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Analyzing human random time generation behavior:
A methodology and a computer program

ANDRE VANDIERENDONCK
Ghent University, Ghent, Belgium

In the present article, it is argued that in addition to the traditional random generation tasks dis­
cussed by Towse and Neil (1998), random time interval generation tasks should be considered as use­
ful alternatives, because they allow a better empirical control of the executive task component in dual­
task situations. First, a framework for discussing randomness over time is presented. Then, the article
goes on to present three methods for the analysis of such tasks. A first method is based on the corre­
lation between the intervals produced. The second method calculates the approximate entropy, and the
third method converts the time sequences into binary sequences and estimates the statistical proper­
ties of the sequence on the basis of these binary data. A principal components analysis on 19 different
measures based on 1,381 sequences produced in a number of single-task and dual-task experiments
shows that the proposed measures form two general clusters, one related to output probability, perse­
veration, and alternation, and one related to sequential commonalities. The article also briefly de­
scribes a computer program that implements these methodologies.

In their review of the methods for analyzing human
random generation behavior, Towse and Neil (1998) ob­
served that random generation tasks are becoming increas­
ingly important for studying cognitive performance. In­
deed, the growing interest in executive functions and
their interactions with cognitive tasks (see, e.g., Craw­
ford, 1998; Rabbitt, 1997) has resulted in a growing usage
of random generation as the secondary task in dual-task
experiments. Even though the article by Towse and Neil
is fairly comprehensive, at the end of the article, the au­
thors admit that some researchers have used the production
of random time intervals and that, for this methodology,
the standard techniques they review are not welI suited.

Random time interval generation requires that the par­
ticipant press a key (usualIy the zero key of the numeric
keyboard) so as to produce a sequence ofkeypresses that
forms a completely random time pattern, an unpredict­
able rhythm. The method has been shown to impair mem-
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ory performance in verbal short-term memory tasks, and
this effect is obtained without interference at the level of
the phonological loop or the visuospatial sketch pad (Van­
dierendonck, De Vooght, & Van der Goten, 1998). Sim­
ilar results were observed when the method was used in
combination with a visuospatial span task (the Corsi block
task; Vandierendonck, Kemps, & Fastame, 2000). In an­
other study, it was shown that in a span task in which
items differed in content and location, performance was
impaired mainly when a combined recalI based on con­
tent and location was required (Martein, Kemps, & Van­
dierendonck, 1999). Random interval generation also af­
fects the frequency of stimulus-independent thoughts
(Stuyven & Van der Goten, 1995) and impairs antisac­
cadic and intentional saccadic eye movements (Stuyven,
Van der Goten, Vandierendonck, Claeys, & Crevits,
2000). FinalIy, the method impairs verification ofsimple
arithmetic sums (De Rammelaere, Stuyven, & Vandier­
endonck, 1999). The latter replicated some results ob­
tained with another methodology by Lemaire, Abdi, and
Fayol (1996).

Clearly, random time interval generation may help to
design experiments in which the secondary task loads the
executive component only. Probably, the task is also use­
ful for comparing the performance of patients with that
of normal controls under single-task conditions, In this
vein, random time interval generation was used by Crev­
its, Claeys, Stuyven, Van der Goten, and Vandierendonck
(1997) in a study ofsaccadic eye movements in prefrontal
patients and normal controls and by Jimeno, Jimeno,
Alonso, Segovia, and Vargas(1996) in a study with schizo­
phrenic patients.

However, as long as there are no appropriate methods
for analyzing the degree of randomness of the sequences
produced, interpretation of the data remains partial, es-
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pecially in comparisons of single-task and dual-task con­
ditions. The present article first presents a framework for
the conceptualization ofrandomness. Next, three methods
for the analysis of random time intervals are described,
and data from Monte Carlo simulations are presented to
demonstrate the advantages and limitations of each of
these methods. Finally, the merits of these methods and
ofrandom time interval generation are discussed. A short
description of the computer program available for these
analyses is presented in the Appendix.

RANDOM TIME INTERVALS

In this section, the notion of randomness over time is
elaborated so as to provide a basis for the development
of a method for analyzing the randomness ofa sequence
of time intervals. Consider a sequence of taps that occur
randomly over time. At anyone moment in time, there is
a probability Jr with which a tap occurs. Each such mo­
ment is preceded by a number of times that a tap did not
occur. The probability that there is a sequence of k mo­
ments without a tap before a tap finally occurs, Pr(N =
k), is given by

Pr(N = k) = (l - Jr)kJr. (l)

This means that, when at a particular moment a tap oc­
curred (with a probability Jr), the probability that a tap
will occur at the next moment is still Jr. This yields the
property of statistical independence, which can be ex­
pressed as

Pr(xi+k = 11 Xi = 1) = Pr(xi+k = 1IXi = 0). (2)

This equation assumes a sequence of equal time inter­
vals such that each of these intervals either contains a tap
(Xi = 1) or does not contain a tap (Xi = 0). The expres­
sion states that the probability that a tap occurs at a par­
ticular time period is independent of whether a tap has
already occurred k = 1, 2, ... time periods earlier.

There is ample evidence that human random genera­
tion behavior deviates from randomness in a number of
respects (see, e.g., Kareev, 1992; Lopes, 1982; Lopes &
aden, 1987; Neuringer, 1986; Rapoport & Budescu,
1992; Treisman & Faulkner, 1987; Wagenaar, 1970a,
1970b, 1972; Zahn, 1982). Sequences of binary events,
such as heads and tails generated by humans, for exam­
ple, violate the principle of statistical independence by
showing too many short runs and too many alternations.

The literature documents two possible biases in ran­
dom generation, a perseveration bias and an alternation
bias. The perseveration bias is a tendency to repeat a pre­
vious outcome and can be defined as follows:

Prtx, + I = 1) = aPr(Xi = 1) + (l - a) Jr. (3)

This expression states that a tap is immediately repeated
with a probability a and that otherwise the generation
follows the geometric distribution as implied in Equa­
tion I, with a probability z of producing a tap. The alter-

nation bias is a tendency to alternate outcomes and is de­
fined as

Pr(xi+l = 1) = 13[1 - Prtx, = I)] + (I - 13) Jr. (4)

With a probability of 13, the previous outcome is not re­
peated (i.e., the opposite outcome is produced), and oth­
erwise, a tap is generated with a probability of it, as is
specified in Equation I. Note that when a = 0 in Equa­
tion 3 or 13 = 0 in Equation 4, the probability ofgenerat­
ing a tap is constant over time (z). In other words, when
there is no bias, the models in Equations 3 and 4 reduce
to the nonbiased model (Equation I).

Both biases follow from a Markov model that has been
used before (e.g., Budescu, 1985, 1987). This implies
that the probability of an outcome in a given time win­
dow is independent of all previous outcomes, except the
one immediately preceding. I

CORRELATIONS OF TIME INTERVALS

If the time intervals between taps are completely ran­
dom, it may be expected that the lengths of consecutive
intervals are not related. This is equivalent to a zero cor­
relation at Lag 1. More generally, it may be expected that
the length ofany interval is statistically unrelated to pre­
vious intervals, and this means that a zero correlation is
expected at any lag. To the extent that the generation pro­
cess is biased, some of these correlations may be ex­
pected to be large and positive (expressing a persevera­
tion tendency) or to be large and negative (corresponding
to an alternation bias). Hence, a test based on the corre­
lations at Lags 1,2, ... could be used to detect the degree
of randomness or the size and the orientation of the bias
in a sequence of time intervals.

However, there is one pitfall. The standard statistical
method by which to test the significance of the correla­
tion coefficient or to calculate the confidence interval
cannot be applied, because the pairs of data values are
not independent. The value Yi in pair (xi' y;) is the same
as the value xi+k in pair (xi+k' Yi+k). Usage ofa permuta­
tion statistic (Edgington, 1969) may provide a way out.
By taking all possible permutations of the series of val­
ues in the sample, the set of all possible samples con­
taining the observed values is constructed. The value of
the statistic (e.g., the correlation coefficient) in each of
the possible samples is calculated, and this yields a sam­
pling distribution for the statistic. A statistical test of the
sample statistic is then possible, either by estimating the
probability of the sample statistic in this distribution or by
defining a confidence interval on the basis of the mean
and the standard deviation of the sampling distribution
or on the basis of an interquantile interval. In practice, it
is often not practical to make all the possible permuta­
tions. Instead, a random sample ofall the permutations can
be used, and the characteristics of the sampling distrib­
ution can be inferred from this subset. This is also known
as the bootstrap method (Efron, 1979). For its application



to correlations, a solution has been described by De Soete
and Vandierendonck (1982).

A Monte Carlo study was performed to explore the
possibilities ofthis methodology. To that end 1,000 sam­
ples of 50 time intervals were generated on the basis of
the geometric distribution (Equation 1). Also, sets of
1,000 samples of 50 time intervals with either a positive
or a negative bias were generated. Three levels of bias
were used-namely, values of .25, .50, and.75 were used
for a in Equation 3 and for f3 in Equation 4. In the non­
biased samples, the probability of a correlation (Lags
1-10) outside the .95 confidence interval ranged between
.044 and .063. The corresponding values in the posi­
tively biased sets, ranged between .027 and .059. In the
negativelybiased set, the range was between .039 and .062.
In order to check for important differences of the biased
and the nonbiased distributions, the correlations observed
in the biased samples were compared with the nonbiased
sampling distribution. Again, the proportions ofextreme
values hovered around .05 (.026-.055 in the positively
biased and .033-.065 in the negatively biased samples).

It is also interesting to know whether extreme corre­
lations tend to occur more often together in the biased
than in the nonbiased samples. To that end, a count was
made of the number of sequences with 0, 1, ... extreme
correlations. The top halfofTable 1displays the propor­
tions of sequences as a function of the bias parameter
and of the number of extreme values. This panel shows
that the number of extreme correlations in a single se­
quence does not depend on the bias. In fact, the figures
show that two or more significant lag correlations in a
single series is a rather rare phenomenon (.019-.027).

A similar study was performed with samples of 25 time
intervals. In all respects, the results were very similar: The
proportions of extreme correlations were in the range of
.032-.068 in the no-bias distribution, .036-.071 in the neg­
ative bias distributions, and between .025 and .198 in the
positive bias distribution. Actually, the ranges in the distri­
butions with a positive bias were rather similar to the oth­
ers. For bias values of .25 and .50, the proportions ranged
between .025 and .056. Only when the positive bias was

Table 1
Proportion of Sequences with 0, 1, or More
Extreme Correlations as a Function of Bias

Negative Bias No Bias Positive Bias

Number .75 .50 .25 (.00) .25 .50 .75

Sequences of 50

0 .787 .777 .766 .767 .777 .806 .860
I .188 .197 .207 .207 .200 .174 .121

:e-2 .025 .026 .027 .026 .023 .020 .019

Sequences of 25

0 .810 .780 .762 .785 .797 .844 .781
I .161 .193 .201 .189 .179 .137 .136

:e-2 .029 .027 .037 .026 .024 .019 .083

Note-In the context of this table, an extreme correlation is one with a
value outside the .95 confidence interval.
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high (.75) was the probability of an extreme correlation
high, and it varied from .096 (at Lag 1) to .198 (at Lag 10).
Clearly, these higher values were due to the presence of a
strong positive bias in a short sequence. In fact, when the
bias is so large, a series of 25 intervals contains many rep­
etitions of the same interval size, and consequently the
number ofpossible different samples becomes too small to
make reliable estimations. Ifit is safe to generalize the ten­
dency toward alternation observed in the generation ofbi­
nary sequences (e.g.,Lopes& Oden, 1987) to the generation
of random time intervals, there is no need to worry about
this situation, because it would be extremely unlikely to
observe sequences with such a strong positive bias.

The lower half of Table 1 displays the proportions of
extreme correlations observed per sequence. Overall, the
figures in the lower half correspond quite well to those
in the upper half, except again for the case of a strong

. positive bias.
Taken all together, these findings seem to suggest that

by simply analyzing the intertap times, it is not easy to
find out whether a sequence can be characterized as bi­
ased or unbiased. Nevertheless, the method can be used
to gain some insight into the characteristics of the series.

APPROXIMATE ENTROPY

Pincus (1991) has proposed approximate entropy
(ApEn) as a measure ofsystem complexity (see also Slif­
kin & Newell, 1999).2 Applied to sequences of intervals
that may vary in their degree of randomness, higher lev­
els of randomness correspond to a higher degree ofcom­
plexity,whereas sequences deviating from randomness be­
come more and more predictable and, hence, less complex.

The rationale of this measure is that entropy is ap­
proximated by estimating the probabilities ofpatterns of
events. Let f;( 1 ~ i ~ N) be the time intervals in a se­
quence ofevents. The standard deviation ofall these val­
ues is s. Next, define a lower bound Ij = f j - rs, where r
is a parameter usually set at 0.2, and an upper bound U; =
t, + rs, so that each f j is the center ofan interval between
the lower bound (lJ and the upper bound (uJ. Consider
the vector [f), f2 ] . This template vector is now compared
with every possible vector in the sequence-that is, [tt,
f2], [f2, f)], [f), f4 ], and so forth. The two vectors [f), f2]

and [f;, f j + l ] are defined to be similar ifIt s f j s u\ and /2 ~
f j+I ~ u2-in other words, if the two pairs of values are
rather close to each other. Within the subset ofall vectors
that are in this way similar to the template vector, a test
is performed to check whether both vectors are contin­
ued in a similar way; this is the case if I) ~ f j+2 ~ u). The
number of vectors that pass this test is divided by the
number ofvectors that were found to be similar, and this
yields a first proportion or probability estimate.

The procedure is then repeated for all possible tem­
plate vectors [f2, f)], [f), f4], and so forth. IfP/1 ~j~N­

2) indicates the estimated probabilities, the ApEn mea­
sure can now be calculated as
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(7)

.75

0.67
-0.62

- 2.05 -0.\8 0.76 1.23
-0.81 0.04 0.29 0.04

Negative Bias Positive Bias

.50 .25 .25 .50

ANALYSIS ON THE BASIS
OF BIAS MODELS

.75

-3.29
-2.29

Table 3
Estimates of d' on Approximate Entropy Distributions,

Displayed as a Function of Negative and Positive
Sequence Bias for Sequences of Lengths 50 and 25

50
25

Length

1 N-k+l

rk = L XiXi+I'" Xi+ k-\ (6)
N-k+l ;-1

For length 3, for example, this statistic expresses the pro­
portion ofconsecutive triples in the sequence in which all
three events have an outcome of 1. The autocorrelation
at Lag k (Sternberg, 1959) is defined as

N-k

ck =_1_ L Xixi+k'
N-2 i=1

A quite different approach is directly based on the bias
models described in the introduction. This approach as­
sumes that a sequence of constant time intervals under­
lies the tapping behavior in a random time interval gen­
eration task, so that each of these intervals either does or
does not contain a tap. If it is possible to estimate the length
of this unit interval, this information can be used to esti­
mate the parameters (n, a, and {3) that correspond to the
generated sequence and to infer which generation model
(no bias, positive bias, or negative bias) shows the clos­
est fit to the sequence. Furthermore, the extent and the
orientation of the bias result in deviations from statistical
independence, which can be measured by a number of
statistics, such as the runs statistics, the autocorrelation
statistic, and the alternation index. The runs statistic for
a run length of k (Sternberg, 1959) is defined as:

An autocorrelation of Lag 2, for example, expresses,
within the pairs that are separated by one position, the
proportion in which both members of the pair have an
outcome of 1.Finally, the alternation index simply looks
at consecutive events and takes the proportion of event
pairs with alternating outcomes (l and 0 or 0 and I) to
the total number of pairs:

1 N-l
~ =-- I, [Xi(l-Xi+I)+(l-Xi)xi+d· (8)

N-I i=\

In a statistically independent sequence, the value of Pa is
expected to be close to .5; when there is a strong positive
bias, there are few alternations, and Pa is small. If, on the
contrary, there is a negative bias, the proportion ofalter­
nations is high, and the stronger this bias, the closer Pa
comes to 1.

In the remainder of this section, a method will be de­
scribed to convert a sequence of taps over time into a bi­
nary sequence. On the basis of this sequence, the values

Sequences of 50

Mean 0.04\ 0.070 0.\\4 0.\\7 0.\45 0.\70 0.\56
Lower bound 0.013 0.030 0.058 0.056 0.077 0.085 0.050
Upper bound 0.069 0.\10 0.\69 0.\78 0.213 0.256 0.26\

Sequences of 25

Mean 0.060 0.\44 0.\93 0.\9\ 0.2\0 0.199 0.\42
Lower bound 0.000 0.035 0.079 0.079 0.087 0.058 0.000
Upper bound 0.\5\ 0.252 0.307 0.303 0.334 0.340 0.304

Table 2
Mean and .95 Confidence Interval

of the Approximate Entropy Measures for
Biased and Unbiased Sequences of Lengths 50 and 25

ApEn=_l_I,lnpj' (5)
N-2 j

The present exposition and usage of the measure is
based on vectors of length 2. It is also possible to con­
sider longer or shorter vectors. The program described in
the Appendix provides a procedure to calculate the ApEn
with the usual parameter settings-namely, r = .2 and
vector length = 2.

The same Monte Carlo samples used for the analysis
ofthe lag correlations were used to calculate distributions
for the ApEn measure. Table 2 displays the averages and
the confidence intervals for series of50 and 25 intervals.

Table 2 shows that in sequences of both lengths, the
ApEn measure tends to yield a larger value the more the
sequence is positively biased; the larger the negative bias,
the closer the value is to zero. The .95 confidence inter­
vals around the mean also show that the more negative
the bias, the narrower the distribution is, but that could
be a floor effect.

Nevertheless, the data in this table suggest that the ApEn
measure allows a distinction between negatively and
positively biased sequences. However, a distinction be­
tween truly random and biased sequences does not seem
to be completely feasible. This suggestion was tested by
means of the d' measure of the theory of signal detection
(Swets, 1986; Swets, Tanner, & Birdsall, 1961; Van der
Goten & Vandierendonck, 1997). For each distribution,
the proportion of measures falling above the mean of the
unbiased distribution was calculated and used to esti­
mate d', Table 3 displays the results of this calculation
for both sequence lengths.

Certainly for the shorter sequences, which is the most
frequent kind of sequence encountered in dual-task re­
search, d' is rather small, except when the sequence has
an outspoken negative bias. In the sequences oflength 50,
discrimination is clear for moderately and strongly biased
negative sequences. Weakly biased sequences and posi­
tively biased sequences cannot easily be distinguished
from random ones.

It is clear from this Monte Carlo study that the ApEn
measure is more useful than the calculation oflag corre­
lations, at least for strongly negatively biased sequences.
A more sensitive measure remains desirable.

Confidence Negative Bias No Bias Positive Bias
Interval .75 .50 .25 (.00) .25 .50 .75
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(II)

(14)

if 2 - Po - PI > 0

otherwise.

otherwise.

ifpO + PI >0

It can be shown that the z-parameter of the perseveration
(positive bias) model can be estimated in the same way;
a can then be estimated by

a= max(O,po +PI - 1). (12)

In the context ofthe alternation (negative bias) model, the
parameter 13 is estimated in a similar way:

f3 = max(O, 1 - Po - PI)' (13)

The other parameter, x, is then estimated by

Comparing Equations 12 and 13, it is transparent that
a and 13 are each other's opposite, but when one of them
is larger than 0, the other one is O. Expressions have been
derived for each of the statistics in terms of the param­
eters of the three models. These expressions can be used
to derive the predictions of the models given the best­
fitting parameters (as displayed in Equations 11-14).
This yields 21 values (10 run lengths, 10 autocorrela­
tions, and the alternation index). Per statistic, or overall,
a degree of fit can be calculated on the basis of the root­
mean squared deviations (RMSD). In general, the model
yielding the smallest RMSD is closest to the data. Yet,
comparison ofthe models is not so straightforward. Since
the bias models have two free parameters, as compared
with only one free parameter for the no-bias model, it is
easier for the bias models to fit the data.

To find out whether the procedure is indeed biased to­
ward the two-parameter models, a Monte Carlo study was
performed, which also tested the validity ofthe procedure.
First, binary sequences of 50 events were generated on
the basis of the no-bias model (50 sequences with n of
.25, .50, and. 75), the perseveration model (50 sequences
with the same zrlevels combined with three levels ofa­
namely, .25, .50, and .75), and the alternation model (50
sequences with the same n levels combined with three
levels of 13: .25, .50, and .75). In addition, 50 sequences
based on fixed repetitions of five, seven, or nine units
were also produced (e.g., by repetition of the five-unit
sequence I, I, 0, 0, lover and over again). Thus, simple
repetitive rhythms were obtained. In all, 1,200 sequences
were generated and the values of the 21 statistics were
calculated, the model parameters were estimated, and the
best fits were inferred. Next, these 1,200 sequences were
converted to time intervals, by taking a unit interval of
200 msec. These times were then fed to the program Rig­
Anal described in the Appendix.

(9)

(10)
PII

POO
Po= -----=-=­

POO +PIO

of the statistics defined in Equations 6-8 are calculated;
the parameters of the three models are estimated and
used to predict the values ofthe statistics. By comparing
predicted and observed values, it is possible to estimate
the degree of fit of each of the three models.

The first step in this methodology consists of the esti­
mation ofthe length ofthe unit time interval and the con­
version of the time intervals to a binary sequence. This
is achieved by subjecting the intervals to a hierarchical
clustering analysis based on a nearest neighbor proce­
dure and then fine-tuning the obtained result. The pur­
pose of this step is to find a unit interval that preserves
the structure in the series as much as possible. For ex­
ample, if taps were produced at 200,500,700, 1,000, ...
msec, the unit interval recovered would be 100 msec, and
the corresponding binary sequence is 0, 1, 0, 0, 1, 0, 1,
0, 0, 1, .... If, the interval size were 200 msec, the struc­
ture would not be so nicely captured, as appears from the
resulting binary sequence 1, 0, 1, I, I, ....

This conversion procedure works as follows. Initially,
the n intertap intervals are the clusters. A first reduction
is achieved by merging all the equal intervals. Next, in an
iterative loop, the two nearest clusters are merged until the
shortest distance between two clusters exceeds 100 msec
or until all the clusters have been merged. This result is
then further refined by maximization of a function of
several variables-namely, the correlation between the
original sequence and the recovered one, the deviation
between the original and the recovered intervals, and the
proportion of keypresses recovered. All three variables
measure a particular aspect of the degree of correspon­
dence between the recovered and the observed sequence.
This search is performed in the range between .25u and
1.5u, where u is the interval size obtained in the cluster­
ing procedure.

In the second step, the three models presented in
Equations 1-4 can be estimated, and the independence
statistics (Equations 6-8) can be calculated. The obtained
parameter estimates can then be used to generate pre­
dictions for the values of the statistics and to estimate the
degree of correspondence between the model and the data.
To that end, the model parameters must be expressed in
terms of observed proportions. Considering any pair of
consecutive intervals, there are four possibilities: no tap
followed by no tap with a probabilityPOO' no tap followed
by a tap (POI)'a tap followed by no tap (PIO),and a tap fol­
lowed by a tap (PI')' On the basis of these four transition
probabilities, two proportions are defined as follows:

PI =
PII +POI'

The model parameters can then be expressed as follows:

and
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The central question was whether and to what extent
the recovered binary sequences differed from the origi­
nal binary sequences in terms of their statistical proper­
ties. To that end, the model parameters and the goodness
offit ofthe three models were pair-wise compared in the
two sets of sequences. Table 4 shows the average devia­
tion between characteristics of the initial and the recov­
ered binary sequences. The differences are in general
rather small, and they tend to be somewhat larger for the
systematic series. But even in this category, the deviations
are rather small.

The recovered binary sequences showed the no-bias
model to be the best-fitting one in 108 (72%) of the 150
sequences generated by that model; of450 perseveration
sequences, 90% were attributed to the perseveration
model, and ofthe 450 alternation sequences, 98% were
assigned to the alternation model. In the 150 rhythm se­
quences, 54% conformed to the alternation model, and
in 40% the no-bias model was the best-fitting one. The
procedure used to make these decisions was based on the
following principles: (1) The no-bias model was taken
as the best-fitting model whenever the two other models
did not apply; (2) the perseveration model was taken to
be correct if a> .005 and the RMSD for this model was
smaller by at least P05 than the RMSD ofthe other mod­
els; and (3) with {J > .005 and an RMSD smaller by at
least .005, the alternation model was taken to be the cor­
rect one.

This Monte Carlo study shows that the procedure re­
covers 91% of the 1,050 test sequences based on one of
the models. In general, as Table 4 shows, the deviations
were rather small. There is indeed a tendency for the
two-parameter models to be the best-fitting ones more
often than the no-bias model. This is, to a large extent,
due to the fact that small deviations from the no-bias
model are easily accounted for by one of the other two
models.

It is clear from this overview that this model-based ap­
proach distinguishes quite well between nonbiased and
biased sequences. For sake ofcompleteness, d' measures

Table 4
Average Differences Between Generated and Inferred

Binary Sequences as a Function of Sequence Type

No bias Perseveration Alternation Systematic
Variable (n = 150) (n = 450) (n = 450) (n = 150)

Interval 0.000 0.833 0.000 1.333
Recovery 0.000 0.000 0.000 0.000
Jr 0.004 0.013 0.003 0.011
a 0.006 0.018 0.000 0.006
Jra 0.0 I0 0.008 0.018 0.0 II
f3 0.0 I0 0.003 0.012 0.031
RMSDn 0.002 0.006 0.001 0.004
RMSDp 0.002 0.006 0.001 0.004
RMSDa 0.002 0.003 0.001 0.003

Note-The estimate of Jr is different in the context of the alternation
model than in the context of the other two models; Ita is the estimate un­
der the alternation model. The letters n, p, and a indexing the root-mean
squared deviation (RMSD) values refer, respectively, to the no-bias, the
perseveration, and the alternation models.

were calculated on the proportions of sequences of each
type that were recovered as being not biased, positively
biased, or negatively biased. For example, 108 ofthe 150
nonbiased sequences were recovered as not biased,
whereas only 107 of the 1,050 other sequences were
classified as not biased; this corresponds to a d' of 1.85.
Similarly, the contrasts of positively biased versus other
sequences, negatively biased versus other sequences,
positively versus negatively biased sequences, and non­
biased versus systematic sequences yielded d' values of
3.33,3.70,5.39, and 0.84, respectively.

The program RigAnal (see the Appendix), was devel­
oped to calculate the values of the statistics, estimate the
parameters, calculate the model predictions, and estimate
the degree offit of each of the three models.'

A COMPARISON OF THE MEASURES

The three methods discussed yield a multiplicity of
measures that can be used as indices of randomness.
Some of these measures may be better indices than oth­
ers, but the question remains as to what extent they esti­
mate a common concept. In order to achieve a better in­
sight into the commonalities underlying these measures,
a principal components analysis was performed on 19
measures taken over 1,381 random sequences collected
in single- and dual-task conditions in a series of experi­
ments. The measures used were the following: (1) ApEn
with vectors of length I and length 2 calculated on the
raw intervals; (2) the four parameters of the three mod­
els; (3) Runs 1-3, Autocorrelations 2-5, and alternation
index (note that runs oflength 2 and autocorrelations of
Lag I are the same); (4) lag correlations of Lags 1-5.

Table 5 displays the component loadings after apply­
ing an equamax rotation. The structure is interesting.' A
first component attracts high loadings on the variables
n, a, na , rl-r3' and cz-cs. All these indices are sensitive
to the probability of a tap and/or the tendency to perse­
verate. The second component shows high loadings of
ApEn-2, n, {J, r\, cz-cs, and Pa• Because of the very high
positive loadings of the {J parameter and of the alternation
index, it may be said that this component indicates the
tendency toward alternation. Indeed, a strong alternation
tendency is associated with short runs (so only u1) and
strong autocorrelations at longer lags (hence cz-cs). The
rather high loading ofthe z parameter can be understood
from the fact that when there is alternation, a is zero, and
consequently x should correlate with the tendency to al­
ternate. Finally, the ApEn-2 measure also seems to cap­
ture part of the alternation tendency, which is expressed
in a moderate positive loading on this "alternation" com­
ponent. The remaining three components essentially
capture variance associated with the five lag correlations
and with the ApEn-1 measure. The third component ex­
hibits high loadings oflag correlations 2-4, whereas lag
correlations 4-5 show a high loading on the fourth com­
ponent and lag correlations 1-2 and ApEn-l load mainly
on the fifth component.



Table 5
Rotated Principal Components of 19 Measures

Based on a Sample of 1,381 Random and Fixed Sequences
Obtained in Single-Task and Dual-Task Conditions

Components

Measure I 2 3 4 5

ApEn (I) -.05 .19 .06 .18 -.63
ApEn (2) .15 .41 -.11 -.20 .06
n .64 .16 .04 -.03 -.02
a .40 -.29 -.05 -.15 .12
r, .81 .29 -.03 -.08 .01
f3 -.19 .92 .13 .06 -.05
UI .63 .16 .04 -.03 -.02
Uz .98 .09 -.03 -.01 .03
U3 .93 -.08 -.03 -.09 .01
Cz .59 .12 -.05 -.08 .04
C3 .12 .41 .08 -.03 -.03
C4 .63 .64 .05 -.01 .06
C5 .18 .50 .03 -.02 .01
r, .05 .91 .09 .03 -.05
Lag. -.06 .16 .09 .21 .10
Lagz .01 .13 .60 -.11 .45
Lag3 .00 -.04 .18 .01 -.02
Lag4 .02 -.06 .40 .66 -.26
Lag5 .02 -.06 -.30 .80 .20

Percent variance 29 25 1 1 6

Note-Component loadings ~ .4 are shownin boldface to elucidate the
structure.

The first two components explain 54% ofthe variance
and essentially capture the variability associated with the
model parameters, the dependency statistics, and the
ApEn-2 measure. The remaining three components ex­
plain 20% of the variance and are related to the lag cor­
relations and the ApEn-l measure. Interestingly, Table 5
illustrates that the indices that have important loadings
on the first two components do not load on the last three
components and vice versa.

Given these interpretations, the following conclusions
can be formulated. (1) The three groups ofmeasures (lag
correlations, model-based statistics and parameters, and
entropy) constitute two sets ofperformance indicators­
namely, output probability, perseveration, and alterna­
tion (Components 1-2), on the one hand, and correla­
tional structure (Components 3-5), on the other. (2) The
probability of a tap in the sequence of intervals, the ten­
dency toward alternation, the tendency toward persever­
ation, and the degree of sequence complexity (ApEn-2)
are all clearly present in the component structure (Com­
ponents 1 and 2). (3) It is not at all clear which aspects of
randomness are tapped by the lag correlations, but what­
ever aspects are measured, the lag correlations do not
seem to be related to any ofthe other measures (correla­
tions between - .12 and .13). This indicates that the lag
correlations are not sensitive to the same aspects of ran­
domness as the model-based and the ApEn-2 indices. It
may be suspected therefore that, at best, the lag correla­
tions are measures sensitive both to variations in random­
ness and to other kinds of temporal structure that do not
seem to be related to event probability, repetition proba-

RANDOM TIME GENERATION 561

bility, or alternation probability. At worst, lag correla­
tions are not measures of randomness at all.

DISCUSSION

Three methods were described for the analysis of the
randomness of time intervals. The findings of the prin­
cipal components analysis highlight the differences be­
tween the three methods. On the basis oftheoretical con­
siderations combined with the results of this analysis, it
would seem that the parameters a and f3 and the alterna­
tion index are the best measures to indicate deviations
from randomness.

The principal components analysis has revealed that
the measures derived from the three methods can be seg­
regated in two sets. ApEn-2 and the model-based measures
together constitute two components that explain more
than halfofthe variance. The lag correlations and ApEn-l
explain another 20%, distributed over three components.

The two most important components in the obtained
component structure seem to be sensitive to alternations
and to perseverations each time in combination with the
global probability ofa tap. A third final component is re­
lated to lag correlations. It is quite isolated from the rest
ofthe measures. In fact, the lag correlations do not at all
correlate with the other measurements (most correlations
are around zero, and the highest one observed is - .20).
It seems clear, therefore, that lag correlations have noth­
ing to do with measurement of regularity or of random­
ness. The last component, which corresponds to the en­
tropy measure, is at the low end sensitive to restricted
regularities, but at the high end it does not differentiate be­
tween randomness and regularities of another form.

Taken altogether, the present data clearly show that the
model-based measures come closest to measuring ran­
domness in time sequences. The method is quite labori­
ous, but the program presented in the Appendix may
help to circumvent this difficulty. Even then, the method
yields a variety of measures (4 parameters, 21 statistics,
63 deviations between the observed and the predicted
statistics, and a number ofgoodness-of-fit measures). Al­
though the best way to characterize the randomness of
a sequence is on the basis of the parameters of the best­
fitting model, the alternation index seems to provide a
valuable shortcut. If its value is smaller than .5, it ex­
presses a tendency towards perseveration; if its value is
larger than .5, it shows a tendency toward alternation, and
values near to .5 indicate absence of bias.

It should be pointed out, though, that estimation of the
randomness ofa sequence ofevents is only a tool to elu­
cidate the statistical characteristics of the observed se­
quence. Inferences about the underlying generation pro­
cess are just speculative. This means that the proper
context for usage of the tool is always in a comparative
situation-for example, to compare the statistical quali­
ties of the sequences generated under single-task and
dual-task conditions, to compare the statistical proper-



562 VANDIERENDONCK

ties of sequences generated under instructions of random
tapping and fixed or systematic tapping (for examples of
such applications, see Vandierendonck, 2000), or to find
out whether there is a tradeoff between the primary and
the secondary tasks.

Applications of the method to a series of such com­
parisons has shown that, in general, human random time
interval generation is biased toward alternation and that
this tendency increases if the primary task load is larger
(Vandierendonck, 2000). Under instructions of fixed
tapping (generate taps about once a second), the alterna­
tion tendency is even bigger than under random tapping
with a heavy primary task load.

It is quite likely that other useful methodologies for
the analysis of random time intervals are possible. The
present article, therefore, may be considered a first step
toward an improvement of the methodology.
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NOTES

I. This assumption may seem rather restrictive. However, it should be
noted that it is an assumption about the generation process. Even if the
present event directly depends on the previous outcome only, it should
be kept in mind that the previous outcome was directly affected by the
one before that. Even with a rather moderate alternation probability
(Jr = f3 = .5), autocorrelations deviate from the neutral baseline up to
six lags. To the extent that a comparison is warranted, this is consistent
with the observation by Wiegersma (1984) that alternation extends be­
yond the directly succeeding item in random digit production. There
seems to be no reason yet to trade the Markov assumption for a more
complex one.

2. A related technique based on chaos theory has been described by
Hornero, Alonso, Jimeno, Jimeno, and Lopez (1999) and was used to
show that rhythmic random pattern tapping in schizophrenic patients is
less variable than that of matched controls. This measure was not in­
cluded in the present study because the boundary conditions of the tech-



nique (generation of a series consisting of a fixed number of taps) seem
to be too limited to be used in dual-task conditions. More information
about the utility ofthe measure under conditions ofvariable duration is,
however, most welcome.

3. The procedure described here has been improved in comparison
with the variant used in an earlier publication (Vandierendonck et aI.,
1998). Essentially, the conversion to binary values has been improved.
As a consequence, values for runs and autocorrelations tend to take
lower values. The published data were reanalyzed with the method as
described here. Although not every individual finding could be con-
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firmed, the general line offindings remains the same. An extension of
these findings can be found in Vandierendonck (2000).

4. One may wonder whether the component structure was affected by
mixing data obtained under single- and dual-task conditions. Of the
1,381 sequences included in the analysis, only 196 were obtained under
single-task conditions. Separate analyses for single-task and dual-task
conditions do not alter the picture presented here. However, when se­
quences are analyzed that were obtained under fixed tapping instruc­
tions, the picture is slightly different, probably owing to a lower degree
of complexity in the latter sequences.

APPENDIX
RigAnal: A Program to Calculate Randomness Measures

The program implements the three methods discussed in the
present article. It reads the file with time sequences and pro­
duces an output file with calculated measures per sequence.
The program is developed for two different platforms-namely,
the Unix/Linux platform and the MS Windows platform. Only
the interface is different between these two forms.

This appendix presents a brief description of the program
and its usage. First, the two interfaces are briefly described.
Next, input and output file formats are described. And finally,
an example of input and output is presented.

The Windows Interface
The interface is Windows based. Upon start, an empty win­

dow is shown with a bar menu at the top, showing the choices
"Initialize," "Finalize," and "Information." The leftmost menu
(Initialize) allows one to specify the procedure (lag, entropy, or
model based), the options, the input file, and the output file by
means of appropriate dialog boxes. The input and output file
dialog boxes provide a dialog to enter the name of the file.
Radio buttons are used in the procedure dialog box to select the
major application (lag correlation, approximate entropy, or
model-based statistics) and, in the options dialog box, to spec­
ify the model-based output (beautified or regular output) and
check buttons to indicate the specific selections required.

The second main menu allows two choices. One is to run the
program, and this will only work after the initializations (spec­
ification ofoptions and files) have been done. The other choice
is for quitting the program.

Version and other information about the program can be
probed by selecting the Information menu.

The UnixILinux Interface
The program is called from the command line, as follows:

riganal -I infile outfile
riganal -e infile outfile
riganal-alblilr]s [-cuxzI23gpm] infile outfile
riganal-v

The last form (-v) just reports the revision information ofthe
program. The first form (-1)calculates lag correlations at Lags
1-10 and estimates the probability and the confidence intervals
on the basis of 1,000 random permutations on each sequence
given in the input file. The results are printed in the output file
according to the format displayed in Table AI.

The second form (-e) calculates the ApEn measure (Pincus,
1991) for vector lengths of I and 2 on each sequence given in
the input file. The output file consists ofone line per sequence.

The third form calculates the model-based measures. The
options refer to specific applications: Print all statistics in a line
per sequence (-a), produce beautified output as shown in
Table A2 (-b; default), produce only the binary conversion of
the time intervals (-i), assume that the input is binary and cal­
culate the measures specified in the second set of options (-r),
and calculate selected measures as specified in the other
options (-s).

The other options allow one to select only specific measures:
the model parameters (-p), the overall model fits (-m), all the
statistics (-z), the runs (-u), the autocorrelations (-c), the alter­
nation index (-x), the deviations between the predictions of the
first model and the statistics (-I), the same for the second model
(-2), the same for the third model (-3), and the detailed fits ofall

Table Al
Output of the Lagcor Option of the Program

as Applied to the Example Mentioned in the Appendix

Permutation Statistic on Lag Correlation (Revision: 1.4)
Lags from I to 10
Number of replications per test = 1000
Subject Confidence interval
Observation Lag P = .025 P = .500 P = .975 Probability Deviation

IS I 0.3005 -0.4513 -0.0768 0.4150 0.9430 0.1423
IS 2 -0.0597 -0.4725 -0.0734 0.4377 0.5180 0.0002
15 3 -0.4139 -0.4973 -0.0699 0.4612 0.0630 0.1184
15 4 -0.5975 -0.4958 -0.0723 0.4592 0.0040 0.2758
15 5 -0.3188 -0.4993 -0.0716 0.5469 0.1590 0.0611
15 6 -0.0813 -0.5343 -0.0454 0.5703 0.4620 0.0013
15 7 0.5792 -0.5231 -0.0392 0.5728 0.9770 0.3825
15 8 0.5812 -0.5493 -0.0516 0.6613 0.9580 0.4004
15 9 0.4823 -0.5831 -0.0426 0.6597 0.9170 0.2755
15 10 -0.0015 -0.6163 -0.0084 0.7093 0.5060 0.0000

Note-The program was instructed to calculate correlations and confidence intervals for Lags 1-10.
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APPENDIX (Continued)

the models (-g). Several of these options can be specified as a
concatenated string. For example, the option -pmx asks for the
parameters, the overall fits, and the alternation index.

Files
Except for usage with the -r option, the input file in all cases

consists of any number of sequences presented one sequence
per line. The first three values of each line specify the partici­
pant identification, the condition identification, and the task
identification. These values always return in the output. The
fourth value is the number of intervals in the sequences-say,
n-and after that value, n other cumulative time values follow.

The input for the -r option is a file with binary sequences.
The first three values are the same. Then follows the size of the
interval (integer), the number of binary events (m), and the
value of the recovery index (floating point) followed by m bi­
nary values (0 or I). When the option -i is specified, the output
file produced follows these same rules.

Application with options -a, -F, or -s produce output with all
the requested values on a single line. The first three values in
that output repeat the participant, condition, and task identifi­
cation. Next, the interval size (for the binary conversion) and the
recovery index are printed. After that, the statistics are printed
in a standard order (conform to what was requested): autocor­
relations (-c or -z), runs (-u or -z), alternation index (-x or -z),
deviations between the statistics and the values predicted by the
first (unbiased) model in the same order as the statistics, devi­
ations between the statistics and the values predicted by the sec­
ond (perseveration) model in the same order as the statistics,
deviations between the statistics and the values predicted by the
third (alternation) model in the same order as the statistics, the
fits per group of statistics and per model (-g), the model pa­
rameters (-p), and finally the overall model fits (-m). This print
out format is useful for further statistical analysis.

An Example
The following short series of time intervals (in mil1iseconds)

is used as an example: 218, 418, 985, 852, 1065, 262, 106, 113,
256,748,322,1397,846, 168, 169,231,301,386,612. Note that
these values are not suited as input for the program, since cumu­
lative values (0, 218, 636, etc.) are required. Table AI displays
the result obtained by application ofthe lag correlations method.
The first part ofthe table displays the general information for this
application. The main part of the table reports the correlations at
Lags 1-10. The first two values in the row identify the participant
and the sequence in the analysis. Each row also displays the con­
fidence interval (P = .025 and P = .975), as wel1as the median
of the sampling distribution (P = .500). Under the header "Prob­
ability," the probability of the correlation in the sampling distri­
bution is given. The last column shows the value of the squared
deviation between the observed correlation and the mean of the
distribution. It appears that in this series, only the correlation at
Lag 4 falls outside the.95 confidence interval; the other nine val­
ues lie inside their respective confidence intervals, although the
values at Lags 3, 7, and 8 are quite close to the edges of the con­
fidence interval. Given these results, one may be tempted to con­
clude that the series of intervals is not at al1 random. However, as
appeared from the Monte Carlo study, the probability of observ­
ing one extreme probability in one sequence is about the same in
biased and unbiased sequences. On the other hand, the sequence
used here as an example is rather short, so the correlations have
generally, and certainly at the larger lags, wide confidence inter­
vals because they are calculated on smal1 samples.

Application ofthe approximate entropy option ofthe program
yields two values-namely, .298 for vectors of length I and
.043 for vectors oflength 2. Both values are quite close to zero,
so that it may be concluded that this sequence has a rather sim­
ple structure that could indicate a substantial deviation from
randomness.

TableA2
Output of the Rigstat Program as Applied to the

Example Mentioned in the Appendix

Model 3
Exp Dev

Subject IS-Condition 2-Task 24-lntervaI142-Recuperation 1.000
Model I. Estimated pi = 0.287
Model 2. Estimated pi = 0.287-Estimated alpha = 0.000
Model 3. Estimated pi = 0.244-Estimated beta = 0.090
Autocorrelations Model I Model 2

Lag Obs Exp Dev Exp Dev

I 0.061 0.082 -0.022 0.082 -0.022
2 0.108 0.082 0.026 0.082 0.026
3 0.D78 0.082 -0.004 0.082 -0.004

RMSD C 0.022 0.022

0.063 -0.002
0.083 0.025
0.081 -0.003

0.021

0.013
0.015

Dev
0.000

-0.002
0.017
0.010

0.426

Model 3
Exp

0.284
0.063
0.014

0.030 0.409 0.030
0.017 0.017

Model I Model 2
Dev Exp Dev

-0.003 0.287 -0.003
-0.022 0.082 -0.022

0.007 0.024 0.007
0.013 0.013

Runs
Lag Obs Exp

I 0.284 0.287
2 0.061 0.082
3 0.031 0.024

RMSDU

A-index 0.439 0.409
RMSDT

Note-The output contains a general section and a section for each group of statistics.
The predictions and the fits of the models are also included. The program normally dis­
plays 10 autocorrelation lags, but to keep the size of the table manageable, only 3 lags
are displayed here. The root-mean squared deviations (RMSDs) are based on all the
data used by the program.
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APPENDIX (Continued)

The model-based method was also applied to the example.
The beautified output is displayed in Table A2. The top panel
of the table displays general information, such as the identifi­
cation ofparticipant, condition, and task. This section also shows
the size of the unit interval (142 msec in this case) and the de­
gree of recuperation (I here, which means that no interval con­
tained more than one tap). Also shown in this panel are the values
of the estimated parameters. Under the no-bias and the positive
bias models, 1C = .29 and a = 0, which means that there is no
positive bias in this sequence. On the contrary, there is a small
negative bias ([3 = .09) combined with a 1C of .24.

The second part of the table presents the values for the auto­
correlations at Lags 1-4 (the program calculates and prints Lags
1-10). In the first column, the lag is indicated, and the second
column displays the observed autocorrelation. In the following
columns, for each of the three models, the expected autocorre­
lation (given the estimated parameters) is shown, as well as the
difference with the observed value. This section concludes with
the RMSD calculated for each model over the 10autocorrelation
lags. A small difference in favor of the alternation model is ob­
served here.

The third part of the table displays the results for the runs sta­
tistic. Only the nonzero values of the runs statistic are pre­
sented-here, runs oflengths 1-3. The columns in the table have

the same meaning as the columns in the part with the autocor­
relation statistics. Again, the section ends with an RMSD cal­
culated over the 10 run lengths. With respect to this set of sta­
tistics, the difference between the alternation model and the other
two models is more pronounced.

The last part ofthe table displays the results for the alternation
index. Again, the best fit is observed for the alternation model.
The final line, then, presents the overall RMSD calculated over
all 21 statistics. As this overall RMSD is somewhat smaller for
the alternation model than for the other models and the alter­
nation parameter is clearly different from zero, it would seem
appropriate to conclude that the sequence in this analysis is
slightly biased toward alternation.

If the program was run under the -s (selected output) option
with -p as selection, the output would consist of just one line,

15 2 24 142 1.000 0.287 0.000 0.244 0.090,

where the first three values are identifications, the fourth value
is the unit interval, the fifth is the recuperation index, and the
last four values are the four model parameters.

(Manuscript received March 29, 1999;
revision accepted for publication July 18,2000.)


