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Fractional designs can be extremely useful in social science research, especially when a large number
of factors is involved, Reluctance for the use of fractional designs seems to be warranted for two rea
sons: (1) In the social sciences, the amount of measurement error is often large, which may decrease
the power, and (2) higher order interactions are assumed to be nonsignificant, which is difficult to guar
antee without sufficient research. This simulation study shows the effects of measurement error and
assumption violations under various conditions. It is concluded that fractional designs handle mea
surement error gracefully and that they are as powerful as a fulldesign when equal degrees of freedom
are available.Significantinteraction effects can cause serious problems, especially in situations with low
or intermediate measurement error, and can lead to erroneous conclusions. Onlywhen estimated con
founded effects are clearly not significant,the chance of a wrongdecision is reasonably small.Therefore,
fractional designs are especially warranted for the exclusion of irrelevant factors. However, we note pit
falls in the use of Version 1.0of the program Trail Run from SPSS, Inc., to implement the procedures.

In early stages ofresearch, many attributes are often as
sumed to be relevant. Although common sense and clear
thinking may reduce the number of relevant aspects,
guesswork is frequently involved. The researcher, how
ever, wants more secure techniques. Social scientists are
beginning to realize that fractional design theory, which
has been developed in the technical sciences over several
decades, may offer a resolution to this problem. Frac
tional designs are cost-effective designs, which use a re
duced number ofcases. They are especially useful for ex
periments with a large number of factors and when the
relevance of these factors is uncertain and cannot be ex
cluded a priori.

However, because fractional designs are relatively new
to social scientists, the specific features of these designs
are not generally known. We have used simulation studies
to investigate the effect of large measurement error on
fractional designs and the distorting effects of significant
higher order interactions. The latter is a known weakness
of fractional designs. Simulation studies can show the
circumstances in which fractional designs are applicable.
The results of these simulation studies clearly illustrate
the advantages and disadvantages of fractional design.
The methodology of the simulation studies is explained
and illustrated in this paper.
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Sciences, Department of Methodology and Statistics, P.O. Box 80140,
NL3508TC Utrecht, The Netherlands (e-mail: j.a.landsheer@fss.uu.nl).

Fractional designs use a reduced number offactor com
binations and, therefore, cases (or runs). They do this in
a systematic way, so that it remains possible to estimate
main effects and sometimes second-order interaction ef
fects; higher interaction effects cannot be estimated.
Fractional designs are therefore cost-efficient factorial
designs for research of a relatively large number of fac
tors with a minimal number ofcases. They are important
for a first screening, whenever a relatively small number
ofrelevant effects is anticipated among a large number of
insignificant factors. The designs involve a tradeoff be
tween power and estimability of interaction effects on the
one hand and efficiency and costs on the other.

Recently, fractional designs have become more popular
in the social sciences. The fractional design is often used
in conjoint analysis, especially in marketing research
(Carroll & Green, 1995; Louviere, 1988; Vriens, 1995).
Several studies in this area deal with consumer choices
(Cestre & Darmon, 1998; Kaul & Rao, 1995), but the frac
tional design is also used in direct mail research (Berger
& Magliozzi, 1993).

The oldest and best-known instance of a fractional de
sign is the Latin square; however, nowadays, a large va
riety of fractional designs is available. There are also
many books devoted to the subject of fractional designs
(Box, Hunter, & Hunter, 1978; Dodge, Fedorov,& Wynn,
1988; Edwards, 1993; Kempthorne, 1952/l973; Lou
viere, 1988; McLean & Anderson, 1984; Upperman,
1993; Winer, Brown, & Michels, 1991), some of them
specifically written for use in the social sciences. Frac
tional designs originated in the field of industrial quality
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control (Davies, 1956; Hahn, 1977), and many publica
tions can be found in technical journals, such as Techno
metrics. For instance, they are used for research of the
production quality of electronic devices (Mesenbrink &
Lu, 1994). In industrial quality control, the most impor
tant rationale for using fractional designs is the separation
of the vital few factors from more trivial ones (Nair,
1992).

A review of various computer programs for the con
struction of these fractional designs can be found in
Nachtheim (1987). Recently, SPSS issued a special pro
gram (Trial Run) to generate these and other designs, for
using efficiently a reduced number ofexperimental con
ditions at the expense ofpower and estimability ofhigher
order interactions (SPSS, 1997). The usability of this
program for the generation of fractional designs is criti
cally discussed in Appendix A.

Fractional designs use a reduced number of experi
mental conditions in a systematic way, so that it allows
researchers to estimate main effects and sometimes two
way interaction effects, while higher interaction effects
are no longer estimable. Higher order interactions are in
tentionally confounded with second-order interaction ef
fects and main effects. The confounding is done in such
a way that there is a single variance estimate for every set
of confounded effects. Main effects are estimable when
they are confounded only with higher order effects but not
with each other. The second-order effects are estimable
when they are not confounded with each other or with the
main effects but are confounded only with higher order
interaction effects. The main effects and two-way inter
actions are estimable only when these higher order effects
are known. In general, if the higher order effects are
known in advance, they can be subtracted from the total of
estimated variance. However, in most cases, the higher
order effects are assumed to be zero. A fractional factor
ial design can be particularly useful for the study ofmain
effects of a large number of independent variables.

In a full design, the number of cases that have to be stud
ied can become impossibly large as the number of factors
increases. In fractional design, the number ofcases is lim
ited by reducing the number of experimental conditions.
Instead of examining the total factorial design, a fraction
ofthe factorial design is investigated. For instance, instead
of a full 2n with n factors of 2 levels, a fractional 2(n - I)

design uses half of the cells of the full design.
When the number ofcases is restricted, however, a frac

tional design results in reduced power to reject the null hy
pothesis (Ho) when it is false (Type II error). In addition,
main effects can become significant in fractional design
when they are confounded with higher interactions.
When this higher order interaction is assumed to be zero,
while in fact it is significant, the estimate of the main ef
fect is incorrect and will appear to be significant. In such
cases, an increased probability of a Type I error (i.e., in
correct rejection of H o) will arise.

Research in the social sciences differs from technolog
ical research in at least one aspect: the degree of mea-
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surement error. The first question ofthis simulation study
therefore concerned the usability of fractional designs in
social science research where the error variance can be
large. More specifically, do fractional designs remain suf
ficiently powerful in situations with increased measure
ment error? The second question concerned the usabil
ity offractional design when there is a significant higher
order interaction. This violation of the assumption that
higher order interactions should be zero was also studied
under conditions of varying amounts of measurement
error.

DESIGN

To estimate the percentage of rejections in relation to
measurement error, we ran two simulation studies to
compare full designs with their fractional counterparts.
The comparison was between a full 25 design and a frac
tional 2(5 - I) design. Both designs incorporated five di
chotomous variables, A through E. The full design had a
total of 32 conditions, with two cases in each condition,
resulting in a sample of 64 for each iteration of the sim
ulation. The fractional design consisted of half this de
sign with a total of 16 conditions, but with four cases in
each condition. Both designs therefore incorporated a
total of 64 cases in each trial. The number of cells in the
full design was 32, and the number of cells in the frac
tional design was 16.

The Franklin algorithm was developed for the gener
ation of fractional designs with variables of two or more
levels (Franklin, 1985; Turiel, 1988). This computer al
gorithm selects fractional designs, which allow at least
the estimation of main effects and optionally the estima
tion of two-way interactions. The fractional 2(5 - I) de
sign 1 is created by this algorithm and allows estimation of
the five main effects, but not the estimation of two-way
interactions. The defining contrast (1) = ABCE gives rise
to the following pattern of confounding: (I) = ABCE,
A = BCE, B = ACE, C = ABE, D = ABCDE, E = ABC,
AB = CE, AC = BE, BC = AE, AD = BCDE, BD = ACDE,
CD = ABDE, DE = ABCD, ABD = CDE, ACD = BDE,
and BCD = ADE. It is evident that the main effects are
confounded with three- or four-factor interactions, and
some two-factor interactions are confounded with each
other. Effects cannot be estimated separately from the ef
fects with which they are confounded (i.e., their aliases).
For instance, A and BCE refer to the same variance com
ponent and are therefore aliases ofeach other. Under the
assumption that specific three- and five-factor interac
tions (e.g., BCE) are zero, all main effects (e.g., A) be
come estimable. Several two-factor interactions (e.g., AB
and CE) are confounded with each other and cannot be
estimated separately.

We selected this design with five factors of two levels
each, because it is a relatively simple fractional design
and can be analyzed using a regular analysis of variance
(ANOVA). The latter is true for all fractional designs of
dichotomous variables. Fractional designs of variables
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with more than two levels need special computations
when estimates of the lower interactions are required, be
cause all interaction effects of variables with more than
two levels are partitioned into two or more different com
ponents.

To get sufficiently stable results in the simulation stud
ies, the same analysis was reiterated 1,000 times on the
same number of cases. With each iteration, a full design
was simulated on a random basis with 128 cases (four
replications in each cell), ofwhich halfofthe replications
in each cell were used to get the full design with two repli
cations. The fractional design was created by excluding
those cases of the 128 that belonged to cells that were
not part of the fractional design. The full and fractional
designs were optimally comparable in each iteration,
since both were derived from the same number of simu
lated respondents in each sample. The probability of re
jecting Ho incorrectly is a = .05. Nine error variance
conditions with two ANOVAs per iteration and two inter
action conditions (no interaction and interaction) gives a
total of two times 18,000 ANOVAresults to be analyzed.
The automated SPSS 8.0 setup for this simulation study
is shown in Appendix B,2

All five main effects in the first simulation study were
kept at the same level, but the extent of error variance
(reflected by the MS WITHIN) has been varied from
small (1 unit) to large (1,000 units). Though always pres
ent, main effects mayor may not be significant as a result
of unsystematic sampling error due to the error variance.
In the first simulation, the data are generated according
to the formula (in SPSS syntax): COMPUTE Y = A + B
+ C + D + E + NORMAL (SD). This formula defines the
outcome variable Y, by adding the main effects A to E
and some measurement error. The measurement error is
defined as unsystematic error, which is normally dis
tributed with a standard deviation So. SD is varied be
tween 1 and 1,000. NORMAL (SD) means that a normal
distributed error is added to the main effects with zero
mean and standard deviation so. Thus, SD represents the
standard deviation of the error, which results in an ex
pected MS WITHIN ranging from 1 to 1,000.

The MS BETWEEN depends on the factors A to E
(with possible values of -1 and 1 to get orthogonal fac
tors). The use of this formula results in an anticipated con
tribution to the MS BETWEEN of 64 in the full designs
with two replications and 64 in the fractional design with
four replications.

Thus, the simulation includes various conditions, from
strong effects (in which the extent of systematic variance
is substantially larger than the extent of unsystematic error
variance) to unpredictable effects (in which unsystematic
error variance becomes comparable, though smaller than
the systematic variance) and nonsignificant effects (in
which the systematic variance is equivalent to the un
systematic error variance or less). In both the full design
and the fractional design, occasionally effects can be sig
nificant due to sample differences, even in the simulations
with a large amount oferror. The number ofcases is kept

equal at each level oferror variance by comparing full de
signs with two cases per cell with fractional designs with
four cases per cell but half of the cells. At each iteration,
differences in outcome between both designs are therefore
the result of differences between the designs and sampling
differences from the normal distributions.

The second simulation study focuses on the effect of a
three-way interaction effect in combination with error
variance. The data are generated according to the formula
(in SPSS syntax) COMPUTE Y = A + B + C + D +
A*B*C + NORMAL (SD), in which the interaction effect
A*B*C has been added, but the main effect E has been
omitted. The MS BETWEEN ofthe interaction effect is of
the same magnitude as the main effects (64). Since higher
order interaction effects in fractional designs are nor
mally assumed to be 0, this formula involves a clear vi
olation of this assumption in the fractional designs. In
the fractional design used here, the ABC effect is con
founded with main effect E that has been left out. Erro
neous results are therefore to be expected when using
this fractional design.

RESULTS

Table 1 shows the results of the first simulation with
all main effects present. The smallest degree oferror (SS
WITHIN = 1) leads in both the full design and the frac
tional design to 100% identical decisions about the exis
tence of the five main effects in each of the 1,000 itera
tions.

With a scarcely higher degree of error (SS WITHIN =
4), both the full design and the fractional design lead in
95.4% of the main effects to a simultaneous rejection of
Ho. Opposite decisions, however, arrived at 4.1% of the
total of 5,000 main effects. When the SS WITHIN in
creases, the number of opposite decisions grows rapidly
to 33.1% when SS WITHIN is 16. In the intermediate
area, with an SS WITHIN of 16 to 21.33 and an SS BE
TWEEN of 64 for each main effect, the value ofF( I ,58)
approaches the critical value of 4 more often, as a result
of which the random differences more frequently cross
the borderline between rejection and no rejection of Ho
at either side. This gives rise to a large number of oppo
site decisions between the full design and the fractional
design. When SS WITHIN becomes larger, the F value
diminishes further, leading to more simultaneous failures
to reject Ho.With SS BETWEEN = 1,000, the full design
signals that 94.6% ofthe main effects are not significant,
and the fractional design fails to reject Ho in 94.4% ofall
main effects. With this large and unambiguous degree of
error, the percentage of opposite decisions given by the
full design and the fractional design is reduced to 8.8%.

Table I also shows that the power to reject Ho is about
the same in a fractional design and in a full design. The
frequency ofopposite decisions depends on the design of
SS WITHIN and is especially high in the middle area. Al
though differences occur, the percentage of rejections is
about the same for both designs.
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Table I
Results of the First Simulation Study: Percentages of Rejections

of H o Concerning the Main Effects of a Full 25 Design and
a Fractional 2(5- I) Design, Both With 64 Cases per Run

Full design Reject No Reject Reject No Reject
Fractional design Reject Reject No Reject No Reject Opposite decision

SS WITHIN
I 100.0 0 0 0 0
4 95.4 2.1 2.0 0.4 4.1
8 68.5 11.2 11.0 9.3 22.2
16 33.8 17.0 16.1 33.1 33.1
20 25.1 16.8 15.9 42.3 32.7
21.33 22.2 15.4 17.3 45.1 32.7
32 14.2 14.2 14.1 57.6 28.3
100 4.2 8.1 8.0 79.7 16.1
1,000 1.0 4.6 4.2 90.2 8.8

Note-In both the full design and the fractional design, the five main effects define
the systematic variance, whether the amount of SS WITHIN is varied.

Table 2 shows the results of the second simulation
study of the effects of assumption violation. The direct
effect of the single A*B*C interaction effect is that the
fractional design results in an erroneous detection of the
confounded, but nonexistent main effect E (a Type I
error), and the full design concludes correctly that there
is no main effect of the factor E.

The full design rejects Hoconcerning all entered main
effects (i.e., A, B, C, and D) and does not reject Hocon
cerning a main effect E; the fractional design, on the
other hand, rejects Ho for all five main effects. This leads
to a large difference in results. The percentage ofopposite
decisions is 19% in the extreme case with an SS WITHIN
of 1, and, interestingly enough, it is reduced to 9% when
SS WITHIN is large (1,000). Comparing Table I with
Table 2, the frequency of opposite decisions is much
greater in Table 2 at the extremely low error rates, but the
difference diminishes rapidly. It is roughly the same when
SS WITHIN is 21.33 or higher. In other words, although
the probability of a Type I error for specific main effects
increases seriously in a fractional design when confounded
higher order interaction effects are present, this probabil-

ity diminishes when the level of error increases and the
magnitude of the effect remains the same.

CONCLUSIONS AND DISCUSSION

When compared with the full design, the fractional
design is equally powerful as long as the total number of
cases is the same. However, the fractional design is most
often employed in order to reduce the minimum number
of cases needed to use the design. Precisely in that situa
tion, of course, the power of the design is diminished by
the reduced number of cases.

The first simulations show that, when the presence and
size of the effects are equal and the total number of cases
is the same, the chances that the same decision ofrejection
of Howill be made with a fractional design and a full de
sign depend on the degree of error. The number of equal
decisions can be fairly low,especially in cases where mea
surement error is intermediate. When SS WITHIN is
small, the divergence between the full design and the
fractional design is relatively small. When measurement
error is intermediate, the divergence reaches a maximum

Table 2
Results ofthe Second Simulation Study: Percentages of Rejections

ofH o Concerning the Main Effects of a Full 25 Design and
a Fractional 2(5- I) Design, Both With 64 Cases per Run

Full design Reject No Reject Reject No Reject
Fractional design Reject Reject No Reject No Reject Opposite decision

SS WITHIN
I 81.0 0.0 19.0 0.0 19.0
4 77.5 1.8 20.2 0.6 22.0
8 55.2 9.4 24.1 11.3 33.5
16 27.5 14.0 22.8 35.7 36.8
20 21.1 14.7 19.9 44.3 34.7
21.33 19.6 13.2 20.4 46.8 33.6
32 11.0 11.9 17.4 59.8 29.3
100 3.4 6.8 9.0 80.7 15.8
1,000 0.9 4.6 4.4 90.0 9.0

Note-In both designs, the systematic variance is defined by the four main effects A, B,
C, and D and the interaction effect ABC, whereas the amount of SS WITHIN is varied.
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when the Fvalue becomes critical and rejection ofHobe
comes strongly dependent on sample differences. When
measurement error is high, the divergence between the
full design and the fractional design diminishes. This re
sult is clearly illustrated by the first simulation. Fractional
designs are the most vulnerable when the F value is very
near the borderline between a significant effect and a non
significant effect, but the same holds true for full designs.

The second simulation shows that assumption violations
can easily lead to failures to reject Ho for confounded ef
fects and therefore to a large Type I error. In general, these
violations have to be examined with care, and research
using fractional designs can be considered safe only
when previous research has demonstrated that the higher
interactions in the design can be neglected. The second
simulation study shows that when there is no information
from other studies to show the nonexistence of higher
order interaction effects, there is a real danger ofmisin
terpreting analysis results. In such cases, confounded sig
nificant main effects in fractional designs have to be dis
trusted, especially when the error variance is small. Such
a main effect can be due to confounded interaction effects.
Of course, we can assume that higher order interactions
become more exceptional as the order gets higher, but it
is better to have information available about the existence
of higher order interactions from previous research.
However, when a main effect is not statistically signifi
cant, we can be fairly certain that such a specific main
effect really is absent. The too small SS for the total set
of confounded effects cannot be the result of the inter
action effect. Therefore, fractional designs are especially
useful for the exclusion of clearly irrelevant factors.

In conjoint analysis, fractional designs are used in re
peated measurement designs, with several or all condi
tions of the design assigned to every individual case. The
power of these designs is essentially the same as the de
signs simulated here. However, with conjoint analysis the
confounding pattern has seldom been presented, and, in
many cases, it is wholly undefined. When there is any
chance that higher order interactions may be significant,
it is unclear which main effects are vulnerable. This makes
the argument even stronger that the value of higher inter
action effects should be known in advance from previous
research. Having said that, clear failures to reject Ho can
be trusted, even where some higher interactions are sus
pected. Again, fractional designs can best be used as a
screening device to exclude clearly nonsignificant effects.

Both simulation studies clearly illustrate the features of
the fractional design. As these studies are easily accom
plished, they are highly recommended for researchers who
want to acquaint themselves with the features offractional
designs. Our approach is suited for all fractional designs
with factors of two levels, because, in that case, common
ANOVA is suitable for the full analysis of these frac
tional designs, and SPSS MANOVA or GLM can be used
for analysis ofboth full and fractional designs. When the
researcher is interested in main effects only, this simula
tion approach can also be applied to factors with three lev-

els or more, since common ANOVA is also appropriate
for the analysis of main effects of fractional designs with
these factors.
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NOTES

I. The Windows 95/98 program to generate these and other fractional
designs is available in a beta version from the first author. It will be pub
lished once it has been fully debugged and will be made available at no
charge.

2. A simple Windows 95/98 program to select the relevant data from
the draft output (text-only) of SPSS is available from the first author.
The program is in Delphi Pascal source code and needs to be adapted
for specific purposes, and some Pascal programming experience is nec
essary for its use.
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APPENDIX A
Puzzling Aspects in the Construction and Analysis of

Fractional Factorial Designs With Computer Programs From SPSS

As the number of factors increases, the construction offrac
tionaI designs becomes more complex. Furthermore, when the
design involves a nonprime number oflevels or when the num
ber oflevels varies per factor, the construction and the analysis
of these designs become quite complicated (Upperman, 1993,
offers a number of solutions in these special cases). The con
struction of a fractional design is therefore a complicated task,
calling for a dedicated computer program. SPSS offers such a
program called Trial Run 1.0, which is a tool for generating ex
perimental designs. Trail Run uses the SPSS module GLM for
analyzing data, obtained in these experiments. The program of
fers solutions in even the most difficult cases and is very com
plete with a huge number ofoften complicated designs. The ef
fort of SPSS to create such a complete program and to make it
available to the general public is highly commendable. The spe
cialized knowledge of designs involved puts it at the cutting
edge. However, though it is a program that offers much for ex
perimenters, we also have found some shortcomings, which call
for careful usage.

Notational Problems
In a fractional design of factors of three or more levels, the

interaction effects are split into different components, where
each of these components can be used as an estimator of the
interaction effect. For instance, when a 33 is split into three
equal fractions (i.e., a 33 - 1 design is constructed), the A * B
effect is split into two orthogonal components, AB' and AB2.
The superscript merely indicates the way the factor is fraction
alized. To prevent confusion, it is customary to keep the letters
in alphabetical order, and the superscript of the first letter is
kept to unity (Kempthorne, 195211973, p. 295). Because it is
defined that A' B1 = A2Bland A I B2= A2B2, the usual notation
is respectively AB' and AB2: The first factor in every effect
component has no superscript. Both of these fractionalized ef
fects are sometimes regarded as estimators of the interaction ef
fect A X B. In a full design, their sum equals the interaction SS
of the A X B effect (Winer et al., 1991).

Regardless of the number of levels, a letter alone without a
superscript number indicates the first factor. This also holds
true for main effects A 1 and A2, which indicate one and the
same main effect, A; hence, it makes no sense to add a number.
Sometimes, all superscripts ofunity are discarded-for instance,
ABI is noted as AB-but this notation is easily confused with
an ordinary A * B effect ofa full design. Kirk (1968) places the
fractionalized interaction components between parentheses
for instance, using the notation (AB).

However, Trial Run uses the superscript notation for other
purposes, as is reflected in the manual (SPSS, 1997) on page 78.
The manual says that the superscript numbers used in the effect
notation point to the respective levels of the different factors:
"The effects are labeled with a letter indicating the factor in
volved, and a number indicating the level of the factor" (p. 78).
The term A2 would then mean the second level of factor A. This
notation is confusing in this context, and it remains unclear how
the different fractional interaction effect components can be
distinguished. The text continues: "Thus for a three-level fac
tor, the effects are A and A2..."; normally, only a single effect
of A is considered in the context of fractional design. There is
a possibility that the writers of the manual want to indicate dif
ferent contrasts; however, especially in the case of fractional de-

signs, doing it this way creates insurmountable problems of in
terpretation.

Regrettably, this is not merely a confusing notation that af
fects only the documentation; it is a mistake that affects the core
of fractional design. The program produces erroneous results,
which become clear when we look at the produced tables of
confounded effects. For instance, when generating a resolution
IY design offour factors each with four levels, the identity gen
erator reports effects such as A2 B2 C2 0 I, which is identical
to AB2C2 0 1 and therefore confusing. Bizarrely, it also reports
A IA2B 1C 10 2, which is a nonexistent effect in every notation,
since a variable does not interact with itself. Especially when
the design involves a nonprime number of levels, the results of
the identity generator are incorrect. In other cases, the presented
results are, at the very least, confusing.

Data Analysis
Data obtained by fractional designs will usually be analyzed

by ANOYA (e.g., the GLM module in SPSS). For designs that
incorporate only two levels [2(n - m) designs], full analysis is
possible with ANOYA, because all effects in these fractional
designs have a single degree of freedom, the same as in a reg
ular design. Confounded effects are indicated simply by the
first of the confounded effects. In fractional designs with fac
tors of three levels or more, main effects can be estimated by
ANOYA, but interaction effects are split into various compo
nents. The estimation ofthese interaction components requires
special facilities that are not provided by regular ANOYA.

Trial Run automatically generates GLM statements for
analysis of the fractional designs. The GLM statements gener
ated by Trial Run always allow the estimation of main effects.
Often, fractional designs offer the possibility ofestimating some
or all two-way interaction effects. In most cases, the GLM
statements generated by Trial Run ignore these estimable inter
action effects. It appears that interactions are estimated only
when all effect components are confounded with third-order or
higher order interaction effects.

A serious problem encountered when using GLM for analysis
offractional designs is that GLM does not make use ofthe usual
notation for fractional designs. For instance, GLM uses only the

Table Al
Comparison of the Analysis of the Example as Offered by Kirk

(1968) and the Analysis Offered by the SPSS Module GLM

Kirk SPSS
Source 55 df Source Type III 55 df

Corrected Model 236.296 26
Intercept 1095.704 I

A 4.52 2 A 4.519 2
B 103.19 2 B 103.185 2
C 90.74 2 C 90.741 2
0 4.74 2 0 4.741 2
(AB2) .30 2 A*B .296 2
(AC2) 1.19 2 A*C 1.185 2
(AD) 2.74 2 A*O 2.741 2
(BC2) 7.41 2 B*C 7.407 2
(BO) 5.86 2 B*O 5.852 2
(CD) 1.86 2 C*O 1.852 2
Residual 13.75 6 Error .000 0
Total 236.60 26 Total 1332.000 27



534 LANDSHEER AND VAN DEN WITTENBOER

APPENDIX A (Continued)

notation A * B for a two-way interaction, and an ABI interaction the residual effect SS of 13.75 with df = 6 for the remaining
component cannot be distinguished from an AB2 component. (nonestimable) interaction effects. It is customary to add this

However,the GLM module of SPSS is very elaborate and of- residual to the error, but we have not found a way to do this with
fers more possibilities than are used by Trial Run. By specify- GLM. The disputable SS error does not show up because ofthe
ing the effects that can be estimated with the effect of the low- type of SS chosen for the analysis, and other types do not pro
est order of a series of confounded effects, GLM can produce duce the results desired here. More disturbingly, 6 dfs have dis
the correct sum of squares (SS) and mean squares (MS); how- appeared from the analysis without comment, thereby making
ever, without the appropriate notation, it remains guesswork as it impossible to test the estimable main effects and interaction
to whether AB2or ABI has been estimated. As an example, we effects. It seems that GLM is not very well suited for the analy
have reanalyzed the 3(4 - 1) fractional design of Kirk (1968, sis of fractional designs. Of course, we have reported these in
p. 399) with main effects and the six estimable two-way inter- adequacies to SPSS, Inc., but we feel that users and potential
actions, as shown in Table AI. Kirk's total of236.60 is concor- users of Trial Run should be warned as well. Regrettably, we
dant with SPSS Type III SS for the corrected model. have received no response from SPSS, Inc., other than a request

With one exception, all desired effects are produced, albeit that we resend the remarks as e-mail. As far as we know, Trial
without the desired notation. The residual is not estimated. An Run 1.0 is still sold, and we could not find any information on
error SS of 0 is obtained, with df= 0; and GLM does not show this Website (www.SPSS.com) about possible updates.

APPENDIXB
SPSS 8.0 Set-Up for Comparison of a Full 2 5 Design and a Fractional 2(5 - I) Design

(A comment is preceded by an asterisk [*] and concerns the SPSS command following the com
ment.)

*Definition of how the data must be read. Variable Run is the case number, A through E are the five
variables.

DATA LIST RECORDS I /1 run 1-3 A 5-6 B 7-8 C 9-10 D 11-l2 E 13-14.

*Data of the full 25 design, which is replicated four times, for a total of 128 cases.

BEGIN DATA

100000

210000

301000

411000

500100

6 I 0 I 00

701100

811100

900010

1010010

1101010

12 I 101 0

1300110

1410110

1501 I 10

16 I I 1 1 0

1700001

1810001

190 I 001

20 I 100 I

2100101

22 I 0 I 0 I
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2301 101

24 I I 101

25000 I I

26 I 001 I

270 I 0 I I

28 I 101 I

2900 I I I

30 101 I I

3101 I I I

32 I I I I I

REM Copy these 32 cases 3 more times to get a total of 128 cases.

END DATA.

*Automated simulation with 1,000 iterations.

*Define SPSS subroutine.

DEFINE !SIM ().

*Repeat 1,000 times.

!DO!I = I !TO 1000.

*Give each run a label with its number.

SUBTITLE Run !1.

*Compute a separate counter k.

COMPUTE k=k+ I.

*Show where we are by showing k and ADSD in a frequency table.

FREQUENCIES VARIABLES = k ADSD

lFORMAT=NOTABLE

ISTATISTlCS=MEAN

IORDER ANALYSIS.

*Recode variables A through E to get values created by an orthogonal design: Value 0 becomes -I.

RECODE ABC D E (0 = - I).

*Computation of outcome variable Y for simulation I.

COMPUTE y = A + B + C + D + E + normal (ADS D).

*Computation of outcome variable Y for simulation 2; for use, remove the asterisk of the following
line.

COMPUTE y = A + B + C + D + A*B*C + normal (ADSD).

*Recode value -I back to 0 for variables A through E, so that SPSS MANOVA can handle the
design.

RECODE ABC D E (-1=0).

*SPSS command to make the next selection temporary instead of permanent.

TEMPORARY.

*Select the full design for cases I through 64.

SELECT IF ($Casenum <= 64).

*Calculate MANOVA for full design for all main effects.

MANOVA Y BY A (0, I) B (0, I) C (0, I) D (0, I) E (0, I) /DESIGN ABC DE.

*SPSS command to make the next selection temporary instead of permanent.

TEMPORARY.

*Select four times 16 cells out of 32 for the fractional 215 - I) design, by selecting the
appropriate runs.
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SELECT IF (run=1 or run=4 or run=6 or run=7 or run=9

or run=12 or run=14 or run=15 or run=18

or run= 19 or run=2l or run=24 or run=26 or run=27

or run=29 or run=32) .

*Calculate MANOVA for fractional design.

MANOVA Y BY A (0,1) B (0,1) C (0,1) D (0,1) E (0,1) /DESIGN ABC DE.

lDOEND.

*End of subroutine SIM.

!ENDDEFINE.

*Give the iteration an appropriate label.

TITLE'SS within I'.

*Reset k to 0.

COMPUTE k =0.

*Calculate the added standard deviation ADSD of the unsystematic measurement error.

COMPUTE ADSD=SQRT(l).

*Call subroutine SIM.

!SIM.

TITLE 'SS within 4'.

COMPUTE k =0.

*Calculate another value for the added standard deviation ADSD of the unsystematic measurement
error.

COMPUTE ADSD=SQRT(4).

!SIM.

*Repeat previous four lines with other ADSD values.

(Manuscript received December 28, 1999;
revision accepted for publication July 20, 2000.)


