kern, 1982; O'Connor, Doherty, &

Tweney, 1989; Tweney et aI., 1980). To place our work in
context, we will briefly summarize the principal results
from this body of literature.'

Kern (1982) investigated system error by using a mi­
croworld task in which subjects were told that errors
would occur on approximately 25% of the trials. Kern
found that subjects in the error condition were more likely
to challenge the validity of the feedback following falsi­
fication than following verification. This lead Kern to
conclude that subjects were biased to believe that falsi­
fication trials were system errors, and that they used this
bias to justify retaining their hypotheses. That is, they
used the possibility of error to immunize, or preserve,
their current hypothesis.

Gorman (1986) also explored the effects of system
error, particularly how such errors affect efforts to falsify
hypotheses. He presented three groups of subjects with
a variant of the Wason task and instructed each group to
use a different experimental strategy, one of which was
to attempt to falsify, rather than verify, the active hy­
pothesis. In addition, all subjects were told that between
0% and 20% of the feedback that they received would be
erroneous. In fact, all feedback was veridical. Gorman's
results showed that strategy instructions affected neither
task success nor the number oftrials considered to be er­
rors. However, subjects were more likely to consider fal­
sification, rather than verification, trials to be errors,
even though they never received false feedback. These
results led Gorman to concur with Kern's (1982) conclu­
sion about hypothesis preservation; people use the pos­
sibility of system error to label +Htest falsification tri­
als as errors, and thus retain their current hypothesis.

In a later study, Gorman (1989) replicated his earlier
work, but with the addition ofan actual error condition.
He found that actual error subjects often retained a hy­
pothesis following falsification, labeling such trials as
errors. However, in both this and his earlier study, Gor­
man used the traditional Wason rule "Ascending num­
bers." Klayman and Ha (1987) point out that this rule is
almost always more general than subjects' initial hy­
potheses. Thus, since most people prefer a +Htest strat­
egy, their tests tend to be positive instances of the true
rule. Consequently, veridical falsification is rare, and
error trials are overwhelmingly false negatives.

Gorman (1989) did not report the distribution of ver­
ification and falsification trials. However, given his use
of Wason's (1960) traditional rule, it is likely that most,
ifnot all, errors were in the form offalse negatives (i.e.,
reporting that a +Htest was not an exemplar of the rule
when, in fact, it was). This suggests at least one alterna­
tive explanation for Kern's (1982) and Gorman's conclu­
sion that subjects have an immunization bias. Subjects
might simply note the low frequency of falsified trials
and interpret them as similarly infrequent system errors.
That is, both immunization bias and a pattern-matching
heuristic would lead to +Htest falsification trials being
marked as errors. Therefore, it is possible that Gorman's
results reflect a methodological artifact, rather than a
bias toward immunization.



In summary, although the inclusion of system error
into the classic Wason (I 960) task represents an impor­
tant step toward increasing the face validity of labora­
tory explorations of the scientific discovery process, the
procedures used thus far confound rare errors with rare
+Htest falsification. In the studies described below, we
disentangled these two factors; further, we investigated
additional questions about the role of a +Htest strategy
in cases where system errors occur. Specifically, we ad­
dressed the following questions:

I. Are people really biased to label falsification trials
as errors, or is this conclusion based on the confounding
of rare +Htest falsification feedback with rare error trials?
One way to determine the existence of an immunization
bias is to contrast performance when the rule to be dis­
covered is very broad (as in the typical Wason task) with
performance when the rule is structured so as to gener­
ate a balanced distribution of verifications and falsifica­
tions. Gorman (I986, 1989) suggested that subjects' im­
munization bias will preclude them from suspecting that
false positives (i.e., "yes" feedback when in fact the in­
stance does not match the rule) are errors, since such feed­
back provides support for the current hypothesis. How­
ever, if subjects are equally able to identify false positives
and false negatives, the existence of an immunization
bias would be called into question.

2. Is the effectiveness ofa +Htest strategy maintained
in the context of system error, as Klayman and Ha (1987)
have argued?

3. How does system error interact with the unique qual­
itiesofdifferent content domains? Klayman and Ha (1989)
found no differences in rule discovery performance in a
study in which they used both a numerical domain and a
geography domain. However,this work was based on tasks
without system error. Since different content areas sup­
port different types ofrelationships between members, it
is possible that people will not find it equally easy to iden­
tify errors in different domains. For example, the seed [2­
4-6J encompassesmathematical relationshipssuch as "even
numbers." In contrast, the seed [mouse-teat-elephant]
entails a set of relationships, such as "alive," that do not
exist in the [2-4-6J domain. The addition of system
error may interact with the unique qualities of each do­
main to differentially impair success.

EXPERIMENT t

Experiment I incorporated system error into the basic
paradigm of the Wason rule discovery task. In addition
we included a second content domain, along with a sec­
ond rule that has been shown to provide subjects with a
more even distribution of verification and falsification
than does the traditional form of the Wason rule.

Method
Subjects

One hundred and twenty psychology undergraduates participated
in this study for partial course credit. The subjects were run either
singly or in groups of 2 or 3.
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Design
A domain (numerical/animal) X rule (broad/narrow) X error

(presence/absence) between-subjects design was used, with 15 sub­
jects in each of the eight cells. Specific rules (broad or narrow) were
nested within domain. In the numerical domain, the broad rule was
"Numbers in ascending order," and the narrow rule was "Sequen­
tial, even numbers between 2 and 100, inclusive." For both rules, the
initial instance was [2-4-6]. In the animal domain, we used rules
developed by Farris (1992): the broad rule was "Living things," and
the narrow rule was "Mammals in increasing order of size." The
initial instance for both was [mouse-cow-elephant]. In both the
numerical and the animal domains, the broad rule is likely to in­
clude subjects' initial hypotheses. We expected that the preference
for +Htests would lead broad-rule subjects to receive predomi­
nantly verification of their test triples, while narrow-rule subjects
would receive a more even distribution of verification and falsifi­
cation (cf. Klayman & Ha, 1989).

Procedure
The subjects were presented with a pencil-and-paper task and

were told that we were interested in studying scientific reasoning.
At the top of the paper was the initial instance for their condition.
Below the initial instance were columns labeled "Hypothesis," and
"Experiment," and two response columns: "Conforms" and "Does
Not Conform." The subjects were told that the initial instance was
a positive example ofa rule that they were to discover (see the Ap­
pendix for the full text of the instructions). They were told that they
were to generate and write down a hypothesis and a test of that hy­
pothesis, such as [6-8-10] or [cat-dog-horse]. It was emphasized
that they must state their current hypothesis on each trial, though
they were free to repeat hypotheses and tests throughout the study.
After each test, the experimenter indicated whether or not the test
conformed to the rule for the assigned condition, by placing a check
mark in the appropriate response column. The subjects could ter­
minate the study at any time by writing out their proposed rule. The
subjects' record sheets were available to them throughout the study.

In addition to receiving the basic instructions, the subjects in the
error conditions were told that in order to simulate real-world sci­
ence, there might be some "noise" or random error in the feedback
they received. That is, if their experiment conformed to the rule, they
might be told that it did not conform, and vice versa. The subjects
were told that on 0%-20% of their trials they would receive false
feedback (cf. Gorman, 1989). It was emphasized that there might be
no errors, but that, if there were, the errors would occur on no more
than one in five trials, on the average. In fact, all error subjects re­
ceived errors on the same 20% of their trials (e.g., Trials 5, 7, 12,
etc.), determined in advance by using a random number table to se­
lect 5 trials out of 25. However, while the trials on which the sub­
jects received error feedback were determined in advance, the type
of error (i.e., false positive or false negative) depended on the ex­
periments that the subjects conducted on each of the error trials.

Although a 20% error rate may seem so high as to reduce the face
validity of the task as a laboratory analogue of real-world science,
there are several arguments for using such a rate. First, it is the error
rate used in earlier studies, and thus it provides continuity with pre­
vious research (e.g., Gorman, 1986, 1989). Second, we wanted to
affect subjects' reasoning processes without making the task im­
possible to solve. Using very low error rates would require a task
with many more trials, in order to have sufficient instances of error
to get an effect. Third, the rate is not so high as to hopelessly con­
fuse subjects: Gorman's (1989) research showed that some subjects
could generate the correct rule even when 20% of the feedback was
erroneous. Finally, a 20% system error rate is not unheard of in real­
world situations, such as medical diagnosis.'

Subjects were instructed to indicate suspect trials by placing an
"X" next to them. Subjects could change their mind about the sta­
tus of a suspected trial by placing a "j" next to any "X." At the con­
clusion of the study, the subjects were asked to add any final "Xs"
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Figure 1. Proportion ofsubjects discovering (strict success) the
rule for each rule type and error condition. (A) numerical do­
main (broad rule, numbers in ascending order; narrow rule, se­
quential, even numbers between 2 and 100, inclusive). (B) animal
domain (broad rule, living things; narrow rule, mammals in in­
creasing order ofsize).
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gories: 41% were taxonomic (e.g., mammals); 17% were
idiosyncratic (e.g., number of letters, must have thick
skin); 13% were based on relative size (e.g., small to
large); 11% were based on appearance (e.g., all have
legs); 3% referred to location (e.g., found on land); 2%
referred to function (e.g., they all walk). Some hypothe­
ses involved combinations of two categories: 9% com­
bined taxonomic and size categories (e.g., mammals in
order of increasing size); 4% combined taxonomic and
appearance categories (e.g., mammals with four legs).
Thus, although subjects were free to generate any type of
hypothesis they wished, all subjects in the numerical do-

Results

Rule Discovery
We used both a strict and a lenient criterion for deter­

mining whether or not subjects discovered the correct
rule. For the strict criterion, subjects were scored as suc­
cessful only ifthey stated the complete rule for their con­
dition. For the lenient criterion, subjects had to discover
the core of the rule (e.g., sequential, even numbers), but
not the boundary conditions (e.g., between 2 and 100, in­
clusive). In the following analyses, success refers to the
strict criterion; near success, to the lenient criterion.

The mean success rate for no-error subjects was 48%,
whereas for error subjects it was 17% [X2(1, N = 120) =
13.71 ,p < .001]. The no-error success rates (see Figure 1)
were generally similar to those reported by previous re­
searchers (e.g., Farris, 1992; Freedman, 1992a; Gorman,
1989; Klayman & Ha, 1987). A chi-square analysis re­
vealed a significant difference between conditions [X2(7,

N = 120) = 26.4,p < .001]. Inspection of post hoc cell
contributions revealed that in the numerical domain more
broad-rule no-error subjects and fewer narrow-rule error
subjects were successful than expected by chance; within
the animal domain, fewer narrow-rule error subjects were
successful than expected by chance (p < .05 in all cases).

Number of Trials
As Table 1 shows, error subjects, on the average, gen­

erated more than twice as many trials as did their no­
error counterparts [F(1,112) = 72.3,p < .001]. These re­
sults partially replicate those of previous investigations
(Kern, 1982; Gorman, 1989) with respect to the overall
effect of error on number of trials. However, the effect
comes from the numerical domain, for there is a signif­
icant interaction between error and rule nested within
domain [F(3,112) = 4.38, P < .01]. Scheffe post hoc
analyses were conducted to compare error and no-error
conditions for the same rule within each domain, yield­
ing four comparisons. Within the numerical domain, error
subjects conducted significantly more trials than did no­
error subjects for both broad and narrow rule compar­
isons (p < .05). In the animal domain, although there were
more trials by error subjects than by no-error subjects,
the difference was nonsignificant. Because subjects dif­
fered in the number oftrials that they conducted, the fol­
lowing analyses, except where noted, are based on pro­
portions and not absolute values.

or "js" they thought necessary. This allowed us to determine both
the types oftrials subjects associated with error, and whether or not
they correctly identified the errors they received.

Hypothesis Categories
We suggested above that different domains support

categorically different types of hypotheses. In order to
investigate this premise, we categorized subjects' hy­
potheses. All hypotheses in the numerical domain fell
into one category: arithmetical principles (e.g., even num­
bers, numbers in increasing order, n + 2, etc.). Hypothe­
ses in the animal domain belonged to five unique cate-



WHEN TO TRUST THE DATA 659

Table 1
Mean Number (and Standard Deviation) of Trials

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Condition M SD M SD M SD M SD M SD
No error 9.7 5.8 12.3 9.3 8.7 3.2 I\.9 5.3 10.6 6.3
Error 27.6 10.9 26.5 8.3 15.8 5.4 18.3 7.5 22.1 9.6

M 18.6 12.5 19.4 11.3 12.3 5.7 15.1 7.2

main appear to have assumed that the rule must be arith­
metically based. In contrast, subjects in the animal domain
had few a priori constraints on the types of hypotheses
that might prove useful.

+Htest Strategy
One of the motivations for this study was to evaluate

Klayman and Ha's (1987) suggestion that a +Htest strat­
egy can be effective in cases where system error occurs.
Test strategy was scored by comparing the current hy­
pothesis with the test triple for that trial. For example, a
trial with the hypothesis "even numbers" and the triple
[8-10-12] would be scored as a +Htest. If the triple had
been [7-9-11], the trial would be scored as a -Htest.

We found that the already high base rate of +Htests in
no-error conditions was not increased in error conditions:
In both conditions, more than 80% of the experiments
were +Htests (see Table 2). Across conditions, between
8 and 14 subjects generated +Htests on at least 75% of
their trials. There was a main effect only for rule nested
within domain [F(3,112) = 3.58,p < .05]. In the numer­
ical domain, rule type did affect the proportion of+Htests:
76% of the broad-rule subjects' experiments were +Htests;
this proportion was 91% for the narrow-rule subjects (p <
.05). There was no effect of rule for the animal domain.

Experiment Feedback
The observation that subjects predominantly use a

+Htest strategy does not provide any information on the
type of feedback that they received. Gorman (1986,
1989) argued that the proportion of falsification feedback
received is positively correlated with success. However,
Klayman and Ha (1987) have claimed that verification
can be as useful as falsification: +Htest verification high­
lights hypotheses for further investigation. Since feed­
back is independent of test type (Klayman & Ha, 1987),
we analyzed +Htests and - Htests separately, using sub­
jects' perceived data sets.!

+Htest feedback. Virtually all subjects received ver­
ification on more than 50% oftheir +Htests, with broad­
rule no-error subjects in both domains receiving almost
all of their feedback in this form. As noted earlier, the
narrow-rule condition was designed to increase the fre­
quency with which subjects would generate triples that
were not instances of the correct rule. Table 3 lists the
ratio of+Htest verification to falsification for broad-rule
conditions and the ratio of falsification to verification
for narrow-rule conditions.

The manipulation worked: broad-rule subjects received
from 1.5 to 7.3 times as much verification as falsification.
For narrow-rule subjects, the ratio of verification to fal­
sification feedback was reversed and attenuated: narrow­
rule subjects received from 1.1 to 1.9 times as much fal­
sification as verification to their +Htests. Analysis
revealed a main effect for rule nested within domain
[F(3,112) = 43.44,p < .001]. Scheffe post hoc compar­
isons revealed that, in both domains, broad-rule subjects
had proportionally more +Htest verification (71% and
76%, for numerical and animal domains, respectively)
than did narrow-rule subjects (41% and 39%, for nu­
merical and animal domains, respectively) (p < .05 for
all comparisons). There was also an effect oferror: 65%
ofno-error subjects' +Htests were verified, whereas 49%
of error subjects' +Htests were verified [F(I, 112) =

33.25, p < .001].
- Htest feedback. - Htests were much less frequent

than were +Htests. Moreover, there was considerable
disparity in the type of feedback - Htests received: be­
tween 50% and 100% of the narrow-rule subjects re­
ceived only - Htest verification; however, virtually all
broad-rule subjects received falsification on at least one
- Htest.

Analysis revealed a main effect only for rule nested
within domain [F(3,63) = 17.61,p < .001]. In the numer­
ical domain, 36% of broad-rule subjects' -Htests were
verified, whereas 78% of narrow-rule subjects' - Htests

Table 2
Mean Proportion (and Standard Deviation) of+Htests

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Condition M SD M SD M SD M SD M SD
No error .81 .24 .86 .13 .86 .22 .90 .16 .86 .19
Error .72 .21 .96 .07 .75 .24 .85 .18 .82 .21

M .76 .22 .91 .12 .80 .23 .83 .17
--~-,.
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Table 3
Ratio of Mean Proportion of Verified +Htests to Falsified
+Htests (Bold) and Falsified +Htests to Verified +Htests

portion offalse negatives or false positives correctly iden­
tified (see Table 4).

Numerical Animal

Condition Broad Rule Narrow Rule Broad Rule Narrow Rule

were verified; the results were similar in the animal do­
main (25% and 91% for the two rule conditions). Scheffe
post hoc comparisons within both domains were signif­
icant (p < .05 for both comparisons).

Hypothesis Change
An immunization bias predicts that subjects in error

conditions should be less likely to change their hypoth­
esis after receiving falsification than no-error subjects,
since they can treat such feedback as a system error. Over­
all, from 13 to 15 subjects in each condition changed a
hypothesis at least once following falsification. Error
subjects changed their hypothesis following falsification
on 60% of such trials, whereas the no-error subjects did
so on 73% [F(1,107) = 7.06,p < .01].

Response to Error Trials
If subjects have an immunization bias, they should be

more likely to attribute errors to falsified rather than ver­
ified trials. However, as noted above, previous studies of
system error utilized a rule that may have lead to the ma­
jority oferror trials occurring as false negatives (i.e., "no"
feedback); our inclusion ofa narrow rule was designed to
counter this potential problem.

Collapsing over rule and domain, subjects marked 44%
of their verification trials and 56% of their falsification
trials as errors. The difference was nonsignificant. How­
ever, given the qualitative differences between narrow
and broad rule, separate analyses were conducted to see
the effect of rule type on error ascription.

Broad-rule subjects labeled significantly more falsi­
fication trials, 64%, than verification trials, 36%, as er­
rors [t(30) = 2.49,p < .05]. This result is consistent with
Gorman's (1986, 1989) results. In contrast, narrow-rule
subjects were almost evenly split in labeling verification,
52%, and falsification, 48%, trials as errors.

Virtually all error subjects identified at least one of
the false negative errors they received. All numerical, but
only 50% of the animal, subjects identified at least one
false positive. Overall, subjects did not differ in the pro-

Experiment Replication
Replicating an experiment-that is, using a test triple

identical to one used earlier-can be a useful strategy for
identifying error. If the replication feedback is discrepant
from the original feedback, one of the two must have
been an error trial. In contrast, replication is of no bene­
fit in the absence oferrors. Consequently, it is not surpris­
ing that only 2 no-error subjects ever replicated an ex­
periment. Error subjects varied widely in their use of a
replication strategy. Fifty percent of the error subjects
never replicated a trial; the remaining subjects replicated
between 1 and 15 trials. Overall, error subjects replicated
an average of 8% of their trials. There was no effect of
rule nested within domain on the proportion of trials
replicated.

A replication strategy is most useful when subjects
correctly identify error trials as the ones to replicate. Of
those subjects replicating a trial, approximately 50%-75%
replicated at least one error trial.

Overall, 48% of the subjects' replications involved tri­
als on which they had received false feedback. Testing the
proportion oferror trial replications against the actual error
rate of 20% showed that the subjects who did replicate
were more likely to replicate an error trial than would be
expected by chance alone [t(29) = 3.73,p < .001].

Task Success
Strict success. As discussed above, strict success re­

quired subjects to state the complete rule for their con­
dition. The following reports the dependent measures
with respect to this criterion.

As stated above, error subjects changed their current
hypothesis following falsification less often than did no­
error subjects. However, there was no association be­
tween rule discovery and this measure: both successful
and unsuccessful subjects changed their hypothesis
following falsification on approximately 70% of such
trials.

In order to investigate the efficacy of a +Htest strat­
egy, we analyzed the proportion of +Htests conducted
with respect to success. Successful subjects had lower
proportions of +Htests (76%) than did unsuccessful sub­
jects (88%) [F(1,118) = 1O.36,p < .01].

While successful subjects had lower proportions of
+Htests, they received more verification (65%) than did
unsuccessful subjects (53%) to such tests [F(1,118) = 6.28,

1.2
1.9

7.3
1.8

1.1
1.8

4.9
1.5

No error
Error

Table 4
Mean Proportion (and Standard Deviation) of Errors Correctly Identified by Condition

Numerical Animal

Broad Rule Narrow Rule Broad Rule Narrow Rule Combined

Errors M SD N M SD N M SD N M SD N M SD

False positives
False negatives

.83 .27

.62 .31
9 .60 .38

15 .64 .42
15 .50 .55
14 .68 .42

6 .44 .43
15 .60 .46

15 .58 .41
10 .64 .39



p < .05]. Successful and unsuccessful subjects received
verification on approximately half of their - Htests.

Klayman and Ha (1987) argued for the importance of
conclusive falsification, and show how it can result from
either +Htests or - Htests. In the present study, conclusive
falsification played an important role in task success. Al­
though successful and unsuccessful subjects received
about the same proportions of conclusive falsification
(39% and 46%, respectively; see Table 5), the two groups
differed in the source ofthat feedback. Ofthe conclusive
falsifications received by successful subjects, 30% were
in the form of falsified - Htests, while for unsuccessfuls,
only II % of the conclusive falsification came from fal­
sified - Htests. This pattern was generally maintained
for individual rule X domain X error conditions: in six of
eight conditions, - Htest falsifications were between 2
and 10 times more frequent for successful than for un­
successful subjects.

Task success was also associated with the correct iden­
tification of false negative errors; successful subjects
identified 100% oftheir false negative errors and 78% of
their false positives. In contrast, unsuccessful subjects
identified only 56% of their false negatives and 53% of
their false positives. The difference between successful
and unsuccessful subjects was significant for only false
negatives [F(I ,52) = 11.15,p < .01]. Thus, although sub­
jects exhibited no bias toward ignoring false positives,
only the correct identification of false negatives was as­
sociated with successful rule discovery.

Although replication potentially provides a powerful
tool for identifying error trials, our results show that suc­
cessful subjects replicated approximately as often as did
unsuccessful subjects (12% and 7%, respectively). More­
over, there was no difference in proportion of error trial
replications by successful (57%) and unsuccessful (46%)
subjects.

Near success. Traditionally, success on the Wason
task has been defined as a complete statement of the rule.
This perspective was used in the analyses above. How­
ever, the narrow rule can be considered as a two-part rule:
a core (e.g., sequential even numbers), plus a range con­
dition (e.g., between 2 and 100, inclusive). Thus failure
can occur in two qualitatively distinct manners. For ex­
ample, a subject may have no idea about either the core
or the range condition, and consequently be classified as
unsuccessful. However, under the traditional paradigm,
a subject would also be classified as incorrect even if
he/she discovered the core rule (e.g., sequential even num-

Table 5
Proportion of Ambiguous Verification (AV) and Conclusive
Falsification (CF) for Successful and Unsuccessful Subjects

Feedback

Outcome Test Type "Yes" "No"

Successful +H 49%AV 27%CF
-H 12%CF 12%AV

Unsuccessful +H 47%AV 41%CF
-H 5% CF 7%AV
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bers), but missed the range condition (e.g., between 2
and 100, inclusive).

The qualitative difference between the two forms of
incorrectness suggests that it might be worthwhile to
look at the dependent measures with respect to a more lib­
eral measure ofsuccess. Consequently, we scored narrow­
rule subjects as near-successful if they stated, at a mini­
mum, the core condition (see Figure 2). The following
analysis summarizes the most important dependent mea­
sures with respect to near success. Collapsing the results
over rule and domain revealed that the near-success rate
for no-error subjects was 71%, while for error subjects it
was 28% [X2(l, N = 120) = 19.22, p < .0001]. A chi­
square analysis showed a significant difference between
conditions for rule discovery [X2(7, N = 120) = 35.64,
p < .0001]. Inspection of the post hoc cell contributions
revealed that within the numerical domain, more narrow­
rule no-error subjects and fewer broad-rule error sub­
jects were successful than expected by chance alone (p <
.05 for both cases). Within the animal domain, both
broad- and narrow-rule error subjects were less success­
ful than expected (p < .05 for both comparisons).

A series ofanalyses ofvariance revealed no difference
between near-successful and unsuccessful subjects with
respect to proportion of new hypotheses generated fol­
lowing falsification, proportion of +Htests generated,
proportion of verified +Htests and - Htests, proportion
of trials replicated, or proportion of error trials repli­
cated. Moreover, the near-success criterion did little to
change the pattern ofconclusive falsification found with
the strict-success criterion.

Near-success subjects correctly identified 79% oftheir
false positives and 88% of their false negative errors.
Unsuccessful subjects correctly identified 46% of their
false positives and 52% of their false negatives. The dif­
ference between near-successful and unsuccessful sub­
jects was significant for the identification offalse positives
[F(l,52) = 7.66,p < .01] and false negatives [F(l,52) =
11.84,p < .01].

Discussion

The results of Experiment I show that in the classic nu­
merical domain, successful rule discovery on the Wason
task is affected by system error and rule type. However,
in the animal domain, there was an effect only for system
error.

The inclusion of the animal domain was motivated by
a desire to see how system error interacted with the unique
aspects of qualitatively different content domains. The­
oretically, any number of possible rules could be con­
structed to describe either domain. However, while sub­
jects generated different hypotheses for the two domains,
they also differed in the number ofcategories from which
they drew their hypotheses. The subjects' record sheets
reflect these differences: within the numerical domain,
subjects focused exclusively on arithmetical relation­
ships (e.g., even numbers, even numbers increasing by
two, etc.); in contrast, animal domain hypotheses were



Figure 2. Proportion ofsubjects discovering (near success) the
rule for each rule type and error condition. (A) Numerical do­
main (broad rule, numbers in ascending order; narrow rule, se­
quential, even numbers between 2 and 100, inclusive). (B) Animal
domain (broad rule, living things; narrow rule, mammals in in­
creasing order of size).

narrow-rule subjects often failed to include the boundary
conditions as part of their final rules. In contrast, within
the animal domain, many subjects proposed a version of
the narrow rule in both the narrow- and broad-rule con­
ditions. This interaction of rule type and domain raises
questions about analyzing the dependent measures with
respect to task success. This issue will be addressed below.

While the inclusion of system error does affect the
amount oftime people spend in trying to find the correct
rule, there is little effect on people's test strategies. All
subjects relied primarily on a +Htest strategy. In con­
trast, however, to Klayman and Ha's (1987) argument for
the efficacy of a +Htest strategy when there is a possi­
bility of error, we found that the successful subjects in
both error and no-error conditions were those who gen­
erated fewer +Htests. But, in order to fully understand
the relationship between a +Htest strategy and task suc­
cess, the type offeedback subjects received must also be
considered.

Klayman and Ha (1987) argued that when the hypoth­
esis space is large, and errors are possible, high frequen­
cies of+Htest verification provide support for the current
hypothesis and indicate which region of the hypothesis
space to further explore. In contrast, Gorman (1986, 1989)
suggested that higher proportions of falsification are as­
sociated with success. These positions are not mutually
exclusive, and indeed, Experiment 1 supported both:
higher proportions of+Htest verification and higher pro­
portions of - Htest falsification were associated with
task success.

One of the major difficulties facing error subjects is
that of trying to isolate system error trials. One strategy
is to replicate suspect trials. As our results show, people
varied widely in their decision to replicate. However,
when people did replicate, they replicated error trials
more often than would be expected by chance.

As discussed above, many subjects were able to iden­
tify the core portion of the narrow rule, but failed to dis­
cover its boundary conditions. This suggests that the
conventionally used strict-success criterion may under­
estimate the progress people make toward rule discovery.
Subsequent analyses using near success revealed two main
differences from the results found using strict success.
The original analyses showed that successful subjects
generated fewer +Htests, and received less +Htest falsi­
fication; the near-success analyses revealed no differ­
ences on these measures. Thus, over-reliance on a +Htest
strategy appears to hinder discovery, not of the core rule,
but of the boundary conditions.

The use of the near-success criterion does raise some
issues about determining success. First, the liberal crite­
rion only affects the narrow-rule conditions. Since the
broad rules only have a single proposition, there is no
possibility for partial success. Second, the criterion has
a differential affect on the two domains. Comparison of
Figures I and 2 shows that the near-success criterion in­
creased success for both narrow-rule conditions in the
numerical domain, but only for the no-error condition in
the animal domain. In the numerical domain, virtually
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drawn from a wide range of qualitatively different cate­
gories (e.g., size, appearance, taxonomy, etc.). Thus, the
two domains differ in the number, and types, of plausi­
ble hypotheses they support.

These results suggest that the effects of rule on task
success are mediated by the specific properties of the do­
main: The inclusion of the narrow-rule condition low­
ered the proportion of successful subjects only in the
numerical domain. A detailed examination of subjects'
proposed rules revealed that in the numerical domain,



all narrow-rule subjects, regardless of error condition,
generated the core portion of the rule. However, in the
animal domain system, error severely affected people's
ability to form the core portion of the rule; error subjects
generated idiosyncratic rules that bore no resemblance
to the true rule. The impact of system error on the types
of hypotheses generated in different domains is an area
that needs further investigation.

A major motivation for Experiment 1 was to investi­
gate Kern's (1982) and Gorman's (1986, 1989) contention
that people are biased to consider only falsification tri­
als as possible errors. In order to investigate this claim,
we needed to unconfound error trials and false negatives
by making false positives about as likely as false nega­
tives. The inclusion of the narrow rule led to a more bal­
anced distribution of verification and falsification trials
and to the presence ofboth false positives and false neg­
atives. While there was a trend for people to prefer falsi­
fication trials as errors, this result needs to be considered
with respect to rule type: broad- but not narrow-rule sub­
jects labeled proportionally more falsification than ver­
ification trials as errors.

A more liberal interpretation of an immunization bias
is that, given the possibility of system error, people are
reluctant to give up a hypothesis following falsification.
Inclusion of a narrow rule allowed us to investigate this
possibility. Our results show that virtually all subjects
changed their current hypothesis following disconfirma­
tion at least once, although error subjects were less likely
to do so than no-error subjects. Thus, our results do not
support a strict interpretation of an immunization bias;
they do, however, provide some support for a more lib­
eral interpretation.

Obviously, there is a difference between labeling and
correctly identifying a trial as an error. Success was as­
sociated with the identification of higher proportions of
system error. Yet, while successful subjects correctly iden­
tified all of their false negatives, they did not identify all
of their false positives even though they had sufficient
information to do so. Why, then, did successful subjects
not identify all of their false positives?

One explanation is that since subjects have already
concluded that they know the rule, there is little incentive
for them to spend time looking for errors that they might
have missed. Consequently, they fail to identify some of
the false positives that they have received. However, this
explanation fails to account for the fact that successful
subjects did identify all of their false negatives, some of
which were identified at the conclusion ofexperimenta­
tion. This may reflect people's preference for reasoning
from exemplars rather than nonexemplars of a concept
(see, e.g., Bruner, Goodnow, & Austin, 1956). Identifying
false negatives as errors allows one to recast nonexem­
plars as exemplars. This recasting may facilitate the in­
duction of a viable hypothesis by increasing the number
of positive exemplars.

Experiment I raised a number of issues for further ex­
ploration. Our procedure required subjects to have a hy­
pothesis for each test. However, during the course of the
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study some subjects commented on their difficulty in
generating a hypothesis to test. This may have had an un­
expected effect: subjects may have occasionally listed
hypotheses that they were not explicitly testing. As Klahr
and Dunbar (1988) have shown, some subjects prefer to
use experimentation as a means ofgenerating, rather than
evaluating, a hypothesis during experimentation. That is,
they conduct experiments without explicit hypotheses,
using the resulting feedback to eventually generate a hy­
pothesis. Since we required explicit hypotheses for every
trial, it is impossible to tell whether subjects were using
such a strategy. One alternative to this procedure is to allow
subjects to run experiments without explicit hypotheses.

The separate roles of hypothesis generation and eval­
uation raise a second point. Tweney et al. (1980) conducted
a modified version of the Wason task which illustrates
how competing hypotheses might help task success. In this
study, subjects were told that the experimenter would
classify each test as being one of two mutually exclusive
rules. That is, all tests were positive exemplars of one
rule or the other. The manipulation boosted the success
rate to 85%; it was approximately 30% in the traditional
Wason task.

However, this research has two drawbacks. First, com­
peting hypotheses in real-world tasks are unlikely to be
either mutually exclusive or exhaustive. Second, the ma­
nipulation does not really investigate how multiple hy­
potheses affect task performance; rather, it shows how
receiving only confirmatory feedback affects the dis­
covery of two mutually exclusive rules.

A number ofresearchers (e.g., Freedman, 1992b; Klahr
& Dunbar, 1988; Tweney, Doherty, & Mynatt, 1981) have
investigated the effects ofgenerating alternative hypothe­
ses prior to experimentation. This work suggests that peo­
ple can generate a correct hypothesis without conducting
any experiments; moreover, the manipulation improves
the efficiency with which the correct hypothesis is sub­
sequently discovered. However, the effects ofsystem error
on such a strategy have not been investigated in any of
these studies.

In order to explore these issues, we designed a second
experiment in order to investigate the following questions:
(1) Does initially listing multiple hypotheses increase the
proportion of error subjects who discover the rule, and
does it improve the efficiency of their experimentation?
(2) Do subjects choose to conduct experiments without
stated hypotheses, and if so, is this an effective strategy
for rule discovery, given the possibility of system error?

EXPERIMENT 2

Method
Subjects

The subjects were 59 college undergraduates. They were run sep­
arately, and they received course credit for participating in the study.

Design
A prior hypotheses (presence/absence) X error (presence/

absence) between-subjects design was used. In order to provide a
balance of "yes" and "no" feedback, all subjects were required to
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discover the narrow rule, "Sequential, even, numbers between 2 and
100, inclusive." The seed trial was [2-4-6).

Procedure
The procedure was identical to that of Experiment I, with the fol­

lowing differences. Prior to experimentation, subjects in the prior­
hypotheses conditions were shown the set [2-4-6) and were in­
structed to list as many rules as they could that described this set of
numbers. The subjects' hypotheses were available to them through­
out the remainder ofthe study.

All subjects were told that some people found it useful to some­
times conduct experiments without hypotheses. Thus, if they chose
to, subjects could conduct nil hypothesis trials.

Results

Prior Hypotheses
In order to ensure that the error and no-error subjects

did not differ in the number and quality of their prior hy­
potheses, we compared them on both of these measures.
While no-error subjects generated slightly fewer prior
hypotheses than did error subjects (3.8 vs. 5.3), the dif­
ference was nonsignificant.

The quality of the prior hypotheses was judged by 10
psychology graduate students. Each proposed hypothe­
sis was rated against the correct rule on a scale from 0
(no match) to 1 (perfect match). A Kendall coefficient of
concordance was calculated in order to measure the de­
gree of agreement between the judges. Although the
judges did not completely agree in their rankings, they
did agree more than would be expected by chance (W =
.46,p < .001).

No subject generated the correct rule prior to experi­
mentation. In order to estimate subjects' best guess as to
the correct rule, we compared subjects' highest rated hy­
pothesis. Mean ratings for these "best prior" hypotheses
ranged from .33 to .78, with overall mean ratings of .51
for error subjects and .52 for no-error subjects.

Rule Discovery
In the no-error condition, 53% and 29% of the subjects

discovered the rule in the no-prior and prior-hypotheses
conditions, respectively, though the difference was non­
significant. In the error condition, only 7% of the sub­
jects in either hypothesis condition were successful. A
chi-square analysis revealed an overall difference be­
tween conditions [X2(3, N = 59) = 12.27, p < .01]. In­
spection of the post hoc cell contributions revealed that
more no-error no-prior subjects were successful than
would be expected by chance (p < .05). Collapsing hy­
potheses revealed an overall effect for the presence ~f

system error [X2(1, N = 59) = 9.82,p < .01]. Analysis
of the post hoc cell contributions showed that fewer error
subjects were successful than would be expected by
chance (p < .05).

Number of Trials
One possible effect ofgenerating prior hypotheses may

be to increase subjects' search efficiency. In particular,
given the confusion that system error evokes, a source of
prior hypotheses may be especially beneficial for error

subjects. If so, there should be a decrease in the number
oftrials that these subjects generate. However, as Table 6
shows, there was no effect ofprior hypotheses on the num­
ber of trials conducted. As in Experiment 1, error sub­
jects generated approximately twice as many trials as did
no-error subjects [17.2 vs. 9.0; F(l,55) = 22.4,p < .01].

Nil Hypothesis Trials
During Experiment 1, error subjects' comments sug­

gested that they had difficulty generating new hypothe­
ses to test. Since prior-hypotheses subjects have a set of
hypotheses to fall back on, we expected that they would
produce fewer nil trials than would no-prior-hypotheses
subjects. In the no-prior-hypotheses condition, 10% of
no-error subjects' trials and 3% ofthe error subjects' tri­
als were conducted without hypotheses; however, all of
the no-error nil trials were by a single subject. None of
the prior-hypotheses subjects conducted a nil hypothesis
trial. Thus, contrary to our expectations, subjects rarely
conducted experiments without an explicit hypothesis.

+Htest Strategy
Regardlessofwhen hypothesesare generated, they must

still be evaluated by generating experimental trials. As in
Experiment 1, approximately 80% of subjects' trials in­
volved--Htests." There wasno effectoferror or ofprior hy­
potheses on the proportion of +Htests proposed.

Experiment Feedback
As in Experiment 1, we analyzed feedback to +Htests

and - Htests separately.
+Htest feedback. Virtually all subjects received ver­

ification on approximately 50% of their +Htests. Across
conditions, the proportion of verified +Htests ranged
from 39% to 50%; there was no effect of error or hy­
potheses.

- Htest feedback. Approximately 75% of the error
subjects received only - Htest verification, as did 50%
ofthe no-error subjects. Both error and no-error subjects
received verification on roughly 75% of their - Htests.

Hypothesis Change
As discussed in Experiment 1, if people have an im­

munization bias, error subjects should be less likely to
change their hypothesis followingfalsification than should
no-error subjects. No-error subjects changed their cur­
rent hypothesis following 66% of their falsification tri­
als, whereas 73% of the error subjects did so; the differ­
ence was nonsignificant.

Table 6
Mean Number (and Standard Deviation) of Trials (Experiment 2)

No Prior Prior
Hypotheses Hypotheses Combined

Condition M SD M SD M SD

No errors 10.0 4.0 7.9 3.5 9.0 3.9
Errors 17.7 10.0 16.6 6.8 17.2 8.4

M 13.9 8.5 12.4 7.0



Response to Error Trials
The prior-hypotheses condition was designed to de­

termine the extent to which the effects of system error
could be mitigated. However, we have already shown that
this manipulation did not improve task success; this sug­
gests that a pool of hypotheses does not aid in the iden­
tification of error trials.

There was no effect of prior hypotheses on the pro­
portion offalse positives or false negatives identified (see
Table 7). Collapsing over conditions, 34% of the trials
that subjects marked as errors were verification trials; 66%
were falsification trials [paired t(25) = 2.15, p < .05].

Virtually all of the error subjects marked at least one
falsification trial as being an error; however, only about
50% of the subjects, in either error condition, labeled at
least one verification trial as an error.

The proportions of correct error identification in Ex­
periment 2 were similar to those for the corresponding
condition in Experiment 1: The subjects in both hypothe­
ses conditions identified approximately 50% oftheir false
positives; similarly, the subjects identified approximately
62% of their false negatives.

Experiment Replication
As in Experiment 1, error subjects varied widely in their

use of a replication strategy; 52% of the subjects never
replicated any oftheir test triples. The remaining subjects
replicated between one and nine trials. On the average,
error subjects replicated 13% of their trials. There was
no effect of the hypothesis manipulation on the propor­
tion of trials replicated.

Power of replication. As discussed in Experiment I,
replication is most useful if subjects choose error trials
to replicate: Overall, 48% of subjects' replications in­
volved false feedback trials. Testing the proportion oferror
trial replications against the actual error rate of 20%
showed that error trials were more likely to be replicated
than would be expected by chance [t(l3) = 2.84,p < .05].

Task Success
Strict success. As in the first experiment, successful

and unsuccessful subjects did not differ with respect to the
proportion ofnew hypotheses generated following falsi­
fication (approximately 65% in each case).

Success in Experiment 1 was associated with lower
proportions of +Htests. This result was replicated in Ex­
periment 2. Sixty-nine percent ofsuccessful subjects' tests
were +Htests; 86% of unsuccessful subjects' tests were
+Htests [F(l,57) = 8.17, P < .01].

Table 7
Mean Proportion (and Standard Deviation) of
Errors Identified by Condition (Experiment 2)

No Prior Prior
Hypotheses Hypotheses Combined

Errors M SD N M SD N M SD

False positives .59 .39 14 .46 .50 14 .53 .44
False negatives .71 .49 7 .55 .48 11 .61 .48
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We also assessed the association between success and
proportion of verified +Htests in no-error and error con­
ditions. Successful and unsuccessful subjects received
verification on approximately 50% of their +Htests. Al­
though there was a difference on this measure in Exper­
iment 1, both results support our argument that successful
rule discovery is not associated with a higher proportion
of verified +Htests. As in Experiment 1, successful and
unsuccessful subjects did not differ on the proportion of
verified - Htests (approximately 74% for both).

As in Experiment 1, conclusive falsification played an
important role in task success. Successful and unsuccess­
ful subjects received about the same proportions of con­
clusive falsification (42% and 49%, respectively). How­
ever, the two groups differed in the source ofthat feedback:
for successful subjects, 19% were in the form of falsified
- Htests; for unsuccessfuls, only 6% of their conclusive
falsification was in this form.

Since only two error subjects successfully discovered the
rule, analyses oferror identification and experiment rep­
lication with respect to strict success were not conducted.

Near success. We analyzed the dependent measures
with respect to the near-success criterion described in
Experiment 1. In the no-prior condition, 93% of the no­
error subjects and 40% of the error subjects were classi­
fied as near successful; in the prior-hypotheses condition,
86% of the no-error and 60% of the error subjects met
the near-success criterion. A chi-square analysis showed
a significant difference between conditions for rule dis­
covery [X2(3, N = 59) = 12.55, P < .01]. Inspection of
the post hoc cell contributions revealed that in the no­
prior condition, no-error subjects were more successful,
whereas error subjects were less successful, than would
be expected by chance alone (p < .05 for both cases).

Collapsing the hypotheses conditions revealed a main
effect for error [X2(l, N = 59) = 10.94, p < .001]. Ex­
amination ofthe post hoc cell contributions revealed that
more error subjects were successful than would be ex­
pected by chance (p < .05).

A series ofanalyses ofvariance revealed no difference
between near-successful and unsuccessful subjects with
respect to proportion of nil hypothesis trials, proportion
ofhypothesis changes following falsification, proportion
of+Htests generated, proportion of verified +Htests and
- Htests, proportion offalse positive errors identified, and
proportion of trials, error and correct, replicated. Use of
the near-success criterion had little effect on the pattern
ofconclusive falsification found using the strict-success
criterion.

Analysis did reveal that near-successful subjects cor­
rectly identified 88% oftheir false negative errors, whereas
40% ofthe unsuccessful subjects did so [F(l ,16) = 5.67,
p < .05].

Discussion

The results were generally consistent with those of Ex­
periment 1, with one important difference. The subjects
in Experiment I identified an approximately equal pro-
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portion of verifications and falsifications as errors. This
led us to conclude that previous attributions of an im­
munization bias in subjects' responses to system error de­
rive from a methodological artifact that disappears when
the task promotes a more balanced proportion of both
types offeedback. In Experiment 2, however, subjects' be­
havior was consistent with an immunization bias: they
identified proportionally fewer verification trials than
falsification trials as errors. The difference in the two re­
sults suggests that people vary widely in their error at­
tribution strategies. That is, error attribution appears to
be much more complicated than is suggested by a sim­
ple immunization bias. We will discuss this issue below.

There were two principal motivations for Experi­
ment 2: (1) to investigate whether generating hypotheses
prior to experimentation improved success in the error
condition; and (2) to see whether subjects would choose
to use a nil-hypothesis strategy, and if so, whether such
a strategy would be effective.

We had expected subjects to conduct nil-hypothesis
trials in order to establish a base of experimental results
that could then be used to induce a hypothesis. However,
the results suggest-contrary to our expectations-that
people prefer to test, rather than induce, hypotheses, even
when they lack specific information to initially guide their
search. That is, people prefer to use their content knowl­
edge to guide experimentation right from the start, even
if they have no idea which aspects of that knowledge are
applicable.

Freedman (1992a) suggested that considering multi­
ple hypotheses mitigated the effects of system error. In
contrast, our results showed no effect of prior hypothe­
ses on task success. However, there are important differ­
ences between the two studies. Freedman instructed sub­
jects to test either one or two hypotheses at a time. This
produced a situation similar to that ofTweney et al. (1980).
Subjects could construct two exclusive hypotheses and a
test sufficient to eliminate one or the other of the two. In
contrast, we did not instruct subjects in how they should
go about testing their hypotheses.

Second, Freedman (1992a) did not actually introduce
system errors; he only suggested that such errors might
occur. As Gorman (1989) showed, there are differences
in how people respond to actual and implied system error
manipulations. These differences make it difficult to
compare our results with those of Freedman.

Our procedure is closer to that of Klahr and Dunbar
(1988), with the addition of system error. In contrast to
that study, in the present work we did not find that prior
generation of hypotheses facilitated task success, im­
proved the efficiency of the discovery process, or miti­
gated the effects of system error. Thus, simply listing hy­
potheses before experimentation does not necessarily
mitigate the effects of system error. However, this con­
clusion must be considered with respect to the size of the
hypothesis space that subjects explore.

A priori hypotheses will be useful to the degree that
they encompass the area of the hypothesis space within
which the correct hypothesis lies. For example, in Klahr

and Dunbar's (1988) task, most people correctly assumed
that the name of the "mystery" computer key-RPT­
was representative ofthe key's function. That is, although
the key could have an infinite number of arbitrary func­
tions, people used its name to constrain the range ofhy­
potheses they proposed. In contrast, the seed [2-4-6] was
purposely designed to suggest a wide range of plausible
hypotheses (Wason, 1960). Consequently, people have
little a priori information on how to constrain their set of
possible hypotheses. As our judges' ratings reflect, sub­
jects' a priori hypotheses varied considerably in their re­
semblance to the correct rule.

GENERAL DISCUSSION

This research was motivated by four main issues: ( 1) to
investigate Kern's (1982) and Gorman's (1986, 1989)
contention that people are biased to consider only falsi­
fication trials as possible errors; (2) to see whether, given
the possibility ofsystem error, a +Htest strategy is a useful
search strategy, as Klayman and Ha (1987) have claimed;
(3) to investigate whether or not generating hypotheses
prior to experimentation mitigated the effects of system
error; and (4) the interaction of system error and domain
knowledge.

By using both broad and narrow rules, we were able to
contrast situations with unbalanced and balanced pro­
portions of verification and falsification trials. Our re­
sults show that, in contrast to the claim that people are
biased to label falsification trials as errors in order to
preserve their current hypothesis, people are equally able
to detect false positives and false negatives.

Our results also show that, with respect to the efficacy
of +Htests, successful subjects in both error and no-error
conditions conducted proportionally fewer +Htests than
did unsuccessful subjects. This suggests that although a
+H strategy may be useful in establishing a viable hy­
pothesis for further exploration, over-reliance on +Htests
negatively affects task success (Tweney et aI., 1981).

Previous research suggests that generation ofprior hy­
potheses can be a useful discovery strategy (Klahr & Dun­
bar, 1988). However, the current research shows that with­
out some constraints on their search, people are unlikely
to generate hypotheses that cover the appropriate region
of the hypothesis space.

When we used a strict criterion for success, we found
similar search strategies and success rates in the two do­
mains. However, the near-success analysis highlighted
the effect of system error on domain: subjects in the
narrow-rule animal domain were severely affected by the
inclusion of system error, unlike their counterparts in the
numerical domain.

The near-success analysis raises questions about the
determination of success in studies of scientific reason­
ing, and in real-world scientific endeavors. In such con­
texts, success is not an all-or-none affair. Moreover, the
form ofthe rule, the domain, and the type offeedback all
affect assessments of task success. That is, although using
a strict-success criterion does not always adequately rep-



resent people's ability, it is not clear how rule, domain,
and feedback interact to affect the discovery process. Fu­
ture work needs to address this issue.

Our analysis of successful and unsuccessful subjects'
error identification patterns did produce one unexpected
result. In both studies, successful subjects identified all
oftheir false negatives, but not all of their false positives.
Since knowing the rule provides sufficient information
for identifying all errors, why then did successful sub­
jects not identify all of their false positives? One expla­
nation would be that they simply did not care to go back
at the end of the study and isolate such errors. However,
all subjects were encouraged to, and did, check over their
record sheets at the conclusion of the study. Thus, it is
unlikely that subjects cared about identifying their false
negatives, but not their false positives.

One difficulty in understanding the link between error
identification and the discovery process is to know how
the two interact: establishing a viable hypothesis is nec­
essary for identifying error trials; but identifying error
trials is necessary for deciding on a viable hypothesis. It
is unsurprising that the identification of error trials is
critical to task success. However,it is less clear what strate­
gies people use to identify possible errors. One strategy is
to replicate suspect trials. Our results show that people
varied widely in their use of this strategy. However, the
subjects who did replicate tended to replicate error trials,
rather than no-error trials, more often than would be ex­
pected by chance. What is not clear from the current work
is how they made this decision.

One possible answer to this question is suggested by
recent work on the treatment of anomalous data. Chinn
and Brewer (1993) found that the strongest influence on
how such data were treated was a person's theoretical com­
mitment. Strong theoretical commitments lead people to
discount data that do not fit with their position; that is,
theory drives the determination of data validity.

However, Chinn and Brewer's (1993) methodology is
considerably different than ours. They provided subjects
with a theoretical position in a domain where most lay peo­
ple have little knowledge (i.e., the mass extinction of di­
nosaurs at the end ofthe Cretaceous period). Subjects were
then asked to assess data that did or did not fit with their
assigned theoretical stance. Thus, subjects were immedi­
ately aware whether or not the presented data was consis­
tent with their assigned theory. In contrast, we presented
subjects with a task in which they had considerable domain
knowledge, but little insight into the specific structure of
the rule they were to discover. This produced a situation in
which subjects had first to generate a hypothesis and then
to evaluate the feedback with respect to that hypothesis.

So, when do people trust the data? It appears that the
default is to trust the data when you do not distrust it.
That is, if people are not sure whether or not feedback is
erroneous, they initially accept it as veridical and use this
information to develop their initial hypotheses. Increas­
ing confidence in one's hypothesis leads to the flagging
of suspect trials. Flagged trials are often replicated, be­
cause, as we teach our students from their very first re-
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search methods course, replication can be a powerful tool
for error detection and correction.
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NOTES

1. SeeGorman (1992) fora comprehensive review ofhis(andother's)
workon the Wason task,and relatedscientific discovery tasks.

2. For example, following surgery, coloncancerpatients are moni­
tored for increased levels of a biological marker for colorectal cancer.
A6-yearstudy hasshown thatthetestusedproduced false negatives for
41%ofthecases, andfalse positives for 16% ofthecases (Moertel et aI.,
1993). Ortociteanother example, a recently developed andwidely used
test forearlydetection of prostate cancerhasa 20%false negative rate
and a 25%falsepositive rate ("Whether Positive or Negative," 1993).

3. The error subjects' feedback pattern is partially determined by
which trialsaremarked aserrors.Thatis, theperceived pattern of "yes"
and "no" responses depends in part on which trialsaremarked as pos­
sibleerrors. Analyses basedonsubjects'perceived datapatterns willbe
notedas theyarise.

4. Because +Htest classification is definedwithrespect to subjects'
statedhypotheses, nil trialsare excluded from thisanalysis.

APPENDIX
Experiment Instructions

You will be given a set of three observations that conform to
a simple rule. The rule is concerned with a relation between

sets of three observations. Your task is to discover this rule by
generating a possible rule (a hypothesis) and testing it with your
own set of three observations. After you have written down
your set of observations, I will indicate whether or not your test
conforms to the rule by placing a check under either the "Con­
form" or "Does Not Conform" column on your paper.

Consider this procedure as similar to performing a number of
mini-experiments: You propose a hypothesis, test it with an ex­
periment, and evaluate the outcome ofthe experiment (i.e., feed­
back from the experimenter). Treat the feedback from the ex­
perimenter as evidence, and use it to evaluate your hypothesis.

You may propose as many rules and tests as you wish. You
are free to refer to previous trials at any time during the study.
If you wish, you may retain a hypothesis, and/or a test, from a
previous trial. Remember, your aim is to discover the rule that
describes the relationship between the objects in the set. Con­
tinue until you are sure that you know what the rule is. ONLY
THEN, AND NOT BEFORE, ARE YOU TO WRITE THIS RULE DOWN ON
THE BACK OF YOUR RECORD SHEET. Do you have any questions at
this time?

Instructions for the error conditions included the following:
To make this more like real science, there may be some "noise"
or random error in the feedback you receive, i.e., if the triad ac­
tually DOES match the rule, it may be labeled as Does Not Con­
form, and vice versa. On anywhere from 0%-25% of the trials,
the feedback you receive will be incorrect. For example, your
7th trial may be classified incorrectly, as may your 17th trial.
The amount oferror can never exceed an average of one trial in
five, and there may be NO error at all.

To indicate where you think random error has occurred, please
mark the trials you think have been classified incorrectly with
an X. If you change your mind, place a check mark next to the
X. This will indicate that you no longer believe you received in­
correct feedback on that trial.

(Manuscript received March 29, 1994;
revision accepted for publication August 10, 1995.)




