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Reinforcement accounts for transitive
inference performance

C.D.L. WYNNE
University of Western Australia, Perth, Australia

Transitive inference is the ability, given that A > Band B > C, to infer that A > C. Pigeons, rats, chim-
panzees, squirrel monkeys, and humans as young as 4 years have all been shown capable of this. In
this paper, simple associative learning models are explored as accounts of nonverbal transitive in-
ference performance. A Bush-Mosteller—based model can account for transitive inference under lim-
ited conditions. A Rescorla-Wagner-based model can account for transitive inference under all con-
ditions in the literature, but cannot account for some additional nontransitive tests. A final configural
model can also account for these nontransitive data. The ability of this model to account for transi-
tive inference formation in humans is also considered.

The transitive inference task is a form of syllogism fa-
miliar to the ancient Greeks and introduced into psy-
chology by Cyril Burt (1911; 1919a, 1919b). Of Burt’s
tests for assessing the reasoning powers of 7-year-old
children, two of the three he considered best for a short
test were of the following form:

Tom runs faster than Jim: Jack runs slower than Jim.
Who is the slowest—Jim, Jack, or Tom?
(Burt, 19193, p. 73)

Burt maintained an interest in this task because it cor-
related well with other measures of intelligence. Piaget
was interested in Burt’s syllogisms for the light that they
could shed on the development of basic intellectual fac-
ulties (Piaget, 1928). For Piaget, success on transitive in-
ference syllogisms is part of a general ability to seriate
stimuli, as well as evidence for the concrete operational
stage of intellectual development (Flavell, 1963).

The ability to seriate sets of stimuli, given only partial
information about the relationships between them, has
far wider generality than does the simple completion of
syllogisms. For social animals to be able to estimate their
rank in relation to many conspecifics without entering
potentially dangerous interactions with every other
member of the group must often be adaptive (Cheney &
Seyfarth, 1986). Similarly, the ranking of food-item pref-
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erences would clearly be simplified by an ability to se-
riate food items in a transitive manner. Thus, from a
functional point of view, the ability to solve transitive in-
ferences may have evolved in a wider variety of species
than Burt or Piaget would have expected—and a bur-
geoning literature testifies that this is indeed the case
(e.g., Boysen, Berntson, Shreyer, & Quigley, 1993 [chim-
panzees]; Davis, 1992 [rats]; Fersen, Wynne, Delius, &
Staddon, 1991 [pigeons]; Gillan, 1981 [chimpanzees];
McGonigle & Chalmers, 1977, 1986, 1992 [squirrel
monkeys]; Steirn, Weaver, & Zentall, 1995 [pigeons];
Wynne, 1994 [pigeons]). Given that verbal reasoning
still seemns outside the reach of all except the human
species, we may therefore predict that the mechanisms
underlying these kinds of performances can be much
simpler than hitherto assumed. This paper demonstrates
how a complex cognitive ability can be the result of fa-
miliar associative mechanisms. This argument will be
developed with the use of data from pigeon subjects, but
the logic applies equally well to other data sets from
other species, including humans. Few attempts have
been made to study nonverbal inferential abilities in hu-
mans, but it is quite possible that human transitive-
inference performance is also generated by a simple
associative mechanism. Alternatively, there may be
uniquely human aspects of the solution of inference
tasks by Homo sapiens; however, only by testing the suf-
ficiency of simple models will it be possible to identify
whether this is the case. In this way the study of animals
may further the understanding of the basic processes un-
derlying human cognition.

A relation R between two objects x and y, xRy, is tran-
sitive if, given aRb and bRc, it correctly follows that
aRc. Examples are “slower than,” and “cleverer than.” In
a nonverbal transitive inference task, pairs of stimuli are
presented; the choice of one item is rewarded, and the
choice of the other is not. The pattern of reward on the
several pairs “overlaps” so that a series can be inferred.

Copyright 1995 Psychonomic Society, Inc.
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At least five stimuli (four pairs) must be used in order to
avoid end anchor effects. Choice on the first and last
items in the series (the end anchors) is theoretically un-
interesting because they are only ever rewarded and non-
rewarded, respectively. The minimal task configuration,
known as the “five-term series,” can be represented thus:

A+ B-
B+ C-
c+ D-
D+ E-,

where a “+” after the stimulus indicates a reward if the
stimulus is chosen, and a “—" indicates nonreward for a
choice. The letters of the alphabet are used for conve-
nience only; there is no physical order to the stimuli.
Different colors (McGonigle & Chalmers, 1977, 1992;
Gillan, 1981, with primates), odors (Davis, 1992, with
rats), or visual patterns (Boysen et al., 1993, with chim-
panzees; Fersen et al.,, 1991; Wynne, 1994, with pi-
geons) have been used. Training proceeds as a standard
operant simultaneous discrimination. In tests for transi-
tivity, the stimuli B and D are presented together. Choice
of the stimulus B implies that the subjects have per-
formed an operation equivalent to seriating the stimuli
and making a transitive inference. With the correct con-
trols, the stimuli B and D will have been equally often
presented in rewarded and nonrewarded pairs (B was re-
warded in the presence of C, and nonrewarded in the
presence of 4; and D was similarly rewarded with E, and
nonrewarded with C), and thus a molar reinforcement
account (see, €.g., Humphreys, 1975) cannot explain
success on the transitivity test pair.

Two points need to be emphasized in this procedure.
First, at least five stimuli must be presented. If less than
five stimuli are used, no test pair can be presented that
does not contain at least one of the end anchor stimuli.
Second, it is important that the stimuli not be orderable
along any physical dimension. If the stimuli could be or-
dered according to their lengths (say), then successful
choice on test trials could be achieved by direct com-
parison of the lengths of the stimuli, without the need to
infer anything about the relationships between the vari-
ous training pairs.

This procedure has been used, and successful B D test
performance obtained, in at least some conditions in all
the studies cited above. Nonverbal studies performed
with human subjects have also found transitive choice in
test (Chalmers & McGonigle, 1984; Siemann & Delius,
1993; Werner, Koppl, & Delius, 1992). Transitive choice
has often been demonstrated in similar studies in hu-
mans where a verbal relation between the stimuli (such
as “bigger than”) has been used (see Halford, 1993, for
areview).

In addition to transitive test pair choice, two other
phenomena have been noted repeatedly in these studies.
First, when response accuracies on the various training
pairs are plotted against the training pairs in the order of
the implied series, a U-shaped pattern is observed. Per-

formance is best on the training pairs at the ends of the
series, and it is less good on training pairs in the middle
of the series (this can be seen in Figure 1). By analogy
with serial list learning, this is known as the serial posi-
tion effect, although the effect does not depend on the
order in which the pairs are trained, only on their order-
ing within the implied series of stimuli (Wynne, 1994).
A second effect reported in many studies is the symbolic
distance effect (see, e.g., Woocher, Glass, & Holyoak,
1978). As the number of stimuli intervening in the series
between the two stimuli in a test pair increases, there 1s
a progressive increase in response accuracies and/or de-
crease in reaction times.

Successful transitive choice, the symbolic distance ef-
fect, and the serial position effect have been taken as ev-
idence of complex seriation processes (e.g., McGonigle
& Chalmers, 1986; Trabasso, Riley, & Wilson, 1975).
Theories developed to account for human transitive in-
ference performance, with their heavy reliance on verbal
constructs, are ipso facto unsuitable for nonverbal sub-
jects. The purpose of this paper is to develop and test the
simplest model sufficient to account for all the details of
transitive inference performance in animals, and the ad-
equacy of the resulting model as an account of human
performance will also be considered. First, we will con-
sider the utility of the simplest model of the effects of re-
inforcement; but because this will prove unsatisfactory
for explaining transitive inference under all training reg-
imens, we will progressively add complexity to the
model until we have the simplest model capable of ex-
plaining all the data to hand.

MODEL1
Bush-Mosteller

Subjects in a nonverbal transitive inference experi-
ment are confronted with different stimuli, some of
which are rewarded when responded to, and some not.
The assumption that reward increases the probability of
a subsequent response and that nonreward decreases the
response probability goes back at least to Thorndike
(1898). Bush and Mosteller (1955) assumed that reward
increments the probability of a subsequent response by
a quantity dependent on the difference between the pres-
ent probability of that response and the asymptote. Non-
reward decrements this value in a similar way. For our
purposes, this can be expressed as follows:

V(X);p = V(X); + UB (1 — V(X),) onreward;
V(X)) = VX)), — DB * V(X),

where V(X); is the value of stimulus Xon trial ; U isa
rate parameter determining the effect of a reward, and
Dg is a rate parameter for the effect of nonreward. The
model makes three assumptions: (1) Each stimulus ac-
quires a unique value; (2) changes to this value occur only
after choice of that stimulus; and (3) choice on each trial
(training or test) is governed by the relative values of the
stimuli presented. Couvillon and Bitterman (1992) pro-

on nonreward, (1)
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Figure 1. Percentage correct responding of Fersen, Wynne, Delius, and Staddon’s (1991) pigeon subjects
on training pairs in different phases of the study (open squares), compared with the results of simulations
described in the text. “Before blocking” and “After blocking” refer to performance on the five-term series
immediately before and after the blocking phase. “7-term linear” refers to the extended series of training,
and ““7-term circular” refers to that series after the ends of the series had been trained together. Top pan-
els: simple Bush-Mosteller model (asterisks); Couvillon & Bitterman Bush-Mosteller model (crosses). Bot-
tom panels: Model 2 (filled triangles); Model 3 (open circles).

posed that a model based on these assumptions could
form transitive inferences. Simulations have shown that
it is not critical how these three assumptions are imple-
mented. In addition to the Bush-Mosteller operator de-
fined above, some success was also obtained with simu-
lations of Horner and Staddon’s (1987) ratio invariance
and constant difference models and with Luce’s (1959)
constant multiplier model (see Wynne, Fersen, & Stad-

don, 1992). For the present we will stay with Bush and
Mosteller’s linear operator, because it is analytically the
simplest of these models and it forms the basis of many
more recent accounts of associative learning.

On each training and test trial the values of the two
stimuli are compared, and the stimulus with the most
value is chosen. Again, it appears not to be critical how
the stimulus values are compared—several simple pos-
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sibilities lead to successful choice. Fersen et al. (1991)
proposed a subtractive rule, (p(X|XY ) = V(X) — (),
but this is not always bounded between zero and one.
The same drawback eliminates the ratio rule: (p(X|X7Y)
= V(X)V(Y)). A choice rule which is constrained be-
tween zero and one has been proposed by Luce (1959):
(pX|XY) = V(XH/(V(X) + V(Y))). For each of these
choice rules, expected performance on the B D test pair
can be predicted from observed performance on the
B+ C— and C+ D— training pairs. When Wynne (1994)
performed this analysis on a set of data from pigeons
which showed wide variation in B D test performance, he
found that Luce’s choice rule gave the best correlation
between predicted and obtained performance on BD.
The model proposed by Couvillon and Bitterman (1992)
takes the output from Luce’s choice rule and adapts it
thus:

r = V(X)/I(V(X)+ N(Y)).

Ifr>0.5,
pX| X7y =05 +5s02r — 1Dk, (2A)
and ifr <0.5,
p(X| XYy =05 - 51 - 2r), (2B)

where s and k are parameters fixed on the basis of pre-
vious research at 0.883 and 0.75, respectively.

Five- and Seven-Term Series Problems

Fersen et al. (1991) trained pigeons on the five-term
series (diagrammed above); on a seven-term series (cre-
ated by adding two more stimuli to the five-term series);
and on a “circular” series of seven stimuli. The circular
series was created by training the two end stimuli of the
seven-term series together with their customary reward
relations reversed (i.e., the always rewarded stimulus
was now punished, and the never rewarded stimulus was
now rewarded). The training and test pairs were pre-
sented mainly in randomized orders. This study provides
a good initial test of the model, for three reasons: (1) Es-
pecially complete details of training and testing are
available in Fersen (1989); as will become apparent, the
predictions of the model are very sensitive to the details
of training procedures. (2) The study includes additional
tests which uncovered several patterns in the test pair re-
sults. (3) All subjects received the same amount and pat-
tern of training on each stimulus pair; without this third
condition, it would not be legitimate to average the per-
formance of individual subjects for the purposes of com-
parison with the model.

The Bush-Mosteller model with and without the adap-
tation of response probabilities proposed by Couvillon
and Bitterman (1992) (Equation 2 above) was exposed
to the sequence of 27,000 stimulus pair presentations re-
ported in Fersen et al. (1991; Fersen, 1989). Perfor-
mance on training pairs was measured as the proportion
of correct responses on the trials reported by Fersen
et al. Performance on test pairs was estimated from the
average stimulus values (the ¥) over the course of the

test phases. The small number of presentations of each
test pair (typically, 12), combined with the stochastic
nature of the response rule, meant that the variance in
number of correct responses predicted from the model
would be too high if assessed only on the 12 presenta-
tions of each test pair. All results are the average of 100
runs of the simulation. The parameters of the models did
not change over the course of the study.

Training pairs. The open squares in Figure 1 show
performance of the pigeons on the training pairs in each
phase of each experiment reported in Fersen et al. (1991,
Figures 2 and 4). Asterisks show the performance of the
simple Bush-Mosteller model with best-fitting parame-
ter values UB = 0.001; DS = 0.050. The performance of
the Couvillon and Bitterman Bush-Mosteller model with
best-fitting parameters (U = 0.01; DS = 0.16) is shown
by crosses.

During the first phase of training (Fersen et al., 1991,
Experiment 1), a five-term series was trained as dia-
grammed above. Aside from a relatively short phase,
during which the stimulus pairs were presented in blocks
of eight trials of each type, the stimulus pairs were pre-
sented in pseudorandom orders. Performance was as-
sessed just before and just after the blocking phase (first
two panels of Figure 1).

Both models capture the typical U-shaped pattern of
response accuracies on the training pairs (serial position
effect). Indeed, the difference in performance between
the best and worst solved training pairs is more pro-
nounced in the performance of the models than in the
observed levels of performance. This may be due to the
models’ more limited correction trial procedure. The
models received only one correction trial for each in-
correct response, whereas the pigeons continued receiv-
ing correction trials until they made a correct response.
Each additional correction trial would improve the per-
formance on a poorly solved pair.

That the last pair in the series is the best solved stim-
ulus pair is a consequence of Luce’s choice rule. Since
the last stimulus in the series is never reinforced, its
value will drop toward zero (for D > 0). When the value
of one stimulus is zero, the probability of choosing the
other stimulus must always be one. Similarly, since the
first stimulus can only gain value (for U > 0), its value
must be larger than that of any other stimulus, and per-
formance on the first pair in the series must also be ex-
cellent. Performance on the other training pairs will gen-
erally be less good than performance on the end pairs,
but the relative performance on these central pairs de-
pends on the values of U and Df and on the amount of
exposure to each training pair.

The pigeons show an improvement in performance
across the blocking phase—this the models capture less
well.

Thereafter, the five-term series was extended to seven
terms by the addition of a stimulus at each end of the se-
ries in the pairs X+ 4— and E+ F— (Fersen etal., 1991,
Experiment 2)—marked “7-term linear” in the figure.
Here, performance of the pigeons on the six training
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pairs re-forms again into an asymmetrical U shape. Now
D+ E— (previously the best solved pairing) has become
the worst solved stimulus pair. The resulits of the simu-
lations capture this re-formation of the response accura-
cies, and also show a U shape, asymmetrical in the same
direction. Predicted levels of performance on all pairs
except the end pairs (X+4— and E+ F—) are now
clearly below observed levels.

Finally, in Experiment 3, the seven-term series was
“closed” by training together the stimuli that had previ-
ously always been rewarded and nonrewarded respec-
tively (X and F) with their reinforcement relations re-
versed; F+ X—. Here the pigeons show roughly similar
performance on all seven training pairs. The models also
now predict similar performance on all training pairs, but
both predict indifference on all pairs, whereas the pigeons
actually showed correct choice significantly above chance.

Given the assumption of independent stimulus val-
ues, performance on the series is dependent on a ranking
of those values. Clearly there is no ranking of values that
could lead to successful performance after the two ends
of the series have been trained together. The last panel of
Figure 1 shows that although the pigeons’ performance
was poorer after series closure, and although differences
in performance on the various stimulus pairs were no
longer apparent, nonetheless the pigeons responded
above chance on all training pairs. No value for the pa-
rameters in these models can fit this result. Gillan (1981),
working with a single chimpanzee, has also reported that
training pair performance remained above chance after
training a circular series of stimulus pairs, although test
pair performance fell to chance levels. Recently, Davis
(1992) has shown that BD choice performance in rats
was disrupted by training together the two ends of the
series, although his method did not permit assessment of
training pair performance at the end of training.

To summarize: Both Bush-Mosteller—based models
can account for the serial position effect obtained on the
training pairs of a linear series (though with an under-
prediction of performance on the central training pairs,
possibly due to the correction procedure). These models
also fit the absence of such an effect when the series is
closed by training the ends together. However, they fail
to predict the (slightly) above chance performance found
in pigeons and a chimpanzee when the series was closed.

Test pairs. The open squares in Figure 2 show the test
pair results from the linear seven-term series (Fersen
et al., 1991, Experiment 2). The use of a seven-term,
rather than the more usual five-term, series makes pos-
sible the analysis of two effects in the test pair results un-
contaminated by end effects (a five-term series contains
only one test pair [B D] which contains neither end stim-
ulus). First, it can be seen that as the number of stimuli
intervening in the series between the two test stimuli in-
creases, there is a progressive increase in the percentage
of correct responses (symbolic distance effect). Second,
test pairs containing the stimulus 4 are in general solved
better than those containing stimulus B, which in turn
are solved better than those containing stimulus C. This

211

o 100
2
C
8
o
5 70
3
: A
ol
AC AD AE BD BE CE

test pair

Figure 2. Test pair performance of the pigeon subjects (open
squares), and of the simulations described in the text: Simple Bush-
Mosteller model (asterisks); Couvillon & Bitterman Bush-Mosteller
model (crosses); Model 2 (filled triangles); Model 3 (open circles).

is the effect of first item (Fersen et al., 1991). No other
nonverbal study has reported sufficient test pair results
to be able to assess these two effects, although the ob-
servation that B D test pair performance on the five-term
series is sometimes better than the average of B+ C—
and C+ D~ training pair performance has been taken as
evidence for the symbolic distance effect (see, e.g.,
McGonigle & Chalmers, 1986, 1992).

The predictions from the simple Bush-Mosteller
model are shown as asterisks in the figure, and those
from the Couvillon and Bitterman Bush-Mosteller
model are shown as crosses. The simple Bush-Mosteller
model predicts a clear symbolic distance effect; the Cou-
villon and Bitterman model fails to predict this effect.
Both models underpredict performance on all pairs.

The symbolic distance effect is a direct consequence
of the fact that, for successful performance on all train-
ing pairs, the stimulus values must become ordered. This
value ordering implies that the farther apart two stimuli
are in the series (and thus the greater the symbolic dis-
tance), the greater (on the average) will be the probabil-
ity of making a correct choice.

In conclusion, the Bush-Mosteller models account for
the gross features of training and test pair performance
in Fersen et al.’s (1991) pigeon study. The two models do
not differ greatly in their predictions. We will defer fur-
ther discussion of the aspects of these data with which
these models have some difficulty (particularly perfor-
mance on the closed series of seven terms), and proceed
to an experiment which clearly shows the inadequacy of
this type of model.

Five-Term Series: Effects of Training Order

The trial-by-trial nature of the reinforcement models
means that their predictions depend on the order in which
training pairs are presented. Many different patterns of
training have been used. In Fersen et al.’s (1991) study,
the stimulus pairs were presented predominantly in ran-
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domized orders. However, in most studies, at least dur-
ing the early phases of training, the stimulus pairs have
been presented only one at a time and in either the order
of the implied series or the reverse order. Thus subjects
are exposed to pair 4+ B— until they reach some cri-
terion, then B+ C—, followed by C+ D—, and finally
D+ E—. I shall refer to this as forward series order. Al-
ternatively subjects may be trained in reverse series
order: first D+ E— to criterion, then C+ D—, followed
by B+ C— and finally 4+ B—. Note that the difference
between forward and reverse series training is not just a
counterbalancing of the order of stimulus presentation
(4— B+, followed by B— C+, C— D+, and D—E+ is
reverse series training). The critical difference between
the two forms of ordered training lies in the nature of the
reversals of reward and nonreward experienced with
each new stimulus pair. On forward series training, with
the presentation of a new training pair, the previously
nonrewarded stimulus becomes the rewarded stimulus
(and the previously rewarded stimulus is no longer pres-
ent). On backward series training, the previously re-
warded stimulus becomes nonrewarded, and the previ-
ously nonrewarded stimulus disappears.

In studies of nonhuman primates, training pairs have
been presented in reverse series order during the initial
phases of training. Thus Boysen et al., (1993, chim-
panzees), Gillan, (1981, chimpanzees), and McGonigle
and Chalmers, (1977, squirrel monkeys) all used this
method initially, followed by training of all pairs inter-
mixed, and obtained transitive choice in test.

Many studies with human subjects have also used for-
ward or backward training patterns. In comparisons of
forward, backward, and randomized training paradigms,
Kallio (1982), DeBoyssen-Bardies and O’Regan (1973),
and Halford and Kelly (1984) have found that under cer-
tain conditions, randomized training is less effective
than ordered training; differences between forward and
backward training, however, have not been reported (see
Wynne, in press, for a review).

Steirn et al. (1995) reported that pigeons failed to
learn the task unless forward or backward series train-
ing was used. Davis (1992) also found that an ordered
pattern of training pair presentation was necessary be-
fore rats could learn the five-term series. Both these
studies, like the human studies cited above, reported no
difference in performance on forward and backward se-
ries training.

In pigeons, training with the stimulus pairs in either
forward or reverse series order has been found to yield
relatively rapid learning of all four training pairs. Steirn
et al. (1995) trained pigeon subjects for three 96-trial
sessions on each training pair and found that this amount
of training was more than sufficient for a high level of
performance on each training pair. Subsequent choice
on BD test trials was highly transitive. This total of
1,248 trials for all four training pairs contrasts with the
performance of pigeons trained on the stimulus pairs
predominantly in randomized orders (Fersen et al.’s,
1991, subjects required over 5,000 trials [plus correction

trials] to learn a five-term series; Wynne’s, 1994, sub-
Jects required over 17,000 trials).

Thus, although within-study and within-subject con-
trols are still lacking, there is a growing body of evi-
dence that the transitive inference task is easier to train
(more rapidly learned to a higher level of accuracy) if the
training pairs are presented singly in each training ses-
sion and in either the order of the series or its reverse.

Figure 3 shows B D test pair results from Steirn et al.
(1995), alongside predictions from the simple Bush-
Mosteller model and the Couvillon and Bitterman Bush-
Mosteller model. Since Steirn et al. also used pigeon
subjects with similar operant contingencies, the same pa-
rameter values were used for the simple Bush-Mosteller
model as in the simulation of the Fersen et al. (1991) study.
However, a systematic search of the parameter space of
the Couvillon and Bitterman model failed to find any
pair of values for U and D8 which could fit both Fersen
et al.’s study and any part of Steirn et al.’s results. There-
fore, the parameter values used for the results of the
Couvillon and Bitterman model shown in Figure 3 are
UB = 0.00001, DS = 0.10. Both models successfully re-
produce the results of the forward group, but perform
only at chance level after training on the backward con-
dition. Pigeon performance on BD is similar for both
groups (as is the performance of humans under similar
training conditions; Wynne, in press). Although it has
not been possible to prove analytically that these models
cannot in principle account for transitive choice after
backward series training, a thorough search of the para-
meter space has failed to uncover any values of UB and
Dg3 for which either of the Bush-Mosteller models could
successfully predict choice of B over D.

Why should the model only be able to learn the tran-
sitive inference task if the stimulus pairs are presented in
forward series order, rather than the reverse? The answer
lies in the parameters chosen to fit the Fersen et al.
(1991) and the Steirn et al. (1995) forward group data
sets. The parameters that produce a good fit to these re-
sults assume that nonreward has a far greater impact on
performance than reward has. Thus, when a forward
group is trained, first stimulus B loses some value in
A+ B— training. Then, when B+ C— training com-
mences, stimulus C loses value until its value is ranked
below that of stimulus B (which is already lower than
that of stimulus 4). This process iterates on the C+D~—
and D+ E— training trials, until at the end of training
the stimulus values are ranked with stimulus 4 having
the most value, and stimulus £, the least. The same
process operates more slowly when the stimuli are pre-
sented in a random order. When the training pairs are
presented in reverse series order, first stimulus £ loses
value on D+ E— trials. On C+ D~ trials, stimulus D
will lose value. Stimulus D will stabilize with approxi-
mately the same amount of value as that of stimulus £.
This process iterates on B+ C— and A+ B— trials, so
that stimulus B will end with the same amount of value
as that of stimuli C, D, and E. Only stimulus 4 maintains
a higher level than do the other four stimuli.
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Figure 3. Performance on the B D test pair of Steirn, Weaver, and Zentall’s (1995) pigeon subjects
after forward and backward series training, and predicted performance levels from the four mod-

els described in the text.

MODEL2
Rescorla-Wagner

The Bush and Mosteller assumption of completely in-
dependent stimulus values was challenged in 1972 by
Rescorla and Wagner. These authors retained the Bush-
Mosteller linear operator, but assumed that stimuli com-
pete for a limited amount of stimulus value. The incre-
ment in the strength of a stimulus is due, not just to the
difference between that stimulus’ value and asymptote,
but between the combined value of all stimuli present
and asymptote. The assumption appeared necessary on
the basis of results from experiments in classical condi-
tioning (particularly those of Kamin, 1969), and it has
also proven useful in accounting for data from operant
tasks (see, e.g., Daly & Daly, 1982, 1984). Wagner and
Rescorla (1972) proposed that their model could be ap-
plied to operant discrimination tasks by assuming that
every time a stimulus (say) X is presented, the increment
in that stimulus’ value depends on the difference be-
tween asymptote and the combination of X’s value and
the value of whatever is present whenever any stimulus
is chosen (Z: this includes the context and whatever else
the different stimuli have in common). Thus, the update
rules for the stimulus values become

V(X);i = V(X); +8*(1— [V(X), + (Z),]) on reward,
V(X)ie = VX),— B *[V(X); + V(Z);]on nonreward. (3)

Note that there is now only one growth parameter, f3.
Values in this formation are no longer constrained be-
tween zero and one, and therefore a scaling parameter

() must be added to Luce’s choice rule to derive re-
sponse probabilities.

V(X)+V(2)

r= “4)
V(X)+V(Y)+2V(Z)
1
PXRY) = —— oy 5)

With the two growth parameters reduced to one, the
number of free parameters remains at two.

Five- and Seven-Term Series Problems

Performance of the Rescorla-Wagner—based model on
the training pairs of the five- and seven-term series is in-
cluded in Figure 1 (bottom panel). The parameter values
used were § = 0.20 and « = 11. It can be seen that the
model produces a very similar fit to these data as that
found with the Bush-Mosteller models. In particular, the
poorer than observed performance on the central pairs of
the seven-term linear series and the chance performance
on the seven-term circular series is predicted by both
models.

The test pair performance of this model is included in
Figure 2. The fit shown by this model is somewhat bet-
ter than was found with the Bush-Mosteller models (par-
ticularly on pairs BD and BE), though it is less accurate
on the CE test pair.

Five-Term Series: Effects of Training Order
Having shown that the model produces a good fit to
the data of Fersen et al. (1991), we ask how well it can
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cope when the stimulus pairs are trained in forward and
reverse series order.

Figure 3 compares the predictions for B D test perfor-
mance of the two models under consideration here with
the pigeon data of Steirn et al. (1995). It can be seen that,
given the same parameter values as those used to fit the
Fersen et al. (1991) data, the Rescorla-Wagner model
predicts choice of B over D, no matter the direction in
which the series was trained. Thus this model clearly
gives a better fit to Steirn et al.’s data than do the Bush-
Mosteller models. In addition, the Rescorla-Wagner
model does not make the assumption that nonreward and
reward have differential impacts on learning.

At this point, our original aim has been achieved. The
Rescorla-Wagner—based model with two fixed parame-
ters is sufficient to account for choice of B over D after
training of a five- (or longer) term series—transitive in-
ference performance. The model accounts for transitive
choice after randomized or ordered presentation of the
training pairs, and for the serial position and symbolic
distance effects. There remains, however, an aspect of
the performance of Fersen et al.’s (1991) pigeons (also
observed in a chimpanzee by Gillan, 1981), for which
the model cannot account. After the linear series was
trained into a circular one by training together the two
end-anchor stimuli with their reward relationships re-
versed (i.e., F+X—), it was found that performance on
test pairs fell to chance levels, but performance on the
training pairs remained above chance (see Figure 1,
rightmost panel). That test pair performance fell to
chance levels is logical (if Tom is faster than Jim, Jim
faster than Jack, and Jack faster than Tom, it cannot be
said who is the fastest), and it is predicted by both types
of model considered thus far. However, neither model
can account for the better-than-chance performance on
the training pairs. We therefore consider next a model
that can also account for this.

MODEL 3
Configural Cues

The last panel in Figure 1 shows the results from the
final phase of training in Fersen et al. (1991). In this
final phase the seven stimuli were trained in seven
stimulus pairs which formed a logical circle (X+A4—,
A+B—,B+C—,C+D— ,D+E—,E+F—,and F+ X—).
Subjects no longer performed above chance on any test
pairs, and the typical U-shaped serial position effect in
the training pair performances disappeared; but 2 (out of
4) subjects did perform above chance on all training
pairs. Both the Bush-Mosteller and the Rescorla-Wagner—
based models were correctly able to predict the absence
of transitive choice on test pairs, but neither model could
account for the above-chance performance of some sub-
jects on training pairs.

Up till now, we have been assuming that a stimulus
remains distinct whatever context it is presented in. Thus
stimulus B (say) gains value when rewarded on B+ C—
trials, and it loses value when punished on 4+ B— trials—

stimulus B is always the same thing, no matter the con-
text in which it is presented. Couvillon and Bitterman
(1992) proposed that the introduction of configural
stimulus values (after Rescorla, 1972, 1973, and Whit-
low & Wagner, 1972) could enable a model to learn a
circular series. Therefore, the stimulus B that gains value
when rewarded on B+ C— trials is not entirely the same
thing as the stimulus B that loses value on A+ B— trials.
We will denote the value of the former (B|BC) and the
latter (B|AB). These configural stimulus values are com-
pletely independent of each other, and they are distinct
from the original context-independent elemental stimu-
lus values, 4, B, C, etc. If we consider the transitive in-
ference task solely with these configural stimulus val-
ues, we can see that it makes no difference now that the
task involves presenting the same stimuli in different
pairings; for a purely configural account, each time a
stimulus appears in a new context it is a completely new
stimulus. For this reason, a model based on configural
stimulus values can learn any pattern of training pairs.
Even the circular pattern of training presented in the last
phase of the Fersen et al. (1991) study poses no more dif-
ficulties to this model than a set of unrelated discrimi-
nation tasks. Indeed successful performance on a task
similar to this one, the transverse patterning problem
(4+B—,B+C—,and C+A—), has been used as evidence
for the production of configural stimulus values of this
type (Alvarado & Rudy, 1992). A purely configural model,
however, can never solve test pairs. These pairs are, by de-
finition, combinations of stimuli that have not been trained
together, and therefore configural stimulus values can-
not have developed for them. Therefore, this model main-
tains the existence of the elemental stimulus values from
its predecessors, but adds in configural stimulus values
to a degree controlled by a new parameter, .

For comparability with its predecessors, as much as
possible from the previous model was left unchanged.
The update rules for the stimulus values are as those for
the Rescorla-Wagner model, but now they are also ap-
plied (independently) to configural values. Thus, the el-
emental values update as before:

V(X)) =V(X); +B*(1 —[V(X); + V(Z)]) on reward,
V(X)ip1 = VX);—B*[V(X)i+ V(Z)]on nonreward, (3)

With the same principle working on the configural val-
ues (and sharing the same § parameter),

VXIXY ) = VIXXY ) + 8+ (1 = VX IXY));
on reward,
VXIXY )41 = VIXIXY)); = B * [V (XIXT));
on nonreward. (6)

The values are combined according to Luce’s choice
rule, but with the configural stimulus values weighted

by a quantity y (y> 0):
_ V(X) + V(Z) + YV (XIXY))
V(X) + V(¥) + D/(Z) + W(XIXY)) + ¥/ (VXYY
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The r values are scaled as before:

p(X|XY)= 1 ®)

+e—a(2r~—1)

It can be seen that this model has only one more
parameter, 7, than the previous two models. When vy is
sufficiently small, the behavior of this model becomes
indistinguishable from that of the Rescorla-Wagner
model. When yis very large, the model gains the ability
to solve any set of training pairs, but loses the ability to
solve any test pairs.

Alvarado and Rudy (1992) have demonstrated (in
rats) that configural stimulus values develop even when
the task demands do not require them if the task contains
some stimuli that are sometimes rewarded and some-
times not. We will assume, therefore, that the parameter
weighting the configural stimulus values, v, is constant
throughout training.

Five- and Seven-Term Series Problems

In order to constrain the degrees of freedom in this
model, and to test solely the effect of the configural
stimulus values, the two parameters that this model has
in common with Model 2 (Rescorla-Wagner) were fixed
here at the values found optimal for that model: § =
0.20, a = 11. Only the parameter y was free to vary.

Figure 1 includes the mean results from a simulation
of this model with the # and « parameters as for the
Rescorla-Wagner model, and with y = 0.10. In the first
two panels of the figure, before and after blocking on the
five-term series, the new model’s performance is very
similar to that of the previous two models and the pi-
geons. The third panel, performance on the seven-term
linear series, shows an improvement relative to the other
two models. Where both the Bush-Mosteller and Rescorla-
‘Wagner models performed around chance levels on the
“central” stimulus pairs, B+ C—, C+D—, and D+E—,
the configural model produces better performance, more
similar to that of the pigeon subjects. The final phase of
this figure, as expected, shows the most dramatic im-
provement over the other two models. On the seven-term
circular condition, the Configural model is capable of
producing above chance performance, with no serial po-
sition effect. Performance levels even closer to those
shown by the pigeon subjects were obtained in an un-
constrained search of the parameter space at § = 0.15,
a = 13, v = 0.06. Thus this model is a highly success-
ful fit to these pigeon data, which are similar in form to
those obtained from a chimpanzee by Gillan (1981).

Figure 2 shows performance of the three models on
test pairs: The configural model fits the data about as
well as the Rescorla-Wagner model, and somewhat bet-
ter than the Bush-Mosteller models.

Thus this model, considering the combined effects of
elemental stimulus values with configural stimulus val-
ues, produces a good fit to all aspects of the transitive in-
ference study of Fersen et al. (1991), including the final
nontransitive phase of training in which the stimulus

215

pairs formed a closed, circular series. Now we may con-
sider how this model copes with forward and backward
series training.

Five-Term Series: Effects of Training Order

Figure 3 includes predicted choice of stimulus B on
nondifferentially reinforced B D test trials after training
in forward and backward series order. The results of the
Bush-Mosteller and Rescorla-Wagner models are com-
pared with the predictions of the configural model with
the parameter values from the preceding simulation of
the Fersen et al. data (f = 0.20, a = 11, y = 0.10). Pre-
dicted performance on B D test trials after 1,200 trials of
training forward or backward through the stimulus se-
ries is transitive at levels over 70%.

Thus we may terminate our exploration of models at
this point, having found in the configural model with
Rescorla-Wagner update rule an account for transitive
choice after training both on randomized orders and on
the training pairs in series order. The model also predicts
above-chance performance on training pairs on a non-
transitive circular series of stimuli.

DISCUSSION

Relation to Other Theories

Fersen et al. (1991) outlined an account of transitive
inference performance which has some points of contact
with the models presented here. According to value
transfer theory, stimuli gain value through their histories
of reward and nonreward, and choice on training and test
trials is governed by the relative values of the stimuli
presented. The model differs from those presented here
both in the manner in which stimuli gain value, and in
how the values are compared to produce choice. Value
transfer theory assumes that stimuli gain a certain
amount of value because they are themselves rewarded
on some occasions, but that they receive in addition a
proportion of the value of the rewarded stimulus with
which they are presented. Thus, stimulus B, for example,
receives a certain amount of value when rewarded on
B+ C— trials, but also a (smaller) additional amount of
value when presented on A+ B— trials—a portion of
stimulus A’s value. Choice is governed by the difference
in value between the two stimuli presented.

Models 1 and 2 here (and Model 3 insofar as it sub-
sumes in part Model 2) propose a mechanism for an ef-
fect similar to value transfer. According to these models,
stimulus B (say) ends up with more value than stimulus
C, not because of a direct transfer of value from stimu-
lus A4 to stimulus B, but through an indirect mechanism.
Stimulus 4 (being always rewarded) will gain value
more rapidly than will stimulus B (which is only par-
tially rewarded). As stimulus 4 gains value, the proba-
bility of a correct choice on A+ B— trials will increase
rapidly—this protects stimulus B from the loss of value
that would occur if it were chosen incorrectly on these
trials. On B+ C— trials, stimulus B will gain value and
thereby protect stimulus C from erroneous choice and
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consequent loss of value. However, stimulus B’s value
gain will necessarily be slower than that of stimulus 4,
and therefore erroneous responses to stimulus C on
B+ C— trials will be more common than erroneous re-
sponses to stimulus B on B+ C— trials, leading to stim-
ulus C losing more value than stimulus B. Thus, these
models predict a kind of “protection from value loss”
which a higher ranked stimulus bestows on the stimulus
with which it is presented during training, rather than the
direct “value transfer” postulated by Fersen et al. (1991).

Most accounts of transitive inference performance as-
sume that subjects order representations of the stimuli
into a mental line (Banks, 1977; Breslow, 1981; Stern-
berg, 1980; Trabasso & Riley, 1975; Trabasso et al.,
1975). Subjects may order training pair information into
an ordered semantic framework or a quasispatial mental
representation. Thus stimulus 4 becomes associated
with one end of the mental line and stimulus £ marks the
other end of the mental line. The ends of the series are
located first, because they are always positive or nega-
tive. The other stimuli gradually become ordered be-
tween the ends. Once the pairs have been trained better,
choice on training and test trials is governed by a search
along the mental line. The symbolic distance effect is
given by the fact that, on the average, the farther apart
two items are in the series, the faster the one or the other
of them will be found in an ordered search of the mental
representation. The serial position effect arises because
the ends of the series are unambiguous and training pairs
containing them therefore generate fewer errors.

Without an explicit theory of how mental lines are
constructed, it is impossible to predict performance
under different conditions. What does a mental line pre-
dict about performance on a circular training series (as
in Fersen et al., Experiment 3), for example? Can a men-
tal line become a mental circle?

The models presented here can be considered as pos-
sible implementations of the processes underlying a
mental line. The ordering of a mental line is provided by
stimulus values which become ordered during training.
This ordering is produced by the update rules proposed
here. The function of scanning the mental line is ful-
filled by the choice rules presented above (e.g., Equa-
tions 3 and 4).

Possibly the authors of mental line models of transi-
tive inference performance will see the functions of cre-
ating and scanning a mental line performed by quite dif-
ferent mechanisms. I hope that this paper will motivate
them to postulate these mechanisms explicitly.

Inter- and Intraspecies Comparisons

Most studies of transitive inference have reported re-
sults in terms of the presence or absence of three things.
(1) transitive choice on BD tests; (2) the serial position
effect; and (3) the symbolic distance effect. These ef-
fects have been observed in all species tested, including
humans as young as 4 years old, under a range of testing
conditions. The models developed here can readily ac-
count for the symbolic distance and serial position ef-

fects, as well as predict transitive choice—thus they are
potential explanations of transitive inference under a
wide range of conditions and in a range of species (Wynne,
in press).

A unique feature of inferential reasoning in humans is
that the task can be presented verbally. This fact has mo-
tivated accounts of transitive inference in terms of
linguistic representations. However, the similarities be-
tween the results from humans under verbal and non-
verbal conditions on the one hand, and the similarities
between human and nonhuman results on the other, sug-
gest that linguistic representations may not be funda-
mental to task solution in humans (Wynne, in press).

Conclusions

The models presented here were not designed to solve
transitive inference tasks. They are simply theories of
conditioning, derived from familiar assumptions about
the effects of reward and punishment. Therefore, this is
not a novel theory designed post hoc to fit a new set of
data, but rather a demonstration that the principles de-
veloped in one realm are applicable in a completely dif-
ferent one. More recent models of associative condi-
tioning (e.g., Pearce & Hall, 1980) maintain the basic
assumptions of competitive stimulus strengths from the
Rescorla-Wagner formulation and thus would also pre-
dict successful performance here.

To show that transitive inference performance can be
generated from simple associative models is to demon-
strate that a complex conditional inference process can
be modeled by processes which themselves are neither
conditional nor inferential. This result has wide impli-
cations—it is an instantiation of the principle that task
complexity is no proof that the underlying processes in-
volved have to be complex (Braitenberg, 1984).

Models of this type have the advantage over other the-
ories of transitive inference that they do not simply as-
sume training pair performance and predict test pair
choice on that basis. Rather, they make trial-by-trial pre-
dictions for choice on training and test pairs. Since train-
ing pair performance is not always observed at uni-
formly high levels, this makes these models potentially
more realistic and also expands the database against
which they can be tested.

The question of whether there are aspects of inferen-
tial reasoning in humans or other species that cannot be
explained with models of the type developed here has to
be an empirical one. I hope that this paper will motivate
students of comparative cognition to develop more in-
genious tests to clarify this issue.
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