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Asymptotic judgment of cause
in a relative validity paradigm
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McGill University, Montreal, Quebec, Canada

and
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University ofHertjordshire, Hatfield, England

We report three experiments in which we tested asymptotic and dynamic predictions of the
Rescorla-Wagner(R-W) model and the asymptotic predictions of Cheng's probabilistic contrast model
(PCM)concerning judgments of causality when there are two possible causal candidates. Weused a
paradigm in which the presence of a causal candidate that is highlycorrelated with an effect influences
judgments of a second, moderately correlated or uncorrelated cause. In Experiment I, which involved
a moderate outcome density, judgments of a moderately positive cause were attenuated when it was
paired with either a perfect positive or perfect negative cause. This attenuation was robust over a large
set of trials but was greater when the strong predictor was positive. In Experiment 2, in which there
was a low overall density of outcomes, judgments of a moderately correlated positive cause were ele
vated when this cause was paired with a perfect negative causal candidate. This elevation was also
quite robust over a large set of trials. In Experiment 3, estimates of the strength of a causal candidate
that was uncorrelated with the outcome were reduced when it was paired with a perfect cause. The
predictions of three theoretical models of causal judgments are considered. Both the R-Wmodel and
Cheng's PCMaccounted for some but not all aspects of the data. Pearce's model of stimulus general
ization accounts for a greater proportion of the data.

In the last decade, research on human judgment ofcon
tingency has been motivated by a comparative perspec
tive that stresses an analogous associative learning com
ponent in both animal conditioning and human judgments
of contingency. When a single predictor variable signals
the occurrence ofan outcome variable, contingency judg
ments closely parallel the actual one-way contingency,
I1P, between the predictor and the outcome. I1P is de
fined as the difference between the conditional probabil
ities p(outcome Ipredictor) and p(outcome Ino predictor)
(Allan, 1980).This parallel has been observed in both op
erant learning tasks (see, e.g., Wasserman, Elek, Chatlosh,
& Baker, 1993) and video games that are analogous to
classical conditioning tasks (see, e.g., Dickinson, Shanks,
& Evenden, 1984). These results suggest that subjects
might derive their judgments from an unbiased consid
eration of I1P.

This account of contingency judgment fares poorly in
situations where two predictor variables, A and B, signal
a common outcome. Usually if predictor A 's contingency
is weaker than B's, then judgments ofA's contingency are
reduced. This reduction in estimates of A 's influence is
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called discounting or blocking (we will use these terms
interchangeably throughout). In a series of experiments
inspired by Kamin's (1969) blocking preparation, Dick
inson et at. (1984) demonstrated that contingency esti
mates of moderately positive predictor A were reliably
attenuated by exposing subjects to a strong positive con
tingency between predictor B and the same outcome in
an initial observation stage. In turn, in a series of exper
iments inspired by the multiple-cue preparation of Wagner,
Logan, Haberlandt, and Price (1968), Baker, Mercier,
Vallee-Tourangeau, Frank, and Pan (1993) established
that estimates of moderately positive or negative contin
gencies between predictor A and the outcome were in
fluenced by the nature of concurrent strongly positive or
negative contingencies between predictor B and the out
come. Similar discounting effects using different causal
scenarios have been reported in Chapman and Robbins
(1990), Price and Yates (1993, 1995), Shanks (1991), and
Vallee-Tourangeau, Baker, and Mercier (1994).

Two general classes of models have been used to at
tempt to understand discounting. The first class includes
associative models arguing that causal judgments are
modeled best by rather simple connectionist networks
that do not include episodic memories or normative rep
resentations of the events. These are process models.
That is, they predict both the course ofacquisition and the
final asymptotic level of judgments. The most common
associative model considered has been the Rescorla
Wagner (R-W; 1972) model. The second class of models
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includes normative models suggesting that the psycho
logical mechanism behind judgments is best understood
if it is postulated that subjects maintain a more or less
accurate representation of events and then calculate the
contingency or relationship between these events. Some
versions of these models include the notion of causal
power-that is, that subjects have a mental model of the
causal relationship (see, e.g., Cheng, Park, Yarlas, & Holy
oak, 1996; Waldmann & Holyoak, 1992). Normative
models generally do not predict the course ofacquisition
ofjudgments; rather, they typically predict only asymp
totic performance. As implied above, associative theo
ries have often been contrasted with a rather naive ver
sion of normative models positing that subjects simply
calculate the unconditional contingency (fI,.P) between
cause and effect. These simple normative models do not
predict the basic discounting effect. However, more
complete versions such as the probabilistic contrast
model (PCM; see Cheng et aI., 1996) and its power ver
sion (PowerPC; see Cheng, 1997).

The present experiments were designed to test the dy
namic predictions of the R-W model and contrast its as
ymptotic predictions with those of the normative PCM
model. We chose three results of our earlier research as
the forum for this comparison. We will first describe the
causal judgment task we use. We will then describe the
R-W model and the PCM. Finally, in the General Discus
sion, we will introduce a more recent associative model
that provides a more successful account of our data than
either R-W or PCM (i.e., Pearce, 1987).

The Judgment Task
The judgment task designed by Baker et al. (1993) in

volved a video game in which discrete trials showed a
tank traveling toward a field of light-sensitive mines.
The subjects could camouflage the tank before it entered
the minefield. The camouflage was the target cue (A) for
the discounting or blocking treatments in all three ex
periments described here. The camouflage might make
the tank more or less detectable for the mines, and, there
fore it could either prevent or precipitate explosions. Thus
the camouflage-safety contingency could range between
- I and I. In the following description of experimental
treatments, the camouflage's contingency was set at fl,.P =

.5, where p(safety Icamouflage) = .75 and p(safety Ino
camouflage) = .25, unless specified otherwise. Subjects
were asked to assess the contingency between the camou
flage (predictor A) and safety (the outcome). In the pres
ent experiments, we will use the notation A [P(safety IA)
- P(safety Ino A)] to describe the contingencies; thus this
contingency would be calledA(.75 - .25). Note: the dif
ference between the conditional probabilities in the paren
theses equals fl,.P. AnA(.75 - .25) contingency is called
a moderate-density (density here means the expected fre
quency or probability of outcomes) moderately positive
contingency because fl,.P = .5 and the outcome density
(defined here as the mean of the two conditional proba
bilities (.75 - .25)/2) is .5. This would contrast with a high

ASYMPTOTIC CAUSAL JUDGMENTS 467

density moderately positive contingency, A(l - .5) (out
come density = .75), or the low density A(.5 - 0) contin
gency that we will study in Experiment 2.

The game also involved a second cue (predictor B), a
spotter plane that could accompany the tank on some trips
through the minefield. The plane was the stimulus (B)
that, when perfectly correlated with the outcome, might
be expected to cause the subjects to discount the mod
erately positive camouflage. Since the plane could be
present or absent on either safety or explosion trials, the
plane-safety contingency could also range between -1
and 1. In one discounting treatment (Baker et aI., 1993,
Experiment I), the spotter plane appeared on all safety
trials (i.e., p(safety Iplane) = 1), but never on unsafe trials
p(safety Ino plane) = 0; contingency name: B(l - 0). As
noted, the contingency for the camouflage was A(.75 
.25), so, using the notation (A contingency1B contingency),
this treatment would be called A(.75 - .25)1B(l - 0).
(Bakeret aI., 1993, used the notation (fI,.~/fI,.PB); thus they
called this treatment .51I.) In a second, control, treatment,
A(.75 - .25)/B(.5 - .5), the plane was not correlated
with safety (i.e.,p(safetYlplane) = .5 and pfsafety ] no
plane) = .5). As in Wagner et al. (1968), human judg
ments of the effectiveness of the camouflage were reli
ably lower when, in the discounting treatment, the plane
signaled all the occurrences ofsafety, even though in both
conditions the camouflage contingency equaled .5.

The R-W Model
The fundamental discounting or blocking effect is

well modeled by the R-W model, which can be concep
tualized as a single-layer adaptive network composed of
three input units and one output unit. Two of the input
units represent the two predictor variables or causal cues
(A and B), and the third (X) represents the context in
which the cues are presented. The activation of the out
put unit is equal to its net input. On a given training trial,
the changes in the connection weight or associative
strength of input cue (i) are calculated on the basis ofthe
following rule:

fI,.~ = aJ3(A - IT-k).

Changes in associative strength ofcue i are thus a function
of the discrepancy between the sum of the associative
strengths of all presently active input units (i.e., of the cues
that are present on that trial; I T-k) and the target output ac
tivation, or asymptote for learning (A). Ais positive when
the outcome variable is present on that trial and 0 when it
is absent; a, and f3 are learning rate parameters determined
by the saliences ofcue i and the outcome, respectively. Im
portantly, the linear operator ai f3(A - If/,) becomes nega
tive when the sum ofthe associativestrengths ofall cues pre
sent is greater than the asymptote for learning (when I T-k >
A). When this happens, the model will generate a decline
in the associative strengths ofany cues that are present. Be
cause of this property, the sum of the weights for the three
connections will usually approach and tend to be limited
by A. Thus, in many situations, the stronger the connection
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strength of one input cue, the weaker will be that ofothers.
It is, thus, a characteristic ofthis model that individual cues
compete for associative strength.

The model accounts for subjects' ability to judge ac
curately the contingency between a single cue and the
outcome, because A's associative strength r-A correlates
well with !:iP. This comes about because A competes with
the context X for associative strength. When A's correla
tion with the outcome is strongly positive, its associative
strength approaches A., and that ofthe context approaches
zero. When the cue is uncorrelated with the outcome, its
associative strength will be zero and the context's will be
positive. When A is negatively correlated with the out
come, r-A will become negative through a two-step pro
cess. The context X will first develop positive associative
strength. As this happens, the linear operator on the ma
jority of AX trials that are not paired with the outcome
will become negative, and this will force r-A to become
negative. This occurs because on no-outcome trials, the
learning asymptote A. equals 0 and L, f-k [i.e., (VX+ ~)] is
greater than 0; hence the linear operator (A. - L,Vk ) is neg
ative. This forces r-A to be negative, and it can not recover
because A is never or rarely paired with the outcome.

Ofparticular interest are the model's predictions regard
ing the amount of associative strength for predictor A in
the discounting treatment, A(.75 - .25)/B(1 - 0), and
control treatment, A(.75 - .25)/B(.5 - .5), from Baker
et al. (1993). The model's predictions for the associative
strength ofA, B, and X for the three experiments are shown
in Figure 1. The left panels (Experiment 1) show the rel
evant values. When the network is presented with the
event contingencies ofTreatmentA(.75 - .25)/ B(.5 - .5),
the associative strength, or the connection weight, ofpre
dictor A (the camouflage) approximates A's actual con
tingency just as it would in the single-cue experiment de
scribed above (see the open circles in the top left panel).
However, in discounting TreatmentA(.75 - .25)/B(1 - 0),
A and B are positive predictors whose combined associa
tive strength is constrained by A. (see the triangles). A
loses associative strength on some trials because, on
these trials, it is not paired with the outcome, but B never
loses strength because it is always paired with the out
come. Therefore B's associative strength will approach A.
and this will eventually prevent A from regaining those
losses in associative strength. Thus at asymptote the as
sociative strength of B will approach one and that of A
and the context X will be near zero.

The R-W network also makes the rather more coun
terintuitive prediction that discounting of A will occur
when B is a perfectly negative predictor of the outcome
(i.e.,!:iP = [p(outcomeIB) - p(outcomelnot B)] =
(0 - 1) = -1; treatment B [0 - 1D. This negative dis
counting occurs in several stages in which the negative
predictor B develops strong negative associative strength,
and this modulates the competition between the target
cue A and the context X for positive associative strength.
This competition is ultimately won by X. X blocks A partly
because it is paired with the outcome alone on occasion

and is paired with it more often than isA. But in addition,
X, rather paradoxically, acquires extra associative strength
on the BXextinction trials (i.e., when BX --t no outcome).
This happens because when B becomes strongly inhib
itory, the magnitude of its connection weight (VB) will ap
proximately equal the complement ofthe sum ofthe asso
ciative weights ofA and the context X [VB == -(~ + Vx )].
That is, its inhibitory properties will approximately equal
the sum of their excitatory properties. This is another
equilibrium forced by the linear operator. This implies
that VB < (-Vx ) and on BX --t no-outcome trials, L, Jik =
(VB + "X) will be a negative quantity. Because A. = 0 on
no-outcome trials, the operator (A. - L,Jik) will be posi
tive. Thus,Xwill acquire positive associative strength on
these trials. This "extra" connection weight will ultimately
help X win the competition with A for positive associa
tive strength. As the panel from Figure 1 showing B's as
sociative strength shows, the ability of X to block asso
ciative strength to A is modulated by negative associative
strength acquired by B. Although the model predicts equal
discounting at asymptote, this two-stage process implies
that discounting or blocking will occur more slowly in the
A(.75 - .25)/B(O - 1) treatment than in A(.75 - .25)/
B(1 - 0), in which positive associative strength to B di
rectly blocks A.

The Probabilistic Contrast Model
Since A's !:iP was kept constant at .5 in the discount

ing treatments, a simple !:iP model arguing that reason
ers use this statistically normative rule to inform their
judgments cannot explain why predictor A is discounted
in some treatments. However, Cheng and Holyoak's (1995)
PCM (see also Cheng & Novick, 1992; Melz, Cheng,
Holyoak, & Waldmann, 1993; Waldmann & Holyoak,
1992) postulates that reasoners assess A's contingency
by calculating !:iP (or in their terminology, "probabilis
tic contrasts") for A conditional on the presence and on
the absence of B. The conditional !:iPs for the three ex
periments we report here are shown in Table 1. Contin
genciesA(.75 - .25)/B(1 - 0),A(.75 - .25)/B(.5 - .5),
and A(.75 - .25) / B(O - 1) are shown under the head
ing "Experiment 1." Thus, in Treatment A(.75 - .25)/
B( 1 - 0), A's contingency in the presence ofB (!:i~ IB) is
0, since the probability of an outcome on those trials
equals 1 regardless of the presence or the absence of A;
that is, p(outcome IA & B) = p(outcome Ino A & B) = 1.
In addition, in the absence ofB, A's contingency (!:i~ Ino

B) is also 0, since the probability of an outcome on those
trials equals 0; that is, p(outcome IA & no B) = p(out
come Ino A & no B) = O. These conditional !:iPs indicate
that A is not a true cause ofthe outcome. Put another way,
once the subject knows about the presence of B, A pro
vides no extra information concerning the outcome. Thus
the subject will attribute no causal importance to it. Con
ditional !:iPs in TreatmentA(.75 - .25)/B(0 - 1) also
reveal that A is a spurious cause ofthe outcome. The PCM
thus predicts discounting of predictor A in Treatments
A(.75 - .25)/B(1 - 0)andA(.75 - .25)/B(0 - 1).
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Figure l. Predicted associative strengths from the Rescorla-Wagner model for the dis
counted stimulus (the camouflage, Cue A) for the three treatments in each ofthe three exper
iments are shown in the top three panels. Associative strengths for the blocking stimulus (plane,
Cue A) and the context are shown in the middle three panels and the bottom three panels, re
spectively. For all simulations, a = .35 for all cues, pI = PO = I, and A = 1 on trials where the
outcome was present and = 0 otherwise; the mean connection weight was calculated over 100
iterations.

Both the PCM and R-W model predict equivalent dis
counting for both positive and negative Bs at asymptote.
However, because PCM is a competence model, it only
makes predictions at asymptote. Conversely, the R-W
model is a process model, so it makes dynamic predic
tions throughout the course oflearning, culminating with
its asymptotic predictions, which are similar to those of
the PCM. Clearly, if the R-W model and PCM are to be
compared, it is important to include enough trials to ap
proach asymptote. As shown above, the R-W model pre
dicts faster acquisition ofblocking in TreatmentA(.75 
.25)/B(l - 0) than in A(.75 - .25)/B(0 - I). Further
more, in our previous research, we discovered two situ
ations in which people's judgments were strongly incon
sistent with asymptotic predictions of both the R-W model
and the PCM, but were consistent with dynamic pre-

asymptotic predictions of the R-W model. These phe
nomena will be described and investigated in Experi
ments 2 and 3.

Our previous experiments have all used 40 training tri
als. In order to test the dynamic predictions of the R-W
model and to ensure that the subjects had reached asymp
tote in order to justify comparisons of the R-W model and
PCM, the present experiments used 120 trials for each
treatment. The subjects were asked for contingency judg
ments at 20,40, and 120 trials. We chose to use a maxi
mum of 120 trials because this is at least six times the
number of trials that it took for estimates to approach an
apparent asymptote in our previous research (e.g., Baker,
Berbrier, & Vallee-Tourangeau, 1989). It is also the max
imum number oftrials that permit us to expose the subjects
to three different contingencies in a 40-50 min session.
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Table 1
ConditionalllP for the Camouflage (A) Based on the Presence and Absence ofthe Plane (B), Experiments 1-3

Focal Set

Plane Present Plane Absent

Treatment Universal Set !1~ p(OIA&B) p(OlnoA&B) !1~IB p(OIA&noB) prO Ino A&no B) !1~lnoB

Experiment I
A(.75 - .25)/ B(.5 - .5) .5 .75 .25 .5 .75 .25 .5
A(.75 - .25)/B(1 - .5) .5 I I 0 0 0 0
A(.75 - .25)/B(0 - I) .5 0 0 0 I I 0

Experiment2
A(.5 - 0)/B(.25 - .25) .5 .5 0 .5 .5 0 .5
A(.5 - O)/B(I - 0) .5 1 Undefined 0 0 0
A(.5 - O)/B(O - I) .5 0 0 0 I Undefined

Experiment 3
A(.75 - .25)/ B(.5 - .5) .5 .75 .25 .5 .75 .25 .5
A(.5 - .5) /B(.5 - .5) 0 .5 .5 0 .5 .5 0
A(.5 - .5)/B(I - 0) 0 I 1 0 0 0 0

Note-O, outcome.

EXPERIMENT 1

Experiment I explored the dynamic nature of the dis
counting ofa moderate-density, moderately positive pre
dictor (A) in the presence of a second predictor (B) that
is either a perfectly positive predictor or a perfectly neg
ative predictor ofthe outcome. As noted, the R-W model
predicts that in both these treatments, A(.75 - .25)/
B(l - 0) andA(.75 - .25)/B(O - I), the magnitude of
discounting should increase over time. But, although the
model predicts equivalent asymptotic discounting in
both treatments, the two-stage process predicts that dis
counting will occur more slowly inA(.75 - .25)/B(O - I)
than in A(.75 - .25)/B(l - 0). This prediction is clearly
shown in Figure I. The PCM also predicts equivalent as
ymptotic discounting but makes no predictions concern
ing the rate of acquisition of discounting.

The nominal contingency tables and conditional contin
gency tables for this experiment and the second and third
experiments are shown in Table 2. Because the subjects
choose when to camouflage the tank, different subjects
have different numbers of each type of trial and slightly
different contingencies. The mean group contingencies
very closely mapped onto the nominal contingencies.

Method
Subjects. Twenty-two undergraduates from McGill University

volunteered for this experiment.
Task characteristics. Subjects monitored different event con

tingencies through a video game involving light-sensitive mines,
camouflage, and a spotter plane, as described earlier. The task was
divided into three "games" corresponding to three experimental
treatments. A trial in each of these games consisted of a tank travers
ing the video screen from right to left to enter the minefield, and
subjects could choose to camouflage the tank or not. In order to
camouflage the tank, they aimed a "paint-o-ray" that sat immobile
at the bottom center of the screen and fired (by pressing the space
bar) a paint "bullet" that, upon hitting the tank, changed the tank's
color from blue to green. There were two tank speeds (3.3 em/sec
and 6.0 em/sec) selected randomly for every trial. A hit was not dif-

ficult to achieve. Pilot subjects instructed solely to hit the tank could
do so over 80% of the time. However, the instructions encouraged
subjects to hit the tank on some occasions but to let it go by on oth
ers. In Experiment I, subjects hit the tank on an average of68% of
the trials and a similar number of times for each treatment. The
spotter plane was programmed to appear above the tank with a cer
tain probability after the tank passed the sight of the paint-o-ray
that is, after the subjects chose to camouflage the tank or not. The
aim of the game was to evaluate the effectiveness ofthe camouflage
and the spotter plane in "protecting" the tanks during the game.

Design. Three treatments were designed that corresponded to the
three games played by the subjects. In all three treatments the
camouflage-safety contingency was set at .5. The probability of a
safety trial given that the tank was camouflaged, p(safety Icamou
flage), equaled .75, and the probability of a safety trial given that
the tank was not camouflaged, p(safety Ino camouflage), equaled
.25. In Treatment A(.75 - .25)/B(.5 - .5), the plane-safety contin
gency was 0: p(safety Iplane) = p(safety Ino plane) = .5. In Treat
ment A(.75 - .25) /B(l - 0), the plane-safety contingency was I:
p(safety Iplane) = I, p(safety Ino plane) = O. Finally, in Treat
mentA(.75 - .25)/ B(O - I), the plane-safety contingency was -I:
p(safetYlplane) = O,p(safetylnoplane) = I.

Procedure. Subjects were tested individually. They read the de
scription ofthe scenario and the game instructions from the screen.
Before the start of the first game, subjects practiced camouflaging
the tank for 10 trials.

The order of the treatments was randomized for each subject.
Each game lasted 120 trials. Subjects made effectiveness ratings of
the camouflage and the plane after 20, 40, and 120 trials. Ratings
were made using a -100-100 scale. The subjects were informed that
negative estimates indicated that the camouflage or the plane reduced
the safety ofthe tank, whereas positive estimates indicated that the
camouflage or the plane increased the safety of the tank (i.e., re
duced the likelihood that it would explode). They were also informed
that a rating ofzero represented no relationship between cause and
effect. The camouflage ratings screen (which used a blue back
ground) always came before the plane ratings screen (which used a
red background) at each of the three rating intervals.

Results
Camouflage ratings. The mean effectiveness ratings,

and their standard errors, for the camouflage are reported
in Table 3 and in the left panel of Figure 2. Inspection of
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Table 2
Unconditional and Conditional Probabilities of the

Occurrence of the Outcome in the Presence and Absence
of the Camouflage (A) and the Plane (B), Experiments 1-3

Experiment I

A(.75 - .25)/ B(.5 - .5) A(.75 - .25)/B(1 - 0) A(.75 - .25)/ B(O - I)

A -A A -A A -A

B ~j "fEW' "eBB °-B .75 .25 .5 -B 0 0 0 -B 1 J I

.75 .25 .75 .25 .75 .25

Experiment 2

A(.5 - 0)/B(.25 - .25) A(.5 - .25)/B(l - 0) A(.5 - O)/B(O - J)

A -A A -A A -A

B rmJ" 8[ffiJ' "ITJO
-B .5 0 .25 -B 0 0 0 -B I - I

.5 0 0.5 0 0.5 0

Experiment 3

A(.75 - .25)/ B(.5 - .5) A(.5 - .5)/B(.5 - .5) A(.5 - .5)/ B(l - 0)

A -A A -A A -A

B GEE.5 Btffij.5 B[ffiJ'
-B .75 .25 .5 -B .5 .5 .5 -B 0 0 0

.75 .25 .5 .5 .5 .5

Note-The individual subcells indicate the conditional probability of outcome based
on each conjunction of the presence and absence of the cues [e.g., cell A. - B repre
sents P(outcome Icamouflage and no planet]. The row and cell marginal values repre
sent the overall conditional probabilities based on the presence and absence ofthe cam
ouflage or the plane [e.g., the marginal value ofcolumn - A represents P(outcome Ino
camouflage)).

the data indicates that each of the three treatments gen
erated a different level ofestimates. The control treatment,
A(.75 - .25)/B(.5 - .5), generated estimates that approx
imated ~Pcamoutlage X 100 and appeared to be constant
over the full 120 trials. The estimates ofboth Treatments
A(.75 - .25)/B(I - 0)andA(.75 - .25)/B(0 - I)ap
peared to decline over trials, and those of A(.75 - .25)/
B(I - 0) appeared to be lower than those ofA(.75 - .25)/
B(O - I). A two-factor repeated measures analysis of
variance (ANOYA) on these data supports some of the
above observations. It revealed a reliable main effect of
treatment [F(2,42) = 18.0] as well as a reliable main ef
fect of trials [F(2,42) = 5.44], but the interaction was not
reliable [F(4,84) = 1.48] (we use a 5% rejection rate
throughout).

The absence of a reliable interaction in the preceding
analysis does not support the notion that discounting de
veloped over trials and that it developed more rapidly in
theA(.75 - .25)/B(I - 0) treatment. However, in a design
that postulates learning curves that develop at different
rates, the postulated effect is confounded between the
interaction and both main effects ofa conventional split
plot ANOYA. Wefurther investigated both the interaction
and the main effects using post hoc ANOYAs. These tests
were corrected for chance using the Bonferonni method.
In an analysis comparing the two discounting treatments,

A(.75 - .25)/B(I - 0) andA(.75 - .25)/ B(O - I), the
main effects of treatments and trials were each reliable
[F(I,21) = 9.95; F(2,42) = 9.70], whereas the interaction
was not [F(2,42) = .061] . This analysis indicates that
estimates decreased over trials and that the estimates in
the A(.75 - .25)/B(1 - 0) treatment were lowerthan those
for the A(.75 - .25)/B(0 - 1) treatment. This difference
was fairly constant throughout. The decline in estimates
occurred mostly between 20 and 40 trials; the difference
in estimates between 40 and 120 trials was not reliable
[F(1 ,21) = 1.49]. There was no reliable change in esti
mates over trials for the nondiscounting control treatment,
A(.75 - .25)/B(.5 - .5) [F(2,42) = .013]. Although
treatmentA(.75 - .25)/B(1 - 0) differed from the con
trol treatment,A(.75 - .25)/B(.5 - .5), after 20, 40, and
120 trials, TreatmentA(.75 - .25)/B(0 - I) only differed
reliably from TreatmentA(.75 - .25)/B(.5 - .5) after 40
and 120 trials [F(1 ,21) = 6.38]. Thus the statistical anal
ysis supports the argument that discounting seems to
develop over the first 40 trials but does not support the ar
gument that discounting will ultimately be equal follow
ing the A(.75 - .25)/B(I - 0) andA(.75 - .25)/ B(O - I)
treatments.

Plane ratings. The mean effectiveness ratings for the
plane are reported in Table 4. Subjects easily recognized
the nature of the contingencies, with terminal estimates
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Table 3
Mean Effectiveness Ratings and Standard Errors for the Camouflage

Trials

20 40 120

Treatment M SE M SE M SE

Experiment 1

A(.75 - .25)IB(.5 - .5) 49.3 8.6 48.2 8.6 48.8 8.4
A(.75 - .25)IB(0 - 1) 43.0 9.8 26.8 8.5 18.6 7.7
A(.75 - .25)IB(l - 0) 8.4 10.9 -12.5 10.1 -18.2 10.2

Experiment 2

A(.5 - 0)1B(.25 - .25) 50.3 7.3 45.8 8.4 29.6 8.1
A(.5 - O)IB(O - 1) 66.6 9.2 71.6 9.3 65.3 12.7
A(.5 - O)IB(l - 0) -21.9 14.0 -33.4 12.3 -21.2 11.7
A(.75 - .25)1B(.5 - .5) 40.4 8.6 54.9 8.5 54.4 8.7
A(.5 - .5) IB(.5 - .5) 16.9 10.6 7.7 11.6 -7.6 10.3
A(.5 - .5)IB(I - 0) -22.1 12.5 -25.9 11.4 -20.7 13.0

of97:8 for the perfectly positive contingency, -98.8 for
the perfectly negative contingency, and -0.2 for the zero
contingency. A two-factor repeated measures ANOVA
on these ratings yielded a reliable main effect of treat
ment [F(2,42) = 328], but neither the trials main effect
(F < I) nor the interaction was reliable [F(4,84) = 1.18].

Discussion
Experiment I provides some support for the predic

tions of the R-W model that discounting will increase
over trials and that discounting will develop earlier in
TreatmentA(.75 - .25)IB(1 - 0) than inA(.75 - .25)1
B(O - I). However, the model predicts that at asymptote,
the magnitude ofthe discounting should be equivalent in
both treatments (see Figure I, left panel). Yet, this was
clearly not the case, since judgments of predictor A in
treatment A(.75 - .25)IB(1 - 0) were more negative
than in treatmentA(.75 - .25)IB(0 - I).

These data also pose problems for various versions of
the PCM. The conditional contrasts for the camouflage are
shown in Table I. These contrasts are consistent with the
moderately positive judgments in treatmentA(. 75 - .25) 1
B(.5 - .5), but do not explain either (1) the increase in

discounting over time, or (2) the difference in the magni
tude ofdiscounting in TreatmentsA(.75 - .251B(1 - 0)
and A(.75 - .25)1B(O - I) at asymptote.

When there are facilitatory alternative causes, PCM
argues that the most informative contrasts to determine
the effectiveness ofa facilitatory or excitatory cause are
those in the absence of any alternative causes. Further
more, to determine whether a cause is ineffective, the rel
evant zero contrast must not be at or near the behavioral
ceiling. Table 1 shows that in the A(.75 - .25) 1B(I - 0)
contingency, the contrast for the camouflage in the ab
sence of the plane alternative cause consists of condi
tional probabilities of zero, so it is clear that the camou
flage has no causal power independent of the plane and
thus should be overshadowed. However, in the case of
the A(.75 - .25) 1B(O - I) contingency, the zero contrast
in the absence of the plane consists of two conditional
probabilities of I, such a contrast is not informative con
cerning the possible positive casual power of the cam
ouflage. Thus, it could be argued that the greater degree
of discounting found at asymptote in the A(.75 - .25)1
B(1 - 0) treatment is predicted by PCM. However, the
analysis has its problems because the plane in A(.75 -
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Figure 2. Mean effectiveness ratings for the camouflage in Experiments 1, 2, and 3.
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Table 4
Mean Effectiveness Ratings and Standard Errors for the Spotter Plane

Trials

20 40 120

Treatment M SE M SE M SE

Experiment I

A(.75 - .25)/B(.5 - .5) 4.8 12.6 -3.7 11.5 -0.2 6.3
A(.75 - .25)/B(O - I) -95.4 3.1 -95.5 2.8 -98.8 1.2
A(.75 - .25)/B(l - 0) 84.2 6.7 95.2 2.6 97.8 1.3

Experiment 2

A(.5 - 0)/B(.25 - .25) 5.3 11.7 -3.2 10.6 0.4 9.2
A(.5 - O)/B(O - I) -91.1 5.4 -99.2 0.5 -99.5 0.5
A(.5 - O)/B(I ~ 0) 87.9 6.0 86.3 7.0 98.4 1.3

Experiment 3

A(.75 - .25))/B(.5 - .5) 10.8 14.1 -10.4 12.4 -4.9 14.3
A(.5 - .5)/B(.5 - .5) -7.8 13.6 12.5 9.8 0.4 11.4
A(.5 - .5)/B(I - 0) 81.9 9.7 92.7 5.9 96.8 3.1

.25) / B(O - 1) is a negative alternative cause. Thus, to
extrapolate the arguments presented in Cheng and Holy
oak (1995), the most informative focal set for the cam
ouflage is conditionalized on the presence of the inhib
itory plane, not its absence. Neither Cheng and Holyoak
nor Cheng et al. (1996) have acknowledged negative al
ternative conditionalizing cues, but the logic of their
analysis of excitatory and inhibitory target causes must
extend to alternative causes that are themselves either
excitatory or inhibitory. Ifthe PCM considers the presence
ofpreventive causes as defining the focal set for a target
cause, it must predict strong discounting in the A(.75 
.25) /B( 0 - I) contingency. In the General Discussion,
we will outline Pearce's (1987) model, which accounts
more successfully for the present results.

EXPERIMENT 2

Although both the PCM and the R-W model predict the
basic positive and negative blocking effects at asymptote,
the heuristic value of the R-W simulations is illustrated
by the discovery that under some conditions, opposite
polarity discounting could be retarded and even reversed.
This happened when A was involved in the low-density,
moderately positive contingency with the outcome de
scribed earlier [i.e., A(.5 - 0)]. In this contingency, the
outcome occurs only in the presence ofA[p(outcome IA) =
.5 and p(outcome Ino A) = 0]. According to the model
(see Figure 1, middle column), in the negative discount
ing treatment, A(.5 - 0)/B(O - 1), the context will still
ultimately overshadow judgments ofA just as it would in
the moderate-density discounting contingency [A(.75 
.25) /B(O - 1)]. However, discounting is retarded and
even briefly reversed relative to the A(.5 - 0) /B(.25 - .25)
discounting control (note section marked with an arrow
in Figure I). There are two factors responsible for this
effect. First, in anA(.5 - 0) treatment, the context is never
paired with the outcome on its own. This slows acquisition
to the context because, in other contingencies, on context
alone outcome trials, the context can acquire associative

strength without competition. Furthermore, because there
are no AX~ outcome trials in this contingency, the only
mechanism for X to block A is the (paradoxical) excita
tion acquired on BX~ no outcome trials that was de
scribed earlier for the A(.75 - .25) /B(O - I) contingency.
Second, A(.5 - 0) treatments have a lower outcome den
sity than other contingencies sharing the same !!.P. Thus,
because outcome density is lower in A(.5 - 0) than in
A(.75 - .25) contingencies, acquisition of associative
strength by the context will be slower.

Retarding the context's rate ofacquisition ofassociative
strength reduces the discounting effect on predictor A and
predicts the transient situation in which judgments ofA
intheA(.5 - O)/B(O - 1)contingencyare higher than those
in the control A(.5 - 0) /B(.25 - .25) contingency. How
ever, these differences are transient and, at asymptote,
judgments ofA following both the low-density discounting
treatment [A(.5 - 0) /B(O - 1)] and the moderate-density
discounting procedure [A(.75 - .25)/B(0 - 1)] should
be very similar and should both exhibit discounting.

Experiment 5 ofBaker et al. (1993) provides evidence
that partly supports this prediction. Predictor A 's contin
gency was not discounted inTreatmentA(.5 - 0)/B(O - 1),
and judgments of A were reliably more positive in that
treatment than in TreatmentA(.5 - 0) /B(.25 - .25). How
ever, although the model predicts that this reversal of
blocking is only transient, judgments of A were not re
duced in the presence of B's perfectly negative contin
gency at any point during the task. However, because our
task involved only 40 trials and the function that maps
the number ofinput vectors for an associative network onto
the number of trials experienced by human subjects can
not be determined precisely, it is possible that human
judgments at Trial 40 do not correspond to the network's
asymptotic prediction. Thus, with a much longer judg
ment task, predictor A 's contingency may come to be dis
counted rather than enhanced.

In this experiment, the task scenario from Experiment 1
was again used. The camouflage acting as predictor A was
again moderately correlated with safety (!!.P = .5) but
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was involved in the low-density, moderately positive
A(.5 - 0) contingency with the outcome. A spotter plane
acted as predictor B and was related to the outcome by
contingencies of B(I - 0), B(.25 - .25), and B(O - I)
(t'!P = I, 0, and - I). Each subject was exposed to all three
treatments [A(.5 - O)/B(I - 0),A(.5 - 0)/B(.25 - .25),
andA(.5 - 0)/B(O - I)] and made estimates ofthe causal
status of the plane and camouflage after 20,40, and 120
trials.

Method
Subjects. Eighteen undergraduates from McGill University vol

unteered for this experiment.
Design and Procedure. The camouflage contingency in all

three games was set at .5, with p(safety Icamouflage) = .5 and
p(safetYlno camouflage) = O. In TreatmentA(.5 - 0)/B(.25 
.25), the plane-safety contingency was 0, with p(safety Iplane) =
p(safetYlno plane) = .25. In treatmentA(.5 - O)/B(I - 0), the
plane-safety contingency was perfect at I, with p(safety Iplane) =
I and p(safety Ino plane) = O. And in Treatment A(.5 - 0) /
B(O - I), the plane-safety contingency was -1, with prsafety ]
plane) = 0 and p(safety Ino plane) = I. The nominal contingency
tables and conditional contingency tables for Experiment I are
shown in Table 2.

The same procedure as in Experiment I was used. Each treatment
lasted 120 trials and order ofpresentation was randomized for each
subject. Subjects camouflaged the tank on 73% of the trials. The ef
fectiveness of the camouflage and of the plane was rated after 20,
40, and 120 trials.

Results
Camouflage ratings. The mean effectiveness ratings

and their standard errors for the camouflage contingen
cies are reported in Table 3 and in Figure 2. The ratings
for the A(.5 - 0) /B(.25 - .25) treatment were moder
ately positive throughout the task, although the terminal
rating was lower than the rating after 40 trials. In con
trast, the same moderate contingency in the presence of
a perfectly positive plane-safety contingency in Treat
ment A(.5 - 0) /B(I - 0) was clearly discounted. Judg
ments were negative over the entire task. In tum, the cam
ouflage contingency was not discounted in the presence
ofa perfectly negativeplane-safety contingency,A(.5 - 0)
/ B( I - 0), and, in fact, judgments were more positive
than in the A(.5 - 0) /B(.25 - .25) treatment. Both results
closely parallel the earlier finding that used only 40 trials,
and the latter is clearly inconsistent with the R-W pre
diction that the elevated judgments in the negative block
ing group, A(.5 - 0) /B(I - 0), should be transient. A
two-factor repeated measures ANOVArevealed a reliable
main effect oftreatment [F(2,34) = 27.6], but neither the
main effect oftrials (F< 1) nor the interaction [F(4,68) =
1.49] was reliable. This experiment consisted of a con
trol treatment [A(.5 - 0)/B(.25 - .25)] and two experi
mental treatments [A(.5 - O)/B(I - 0) andA(.5 - 0)/
B(O - 1)]. In order to investigate the reliable main effect
found in the preceding ANOVA, we carried out two sub
sequent ANOVAs. One ANOVA compared the control
treatment with each experimental treatment. The main

effect for contingency of these analyses represents con
trasts within the reliable main effect. According to con
ventional wisdom, investigation of the interactions in
these analyses was not justified because the interaction
in the overall analysis was not reliable. Nevertheless, be
cause the R-W model predicts an interaction (the differ
ential acquisition ofdiscounting in the two experimental
groups), these comparisons might be considered pre
planned. Furthermore, accepting the claim that the model
does not account for our results involved accepting the
null hypothesis that the level of estimates did not vary (was
not transient), and thus we needed a powerful analysis to
justify this claim. In order to control for the inflation in
Type I error rate, we used the Bonferonni technique to
control for the number ofpost hoc ANOVAs. Because the
present experiment involved two post hoc ANOVAs, we
used a 2.5% rejection criterion.

These post hoc analyses indicated that the estimates for
theA(.5 - 0)/B(O - 1) treatment were reliably higher than
those of the control [A(.5 - 0)/B(.25 - .25)] treatment
[F(I ,17) = 8.38] and that those ofTreatment A(.5 - 0)/
B(I - 0) were reliably lower [F( 1,17) = 33.2]. Thus the
present data replicate our earlier findings at 20 and 40
trials and extend them to 120 trials. It is also clear from
observing Figure 2 that there is little evidence that the
initial relatively high estimates found in Treatment A(.75
- .25) /B(O - I) were transient and that ultimately this
treatment produces discounting. In support of this ob
servation, none of the interactions involving the three
factors was reliable [maximum F(2,34) = I. 72].

Plane ratings. The mean effectiveness ratings for the
spotter plane contingencies are reported in Table 4. Es
timates were clearly in line with the actual contingencies,
with little or no fluctuation over trials. Thus, the perfectly
negative contingency was rated as strongly negative and
the perfectly positive contingency was rated as strongly
positive; the mean ratings for the zero contingency hov
ered around zero. A two-factor repeated measures ANOVA
on these data produced a reliable main effect oftreatment
[F(2,36) = 364], but neither the trials main effect nor the
interaction was reliable (both Fs < I).

Discussion
Judgments of the camouflage contingency were influ

enced by the contingency between the second predictor
variable (the plane) and the common outcome (safety).
In the presence ofa perfectly positive plane contingency
[A(.5 - 0) /B(I - 0)], the subjects judged the contingency
between the camouflage and safety to be lower than in
the control treatment [A(.5 - 0)/B(.25 - .25)], whereas
the presence of a perfectly negative plane contingency
caused them to attribute more causal importance to the
camouflage than they did in the control treatment. These
effects were most certainly not transient and were at least
as strong after 120 trials as after 40. The R-W model pre
dicts that the camouflage contingency should be dis
counted in the presence of a strongly positive plane-



safety contingency, and judgments conformed to this
prediction. Although the model predicts a transient in
crease in estimates, it predicts that in the presence of a
perfectly negative plane-safety contingency, the moder
ate camouflage contingency should be progressively dis
counted over time. Yet we observed the opposite result.

It might be argued that even with 120 trials the model
had not reached asymptote. This might be true if very
small learning rate parameters for the context were used
or with other parametric manipulations. A strong case
can be made against this claim. First, subjects' estimates
of intermediate contingencies, which should not have
floor or ceiling problems, usually reach an asymptote in
fewer than 20 trials (see, e.g., Baker et aI., 1989; Shanks,
1985; Shanks, Lopez, Dickinson, & Darby, 1996). Sec
ond, the subjects found 120 trials to be very long. Third,
if we had chosen parameters that would have delayed as
ymptote well past 120 trials in order to explain the pres
ent result for the A(.5 - 0)/B(O - I) treatment, these
parameters would have failed to model the perfect esti
mates of B and many of our other findings, such as the
temporal course of learning curves and the course ofdis
counting in other treatments [e.g., that found in the A(. 75
- .25) /B(O - 1) treatment; Baker et aI., 1993, and the
present Experiment I]. Moreover, as Figure 1quite clearly
shows, the model predicts the period in which facilita
tion occurs to be very brief, but the period of enhance
ment was actually quite extended. Finally, Figure I also
shows that the model predicts that the judgments from
Experiments I and 2 should be very similar, including a
smaller but parallel enhancement ofjudgments in Treat
mentA(.75 - .25/(0 - 1) relative to its control,A(.75 
.25) / (.5 - .5). Most clearly, this prediction is not con
firmed [cf. judgments of A(.75 - .25)/B(0 - I) and
A(.5 - 0)/ B(O - 1) in Figure 2].

Cheng and Holyoak's (1995) PCM also has difficulty
with some aspects of our data. This is shown in Table I.
The PCM predicts, as was observed, that judgments in
Treatment A(.5 - 0) / B(.25 - .25) should be a function
ofthe camouflage's actual contingency because the over
all camouflage contingency and each conditional contin
gency equals .5. In Treatments A(.5 - 0)/B(I - 0) and
A(.5 - 0) /B(O - 1), the independent causal status of the
camouflage can only be partially assessed because some
of the contrasts cannot be computed. Nevertheless, in
Treatment A(.5 - 0) /B( 1 - 0), although the causal sta
tus of the camouflage in the presence of the plane can
not be assessed because there were no plane-present trials
without camouflage, the effectiveness of the camouflage
in the absence of the plane can be assessed, and it is zero.
Melz et al. (1993) have suggested that to assess the causal
power of a cause, conditional tests, "to be maximally in
formative" (p. 1403), must be done in the absence of a
known second cause. Cheng et al. (1996) extended this
argument by pointing out that excitatory causes may be
best understood in the absence of the conditionalizing
cue and that inhibitory causes are best understood in the
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presence ofthe conditionalizing excitatory cue. Thus be
cause the conditional contrast for the camouflage in the
absence of the plane is defined and equals zero, it can be
argued that the PCM predicts discounting in this treat
ment. The case with the A(.5 - 0) /B(O - 1)contingency
is not so clear. Because ~P(camouflage Ino plane) is not de
fined for this treatment, the subject might be expected to
rely on ~P(camoutlage Iplane)' that is, zero, so discounting might
be expected. Alternatively, the subject might be confused
by the undefined ~P(camouflageIno plane) and might guess.
Finally, the subjects might choose a different focal set on
which to base their calculation of~P(camouflageIno plane)' Al
though one of the main explanations of discounting in
volves the lack ofcertainty involving undefined contingen
cies in some discounting preparations (see Waldmann &
Holyoak, 1992), associative models do not have this dif
ficulty because they are driven by contiguity, not calcu
lations of covariation. Our subjects may be particularly
uncertain with undefined ~Ps, but we have observed no
evidence of this uncertainty.

EXPERIMENT 3

A final result ofour earlier research that was consistent
with a transient but not an asymptotic prediction from
the R-W model was our finding that in a treatment where
predictor A's contingency was 0 and predictor B's con
tingency was 1 [TreatmentA(.5 - .5)/B(I - O)],judg
ments ofA's contingency were lower than in a treatment
where both predictors had a zero contingency [Treat
ment A(.5 - .5)/B(.5 - .5); Baker et aI., 1993; Vallee
Tourangeau et aI., 1994]. According to the model (see
Figure 1, right panel), in Treatment A(.5 - .5) /B(.5 
.5), both predictors can develop a small amount of asso
ciative strength early on in training (on the basis ofa few
pairings with the outcome) but will eventually lose it to
the context, since the context is a better predictor of the
occurrence of the outcome. At asymptote, the associa
tive strength for predictors A and B will equal zero. In
Treatment A(.5 - .5) /B(I - 0), predictor A will also ini
tially acquire some associative strength but will lose this
associative strength more rapidly because predictor B
rapidly acquires associative strength. Thus the discount
ing ofA in TreatmentA(.5 - .5) /B(I - 0) occurs because
A reaches an asymptote of zero more rapidly than in
TreatmentA(.5 - .5)/B(.5 - .5). Importantly, at asymp
tote, predictor A should have no associative strength in
either TreatmentA(.5 - .5)/B(1 - 0) or TreatmentA(.5 
.5) /B(.5 - .5). The PCM predicts that predictor A should
be judged at zero since its conditionalized~Ps in the pres
ence and absence ofpredictor B in both treatments equal
zero (Table 1).

Experiment 3 was designed to investigate the long-term
stability ofdiscounting found in the A(.5 - .5) /B( I - 0)
treatment. The two critical treatments were A(.5 - .5)/
B(I - 0) andA(.5 - .5)/B(.5 - .5). In addition to these
treatments, we included Treatment A(. 75 - .25) / B(.5 -
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.5). This was done to ensure that subjects could discrim
inate between the zero and a moderately positive contin
gency for A.

Method
Subjects. Eighteen undergraduates from McGill University vol

unteered for this experiment.
Design and Procedure. Three treatments were designed by

pairing one of two camouflage contingencies (liP = .5 or 0) with
one of two plane contingencies (liP = 0 or I). In Treatment A(.75
- .25)/ B(.5 - .5), the moderately positive camouflage contingency
[p(safety Icamouflage) = .75,p(safety Ino camouflage) = .25] was
paired with a zero plane contingency [p(safety Iplane) = p(safety
Ino plane) = .5]. In Treatment A(.5 - .5)/B(.5 - .5), a zero cam
ouflage contingency was paired with the zero plane contingency.
And in Treatment A(.5 - .5)/B(I - 0), the zero camouflage con
tingency was paired with a perfect plane contingency [p(safety I
plane) = I, p(safety Ino plane) = 0]. The nominal contingency ta
bles and conditional contingency tables for this experiment are re
ported in Table 2.

The same procedure as in Experiment I was used. Each treat
rnent lasted 120 trials, and the order of presentation was random
ized for each subject. Subjects camouflaged the tank on 61% ofthe
trials. Subjects rated the effectiveness of the camouflage and of the
plane after 20, 40, and 120 trials.

Results
Camouflage ratings. Two ofthe subjects in this exper

iment did not camouflage the tank on any trial in one or
more games. These subjects were eliminated from the
analysis reported here. The mean effectiveness ratings for
the camouflage are reported in Table 3 and in Figure 2
(left panel). It will be recalled that the R-W model pre
dicted that there should be some initial "discounting"
caused by slightly positive judgments in Treatment A(.5
- .5)1B(.5 - .5). These estimates decline until they equal
thoseofTreatmentA(.5 - .5)1B(l - 0). The means shown
in Figure I are consistent with this prediction, but the sup
porting statistical evidence is not strong. In Treat
mentA(.75 - .25)1B(.5 - .5), estimates were at or above
40 throughout the task. In TreatmentA(.5 - .5)1B(.5 - .5),
ratings were slightly positive after 20 and 40 trials but were
slightly negative after 120 trials. In Treatment A(.5 - .5)1
B(l - 0), ratings were slightly negative throughout the
task. A two-factor repeated measures ANOVA on these
ratings showed that both the main effect oftreatment and
the interaction were reliable [F(2,30) = 16.1, F( 4,60) =
2.88], but the main effect of trials (F < I) was not.

In the analysis comparing estimates ofthe control treat
mentA(.75 - .25)1B(.5 - .5) and theA(.5 - .5)1B(.5 - .5)
treatment, the main effect and the interaction were reli
able [F(l, IS) = 21.0, and F(2,30) = 4.61], and the effect
of trials was not[F(2,30) = 1.13]. This analysis confirms
that the subjects discriminated the moderately positive
and zero camouflage contingencies throughout; this is
consistent with the apparent decline in estimates ofTreat
mentA(.5 - .5)1B(.5 - .5). Estimates ofTreatmentsA(.75
- .25)1B(.5 - .5) andA(.5 - .5)1B(.5 - .5) did not dif
fer reliably after 20 trials [F(l, 15) = 3.76], but did on the
last two blocks of trials [F(l, 15) = 21.6]. The analysis
comparing the A(.5 - .5)1B(.5 - .5) treatment and the

A(.5 - .5) 1B(1 - 0) treatment revealed no reliable ef
fects, although the difference between treatments was
nearly reliable [F(l,15)= 3.95,p < .07]. The interaction
was not reliable, and this null result is not consistent with
the prediction and the trend that the means of these two
treatments should approach one another [F(2,30) =
2.12, P < .15]. Because trial-by-trial comparisons of
these two treatments were preplanned, rejecting the
R-W model requires accepting the null, and because
there was a reliable interaction in the overall ANOVA,
we carried out the more powerful trial-by-trial compari
son of these two treatments. The two treatments differed
reliably over the first two blocks of trials [F(l, IS) =
5.97], but not after 120 trials [F(I,15) < I]. The second
set ofanalyses, justified by the significant interaction in
the overall ANOVA, involved three within-treatments
comparisons over the three estimation periods. These
analyses provided very weak evidence for a decline in
Treatment A(.5 - .5)1B(.5 - .5), since the appropriate
F ratio was not quite reliable [F(2,30) = 2.83, p > .08].

Plane ratings. The mean effectiveness ratings for the
plane are reported in Table 4. In both TreatmentsA(.75 
.25)IB(.5 - .5)andA(.5 - .5)IB(.5 - .5),estimateshov
ered around zero, whereas in Treatment A(.5 - .5)1
B(l - 0), the mean terminal estimate was 97.1 [F(2,30) =
27.8].

Discussion
The results and analysis ofthis experiment provide weak

support for the predictions of the R-W model. As the
model predicts, the subjects do discriminate between zero
camouflage contingencies and moderately positive ones.
Furthermore, there was an interaction between treat
ments over time, and there was some statistical evidence
that this interaction occurred because initial estimates of
the A(.5 - .5) 1B(.5 - .5) contingency were positive and
these estimates declined. Because this comparison was
preplanned, we used powerful and often redundant com
parisons that were sometimes not justified by reliable in
teractions. In spite of this, an equally strong statistical
case could be made for the claim that there was little de
cline in discounting over the 120 trials. Moreover, this de
crease in estimates occurred over many trials, and the pa
rameters necessary to predict this interaction would have
difficulty predicting our other effects (see, e.g., Baker
et aI., 1993).

As noted, the peM predicts no discounting in this ex
periment. However, ifjudgments were based on a different
focal set including time between trials, then some of the
results here might be expected (see Vallee-Tourangeau,
Murphy, & Baker, 1996).

GENERAL DISCUSSION

We have reported three experiments designed to in
vestigate subjects' estimates ofcontingency once asymp
tote was achieved in a relative validity preparation (Baker
et al., 1993; Wagner et aI., 1968). In Experiment 1, we



found that judgments of a moderate-density, moderately
positive camouflage were discounted when the camouflage
was paired with a perfectly positive or perfectly negative
plane contingency. In this experiment, discounting was
stronger with the perfectly positive plane. Furthermore,
discounting seemed to develop over trials. In Experi
ment 2, we found that the higher estimates of the low
density, moderately positive contingency when it was
paired with a perfectly negative plane [A(.5 - 0) 1B(O 
I)], relative to the control treatment [A(.5 - 0) 1B(.25 
.25)), were not transient. In the third experiment, there
was much weaker evidence that the reduction injudgments
found with a zero camouflage contingency in the pres
ence of a perfect plane contingency was transient.

When we initially published similar results using only
40 trials, we were very sanguine about the R-W model
as an explanation of the judgment process (Baker et aI.,
1993). Certain other aspects of the data also seemed to
fit the model well. These included unpublished attempts
to get our student subjects to articulate the cognitive pro
cesses that they used to make their judgments. They gen
erally could not articulate a process but would argue that
they were simply guessing or that they just "felt" their
judgment was appropriate. More objective data came
from experiments asking for judgments in a situation us
ing geometric symbols and no causal scenario (see Vallee
Tourangeau et aI., 1994). Furthermore, Wasserman et al.
(1993) reported that the R-W model provided a very good
model ofjudgments in an operant contingency task. More
over, the subjective judgments ofthe conditional probabil
ities-namely p(outcome Iresponse) and p(outcome Ino
response)-did not predict their judgments of I1Pas well
as did the R-W model (Wasserman et aI., 1993). In ad
dition, Shanks (1989) has provided data that have shown
the importance of contiguity in judgments of causality.
Nonetheless, it should be emphasized that each of the
preceding arguments applies to the associative approach
in general and not specifically to the R-W model.

Yet the data from the present experiments are at best
mixed in their support ofthe R-W model as a unitary ex
planation. In Experiment I, although discounting should
have taken longer to develop in the negative discounting
treatment [A(.75 - .25)IB(0 - I)] than in the positive
discounting treatment [A(.75 - .25)1B(l - 0)], the model
predicts that discounting will ultimately be equal at as
ymptote. This latter prediction was not confirmed in this
experiment. In Experiment 2, the prolonged period in
which judgments of the camouflage in the low-density
negativediscountingtreatment[A(.5 - O)/B(O - I)] were
elevated above the control treatment [A(.5 - 0)1B(.25 
.25)] was not expected. In Experiment 3, the model's pre
diction that the "discounting" found in the A(.5 - .5) 1
B(l - 0) treatment dissipates because the initial excita
tion in the A(.5 - .5) 1B(.5 - .5) treatment takes longer to
extinguish, received only equivocal support.

However, an alternative associative model, Pearce's
(1987) stimulus generalization model, offers a closer fit
of these data. Like the R-W model, the Pearce model can
be thought of as a simple adaptive network, but the input
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layer represents configurations of stimuli experienced by
the subjects, not the individual candidate causes. In the
experiments reported here, subjects experienced four
configural stimuli, namely "camouflage + plane + con
text" (ABX), "camouflage + context" (AX), "plane +
context" (BX), and "context" (X). Each configuration is
assigned a unit in the input layer, and each of those units
is linked to the output layer (representing the outcome)
via an excitatory connection and an inhibitory connec
tion. Changes in the excitatory (E) strength ofeach con
figuration is a function of

I1V= f3(A - V),

where V refers to the net associative strength or the sum
of the excitatory and inhibitory strength of the configu
ration, which in turn includes generalized excitatory and
inhibitory potential from similar configurations. For ex
ample, the net associative strength of ABX includes not
only its own excitatory and inhibitory strength, but also
generalized excitatory and inhibitory strength, from AX,
BX, and X. The amount of associative strength general
ized is a function of the similarity of that configuration
to ABX; for example, the coefficient that indexes the
similarity of AX to ABX is .67 (see Pearce, 1987, Equa
tion 5). Cue competition is thus realized in the Pearce
model indirectly, via the generalized strength of similar
cues, not by the sum of the associative strength of cues
present on a trial. Since A always occurs either within the
configuration ABX (camouflage +plane + context) or AX
(camouflage + context), A's predicted effectiveness rat
ing is a function of the sum of the excitatory (E) and in
hibitory (I) connections of ABX and AX weighted by
similarity coefficients, or

[.33(EA8X + IA8X ) + .5(EAX + lAx)].

The mean predicted strengths ofA for each treatment in
each of the three experiments are plotted in Figure 3. The
predictions shown in the left panel reflect the two phe
nomena observed in Experiment I, namely faster block
inginA(.75 - .25)IB(l- O)(triangles) than inA(.75 
.25)1B(O - I) (filled circles) and, after 120 trials, the as
ymptotic blocking is less in A(.75 - .25)1B(O - I) than
in A(.75 - .25)IB(1 - 0). The middle panel (Experi
ment 2) shows that the Pearce model does not predict
blocking in A(.5 - 0)1B(O - I) (filled circles) and, in
deed, predicts higher ratings than in A(.5 - 0)1B(.25 
.25). This is what was observed. Blocking is predicted in
A(.5 - 0) 1B(l - 0). As for Experiment 3 (right panel),
fasterblockingofthecamouflageinA(.5 - .5)IB(.5 - .5)
than in A(.5 - .5)1B(l - 0) is predicted by the Pearce
model, although the ratings do not converge with train
ing. Overall, the fit between the predictions derived from
the Pearce model and the ratings is impressive. Recent
efforts suggest that the Pearce model accounts for other
aspects of human causal induction as well (e.g., Lopez,
Shanks, Almaraz, & Fernandez, 1998; Vallee-Tourangeau,
Murphy, Drew, & Baker, 1998).

The conclusion with the most apparent parsimony that
can be drawn from our results is that neither the R-W
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Experiment 3Experiment 2Experiment 1

.1

.5..,--------------,

-0- A(.75-.25)1B(.5-.5)

---..- A(.75-.25)1B(1-0)

--+- A(.75-.25)IB(O-I)

Trials

--0- A(.5-0)1B(.25-.25)

---..- A(.75-.25)IB(1-0)

--+- A(.75-.25)IB(O-I)

--rr- A(.5-.5)1B(.5-.5)

--0- A(.75-.25)1B(.5-.5)

-..- A(.5-.5)IB(l-O)

Figure 3. Mean predicted effectiveness ratings for the camouflage derived from the Pearce (1987) model in each of the three treat
ments of Experiments 1,2, and 3. J3 = .25 for all trials; means calculated over 30 iterations.

model nor the PCM accounts well for the dynamic prop
erties of discounting or blocking found with our prepa
ration. Furthermore, it would seem that Pearce'sassociative
model provides a better fit ofour data. In the introduction
we mentioned that, beyond the question ofwhich specific
model provided a better account ofcausal reasoning, there
was a more general friction between the general classes
of theories we called associative and the statistical or nor
mative theories. Our results would seem to support the
former class ofmodel, yet we feel this conclusion is pre
mature for three reasons. First, as we have argued else
where (Baker, Murphy, & Vallee-Tourangeau, 1996),
causal reasoning is multifaceted and the brain is certainly
modular, so there is room for both types of models to co
exist. Second, it is impossible to rule out any general
class of model with a finite data set. The PCM is a spe
cific statistical model, and although it does not model
our data well, it is, in principle, possible to generate a
statistical model that accounts for our results. Post hoc
selection of models is not particularly parsimonious, but
it must be remembered that that is what we did within
the associative framework when we switched from the
R-W model to Pearce's model.

Third, and most critical, cognitive or statistical mod
els not only represent possible psychological mecha
nisms for causal reasoning but they also represent a ra
tional analysis of the environmental contingencies. The
output of these rational calculations represents a series
of ideals that the organism or system must compute ifits
reasoning is to be adaptive. Because many phenomena
such as blocking or discounting are the consequence of
these calculations (e.g., discounting in the A(.75 - .25)/
B( I - 0) contingency of Experiment 1 is described by

conditionalI::iPs), these phenomena may themselves be
normative and not examples of failures to learn or other
errors ofthe reasoner. This supports the argument that the
cognitive processes studied within our somewhat arbitrary
preparations are, indeed, adaptive and not intellectual
curiosities or epiphenomena. Thus, at the very least, the
normative models represent an ideal and possibly a com
putational model of the mind.

At a deeper, more mechanistic level, it is possible that
models like the PCM describe an irreducible algorithm
for causal reasoning. However, it is also possible that as
sociative mechanisms are used. From our reductionist
position, we are biased in favor of the latter. We believe
that ultimately behavior must be modeled by mechanisms
that do not include direct normative representations of
events and calculations based on these representations.
After all, brains are constructed of neurons.

At the very least, it seems reasonable to assume that
both associative and normative mechanisms comple
ment each other at different levels of analysis. As scien
tists we need both. Moreover, both our cognitive world
and our brains are modular. It is likely that some module
might be more amenable to one analysis or the other. Each
class of model might provide a mechanism for different
cognitive calculations. Within the contingency learning
preparations we used here, associative mechanisms seem
more appropriate.
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