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Improving examples to improve
transfer to novel problems
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People often memorize a set of steps for solving problems when they study worked-out examples
in domains such as math and physics without learning what domain-relevant subgoals or subtasks
these steps achieve. As a result, they have trouble solving novel problems that contain the same
structural elements but require different, lower-level steps. In three experiments, subjects who stud­
ied example solutions that emphasized a needed subgoal were more likely to solve novel problems
that required a new approach for achieving this subgoal than were subjects who did not learn this
subgoal. This result suggests that research aimed at determining the factors that influence subgoal
learning may be valuable in improving transfer from examples to novel problems.

A number of studies have indicated that learners rely
heavily on worked-out examples when trying to solve
novel problems (e.g., LeFevre & Dixon, 1986; Pirolli &
Anderson, 1985). Unfortunately, in a domain, novices
have great difficulty separating the features of the ex­
amples that are necessary to the solution procedure from
those that are incidental (Ross, 1987, 1989). In addition,
learners have difficulty generalizing solutions from ex­
amples to structurally similar, but nonisomorphic, prob­
lems (Reed, Ackinclose, & Voss, 1990; Reed, Dempster,
& Ettinger, 1985). Although certain training manipula­
tions have succeeded in improving transfer from exam­
ples to novel problems to some degree (Lewis & Ander­
son, 1985; Zhu & Simon, 1987), in general, transfer has
not been impressive (e.g., Gick & Holyoak, 1983; Reed
et al., 1985; Ross, 1987, 1989).

Learners differ in what they extract from worked-out
examples. Chi, Bassok, Lewis, Reimann, and Glaser
(1989) found that good learners are more likely to try to
understand why a particular step was taken in a solution.
Good and poor learners, at least initially after studying a
physics chapter without examples, seemed to have a sim­
ilar level of declarative knowledge about mechanics.
However, when studying an example, the good learners
produced explanations that contained more "inferences
about the conditions, the consequences, the goals, and
the meaning of various mathematical actions described
in the example" (p. 168). Thus, good learners seem to get
more from examples, including a knowledge of goals,
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even when starting at a knowledge level similar to that
of poor learners.

The present experiments explore whether more learn­
ers can be turned into good learners by presenting them
with examples that convey the subgoals relevant for
solving problems in a domain. The term subgoal is used
here to represent the task structure to be learned for solv­
ing problems in a particular domain (e.g., Catrambone
& Holyoak, 1990; Dixon, 1987; Eylon & Reif, 1984). A
subgoal groups a set of steps under a meaningful task or
purpose (e.g., Anzai & Simon, 1979; Chi & VanLehn,
1991). I hypothesize that a person who has learned the
subgoal will be in a better position to achieve it in a
novel problem requiring a new or modified set of steps
than will someone who has not learned the subgoal.

Learning subgoals is assumed to enhance perfor­
mance because subgoals act as guides to the part or parts
of the procedure demonstrated in examples that need to
be changed for the current problem. Thus, subgoals nar­
row the space in which the solver has to search in order
to determine what must be changed. For instance, Simon
and Reed (1976) found that providing learners with a
subgoal-in the form of a hint to achieve a particular
state along the solution path in a problem involving mis­
sionaries and cannibals-aided their navigation through
the problem space.

In the probability materials used in the first two ex­
periments, one subgoal toward the overall goal of find­
ing a particular probability is to find the probability of
each of the individual events. If the steps for finding an
individual event probability in a novel problem are not
the same as those used in the example, then a person
who has learned the subgoal to find the individual event
probabilities will have a better chance offocusing on the
steps of the procedure that must be changed-the steps
involved in finding the individual event probabilities­
than a person who has learned only a set of steps for
finding the overall probability. For this second learner,
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the steps for finding the individual probabilities are ob­
scured because they are simply part of a longer set of
steps for reaching the end goal. This learner would have
fewer cues to direct him or her to the appropriate steps
that need to be changed.

There may not be a theoretically "best" set of subgoals
for solving problems in a domain. The particular sub­
goals that are taught might represent an instructor's judg­
ment about how students should decompose problems
into subproblems in order to solve novel problems most
effectively. The judiciousness of the instructor's choice
of subgoals can be measured by the success of the learn­
ers on novel problems.

A learner will be more likely to learn subgoals for the
subparts of a general solution procedure if those sub­
parts are emphasized in the examples' solutions. This
claim hinges on the assumption that people will form a
representation that is based on the most salient features
of the example solution. The salience of a feature will
vary, depending on the learner's expertise in the domain
and how the solution is presented (Larkin, McDermott,
Simon, & Simon, 1980; Ward & Sweller, 1990). In the
present experiments, steps were labeled and visually sep­
arated as a technique for encouraging the formation ofa
subgoal.

An important first step in creating useful examples is
to perform a task analysis to determine what elements
need to be learned in order to solve problems in the do­
main of interest. How a domain is analyzed to produce
those elements is by no means standardized. One prom­
ising approach is to create a set of production rules that
solves problems or carries out procedures that one wants
learners to be able to solve or learn (e.g., Anderson,
Boyle, Farrell, & Reiser, 1987; Kieras & Bovair, 1986;
Zhu & Simon, 1987). Examples can then be created in
order to teach these productions to learners.

It does not seem necessary to make a commitment to
a production rule formalism embodying a particular
learning theory such as ACT* (Anderson, 1983) or Soar
(Laird, Newell, & Rosenbloom, 1987) in order to derive
the elements that need to be learned. However, a funda­
mental feature of most production rule systems-the
goal structure-does provide a useful way to represent
the knowledge needed to solve problems in a domain.
Subgoals show the breakdown ofa problem-solving pro­
cedure into subproblems (Anzai & Simon, 1979). De­
pending on the features of the examples and of the
learner, the subgoals learned from examples could rep­
resent either a flexible and general approach to solving
problems in a particular domain, or a rigid and superfi­
cial approach.

Learning From Examples
A number of studies have shown that manipulations

of examples have a powerful and systematic effect on
performance on novel problems (e.g., Catrambone &
Holyoak, 1990; LeFevre & Dixon, 1986; Pirolli & An­
derson, 1985; Reder, Charney, & Morgan, 1986; Ross,
1984). Given the central role that examples play in prob-

IMPROVING EXAMPLES 607

lem solving, and given the assumption that people learn
subgoals from the examples, it is important to investi­
gate the conditions that influence subgoallearning.

One reason that many learners do not form the "right"
subgoals (as determined by an experimenter or instruc­
tor) is because examples typically are not designed to
convey them. This observation echoes an inadequacy in
a mechanics example from a physics textbook noted by
Chi et al. (1989, p. 149). In the example, a block is sus­
pended from a ceiling by two pieces of rope joined at a
knot and a third piece of rope extending from the knot
to the block. The task is to find the magnitude of two of
the forces, given the third force. The solution states that
the knot where the three strings are joined should be
considered the body. However, no explanation is given
as to why this decision is made. The decision is made be­
cause, in order to find a force in terms of other forces,
the forces must all act on a common point. In this prob­
lem, the only place where all three forces act is the knot.
This critical subgoal of finding a common point where
the forces are acting would be useful for many future
problems. However, instead of conveying this subgoal,
the example is more likely to convey a series of steps
that mayor may not be useful for other problems.

One question at this point: Why not directly state the
subgoals to learners rather than embedding them in ex­
amples? There are two problems with this approach.
First, learners exhibit a clear preference for learning
from and referring to examples when faced with new
problems (e.g., LeFevre & Dixon, 1986; Pirolli & An­
derson, 1985). Second, although there have been a small
number of successes teaching solution procedures di­
rectly (Fong, Krantz, & Nisbett, 1986), most attempts
have been unsuccessful (e.g., Reed & Bolstad, 1991).

Overview ofExperiments 1 and 2
In the first two experiments, subjects studied exam­

ples that differed in whether they emphasized a subgoal
that was predicted to be useful for solving novel test prob­
lems. It was predicted that a subject would be more suc­
cessful at an unfamiliar part ofa test problem ifhe or she
had learned the relevant subgoal, compared with a sub­
ject who did not learn that subgoal.

The domain explored in Experiments 1 and 2 was
probability. This domain was chosen because the train­
ing and testing materials can be relatively simple, and
because prior work (Ross, 1987, 1989) has provided a
useful manipulation.

Ross (1989; Experiment lB) had subjects study ex­
ample probability problems, such as ones involving per­
mutations, and then solve several test problems. The
mathematical roles of the entities (e.g., scientists, com­
puters) in the examples and test problems were manipu­
lated. For instance, Table 1 presents a permutation prob­
lem involving the determination of the probability that
scientists will pick particular computers. The equation
used for this example was p = l/[n(n-l)...(n-r+ 1)],
where n is the number of choices available, and r is the
number of choices being made. The test problems re-
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quired some subjects to find, for instance, the probabil­
ity that students will pick particular cars (humans pick­
ing inanimate objects), while other subjects had to find
the probability that particular students would be assigned
to particular cars (i.e., objects "picking" humans).

Corresponding mathematical roles are held by the hu­
mans and objects in the example in Table I and the test
problem involving students picking cars. In both the ex­
ample and the test problem, it is the number of humans,
scientists and students, doing the choosing that provides
the value for r. The number of objects, computers and
cars, from which to choose provides the value for n. The
second type of test problem, cars "picking" students,
however, has reversed object correspondences: The hu-

mans provide the value for n (see Table 2B for another
example of humans providing a value for n). Ross (1989)
found that subjects were more successful at solving the
first type of test problem than the second, presumably
because their problem solving was guided to some de­
gree by a feature correspondence approach. Specifically,
if the number of objects provided the value of n in the
examples, then subjects were likely to assign them this
role in a test problem, even ifit was the number ofhumans
that should have provided this value in the test problem.

Besides working on permutation problems, Ross's
subjects studied and solved combination problems. An
example combination problem might ask for the proba­
bility that the seven hooks nearest the classroom door

Tablet
Permutation lraining Example

The supply department at IBM has to make sure that scientists get computers. Today, they have II IBM computers and 8
IBM scientists requesting computers. The scientists randomly choose their computer, but do so in alphabetical order. What
is the probability that the first 3 scientists, alphabetically, will get the lowest, second lowest, and third lowest serial num­
bers, respectively, on their computers?

Table 2
Test Problems

A. Permutation: People Picking Objects

As part of a new management policy, the Campbell Company is allowing the 20 company-owned vacation cottages to be
used for vacations by their 14 plant managers. If the managers, in order of seniority, randomly choose a cottage from a
list, what is the probability that the 4 managers with the most seniority get the most lavish, second most lavish, third most
lavish, and fourth most lavish cottages, respectively?

B. Permutation: Objects Picking People

The secretaries at city hall are supposed to get new chairs this week. Today,city hall received 14 new chairs, and there are
II secretaries requesting them. For inventory purposes, the property manager wants to assign the chairs in the order that
they are unpacked. So, starting with the chair that is unpacked first, she randomly chooses a secretary to receive it, and
continues until all the secretaries have chairs. What is the probability that the first 2 secretaries, alphabetically, will get
the first and second chairs that are unpacked, respectively?

C. Combination: People Picking Objects

The Happy House Nursery School has had 17 hooks put up in the hall for the coats of their 14 students, with each student
using I hook. The students each choose a hook at random as they come in one morning. What is the probability that the
7 tallest students get the 7 hooks closest to the classroom door? (It does not matter which of the particular 7 hooks clos­
est to the door these students get, just as long as it is any I of the 7 closest.)

D. Combination: Objects Picking People

The Nashville Gnats Baseball team has a bus that has 30 seats. There are 25 players that are going on a road trip to play
in a nearby town. To avoid arguments, the manager randomly chooses a player for each seat, starting with the seats in the
front. What is the probability that the 6 pitchers get the 6 front seats? (It does not matter which of the particular 6 front
seats the pitchers get, just as long as it is any I of the 6 in the front.)

Table 3
Solution Types Used for the Permutation Example in Table 1

Subgoal Solution

The equation needed for this problem is I/[n*(n-I)* ... *(n-r+I)]. In this problem, n = II and r = 3. However, another
way of approaching the problem is to think of it in the following way:

Probability of the first scientist (who comes first alphabetically) getting the computer with the lowest serial number =

1111.
Probability of the second scientist getting the second lowest serial number = II IO.
Probability of the third scientist getting the third lowest serial number = 1/9.

So, 1/11*1110*1/9 = 1/990 = overall probability.

Equation Solution

The equation needed for this problem is I/n*(n -1)* .. .*(n-r + I). This equation allows one to determine the probability
of the above outcome occurring. In this problem, n = II and r = 3. The II represents the number of computers that are
available to be chosen, and the 3 represents the number of choices that are being focused on in this problem. The equa­
tion divides the number of ways the desired outcome could occur by the number of possible outcomes. So, inserting 1\
and 3 into the equation, we find that I1II * I0*9 = 11990 = overall probability.



would be picked by the seven tallest students in a class
(see Table 2e). The equation used to solve combination
problems of this sort isp = [h!(j-h)!Jlj!, where h is the
number of entities (e.g., students) doing the choosing,
and j is the number of entities in the pool from which
things are chosen (e.g., hooks). Again, Ross demon­
strated the object correspondence phenomenon.

Although Ross taught his subjects the procedures for
solving both permutation and combination problems and
examined transfer to problems in which the roles ofhu­
mans and objects were switched, an examination of the
two procedures shows that a more general procedure can
be used to solve both problem types. Both permutation
and combination problems can be analyzed by consid­
ering the individual event probabilities that contribute to
an overall probability. This approach is demonstrated in
the "subgoal" solution provided for the problem of the
scientists and the computers (see Table 3). The combina­
tionproblem,involvingstudentsand coathooks (Table2C),
can be analyzed in a similar way:

Probability that one of the seven tallest students will get
a hook near the door = 7/17.

Probability that one of the remaining six tallest students
will get a hook near the door = 6/16.

Probability that one of the remaining five tallest students
will get a hook near the door = 5/15, etc.

So,

17 * 16:! ... * 11 = overall probability.

Combination problems have numerators that are no
longer simply "I." Instead, they start at the number of
acceptable choices and then are decremented just like
the denominator.

The "subgoal" solution, presented in Table 3 for the
scientists and computers permutation problem, is as­
sumed to help learners form two goals. The first goal is
to find the overall probability; this goal is assumed to
be formed because it is explicitly stated in the example.
The second is the subgoal to find each event probabil­
ity-for example, the probability that the first scientist
will get the computer with the lowest serial number, the
probability that the second scientist will get the com­
puter with the second lowest serial number, and so on.
This subgoal is assumed to be formed because each in­
dividual event probability is explicitly labeled and spa­
tially separate in the subgoal solution in Table 3. The
method for finding an individual event probability will
involve the steps of inserting a I in the numerator and
placing the number of (remaining) objects in the denom­
inator ofeach probability.

The "equation" solution, presented in Table 3 for the
scientistsand computers permutationproblem, is assumed
to help learners form only the goal to find the overall
probability. The method for achieving this goal will con­
sist of a set of steps for finding numbers from the prob­
lem statement and inserting them into the equation.
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Perfonnance Predictions
Subjects who study either the equation solution or the

subgoal solution are predicted to perform well on the
first test problem they are given (see Table 2A). This
first problem is a permutation problem that is isomor­
phic to the training examples that the subjects studied,
and humans and objects play the same roles that were in
the examples (i.e., humans picking objects). The sub­
jects can simply repeat the steps learned from the ex­
amples. Performance on this problem serves as a check
that a subject has learned at least a set of steps.

Two of the three remaining test problems, one per­
mutation problem and one combination problem (see Ta­
bles 2B and 2D), reverse the roles for humans and ob­
jects compared with the training examples; that is, objects
are "picking" humans. What this means in terms of the
solution is that the numbers that go into the denomina­
tor are based on the number of humans in the problem,
not the number of objects. It is predicted that subjects
will have difficulty with this aspect of the problems.
However, those who study the subgoal solution (the sub­
goal group) are predicted to have learned the subgoal to
find each individual event probability, and thus might be
more likely to consider what the numerator and denom­
inator mean in each event probability. As a result, these
subjects have a better chance to consider modifying the
denominator for this problem than subjects in the equa­
tion group.

The two combination test problems (see Tables 2C
and 2D) are expected to cause difficulty on numerator
performance since, unlike the examples' numerators, the
numeratorsare no longer 1.Once again, the Subgoalgroup,
by virtue of learning the subgoal to find each individual
event probability, is predicted to outperform the equa­
tion group because the subgoal of finding each individ­
ual event probability might lead the Subgoal subjects to
consider the numerator as a potential locus for change.

EXPERIMENT 1

In Experiment 1, I tested the hypothesis that transfer
will be improved if subjects study training examples that
emphasize a subgoal needed for novel problems. Be­
sides examining problem-solving performance, another
measure of subgoal learning was attempted by having
subjects describe how to solve probability problems
after studying the examples. Ifa subject's description in­
cludes a statement such as "find the probability of each
event's occurrence," then this would be taken as addi­
tional support that he or she had learned that subgoal.
The subgoal group should mention the subgoal ofbreak­
ing the overall probability into a set of individual event
probabilities more often than the equation group, since
this is the major difference in the solution approaches
presented to the two groups. The subjects who mention
this subgoal should perform better than other subjects on
the denominators for reversed-roles permutation and
combination problems and on the numerators for the
combination problems.



Table4
Perfonnance (Percent Correct) on Experiment 1 Test Problems

Group

by discussion. The frequencies with which the groups correctly
found the denominators for the permutation problems and the de­
nominators and numerators for the combination problems were an­
alyzed by using the likelihood ratio chi-square test (G2; Bishop,
Fienberg, & Holland, 1975).

Results and Discussion
The overall performance differences between the

groups can be summarized as follows: They did not re­
liably differ on denominator performance for the reversed­
role problems (i.e., objects picking humans), but the
subgoal group outperformed the equation group on the
numerators for the combination problems.

As expected, both groups were quite successful in de­
termining the denominator on the first permutation
problem, which was isomorphic to the training examples
and had humans and objects playing the same roles as in
the examples [G2(1) = 0.5,p = .78; see Table 4].

In the second permutation problem, objects picked hu­
mans-a reversal from the training examples. An error
that the subjects frequently made on this problem was to
use the number of chairs (14) as the starting point in the
denominator rather than the number of secretaries (II).
Although the groups did not significantly differ in find­
ing the denominator [G2(1) = l.ll,p = .29], there was
an II% advantage for the subgoal group (see Table 4).

The next problem was a combination problem in
which humans picked objects. The subjects were fairly
successful at finding the denominator and, as expected,
did not differ significantly on this measure [G2(1) = .09,
p = .76; see Table 4]. However, they did have difficulty
finding the correct numerator for this problem; many of
the subjects simply used 1. As expected, the subgoal
group outperformed the equation group on this measure
[G2(1) = 6.39,p = .01].

In the second combination problem, objects picked
humans. As in the reversed-roles permutation problem,
the subjects had difficulty finding the correct value for
the denominator. The groups did not differ significantly
on this measure [G2(1) = .06,p = .80; see Table 4]. As
in the first combination problem, the subjects had diffi­
culty finding the correct numerator. As expected, the
subgoal group was more successful than the equation
group on this measure [G2(1) = 9.83,p = .002].

610 CATRAMBONE

Although the emphasis so far has been placed on the
differences in the solutions studied by the subgoal and
equation groups, it is important to note that the solutions
are similar in length and, presumably, clarity (see Table 3).
One could construct a solution type that is arbitrarily un­
clear and demonstrate that subjects' performance on trans­
fer problems is poor relative to subjects who study ex­
amples using a solution type that is arbitrarily clear. It is
suggested that the equation solution contains potentially
useful information for solving test problems, but that
subjects who study that solution are likely to focus on
how values are inserted into the equation rather than
form a more general procedure.

Method
Subjects. The subjects were 66 students from introductory psy­

chology classes at the Georgia Institute of Technology who par­
ticipated for course credit. None of the subjects had taken a prob­
ability course prior to participating in the experiment.

Materials and Procedure. The subjects received a booklet con­
taining training examples and test problems. All the subjects stud­
ied two isomorphic worked-out permutation example problems in
which humans picked objects. Table I presents one of these
examples.

The subjects were randomly assigned to the equation group (n =

31) or the subgoal group (n = 35). In the equation group's exam­
ples, an equation was used in order to solve the problem. The so­
lution included an explanation of the meaning of the numbers
being inserted into the equation. The subgoal group's examples di­
vided the problem into finding each individual probability. Table 3
contains the solutions that were seen by the groups for one of the
training examples.

The subjects were asked to study the examples carefully and
were told that, after studying them, they would be asked to solve
some problems. They were also told that they could not look at the
examples when working on the problems. This restriction was in­
tended to increase the likelihood that they would pay attention to
the examples and how they were solved.

After studying the examples, the subjects were asked to describe
how to solve problems in the domain. The instructions were: "Sup­
pose you were going to teach someone how to solve probability
problems of the type you have just studied. Please describe the
procedure you would give someone to solve these problems. Please
be as complete as possible."

After writing their descriptions, the subjects attempted to solve
the four test problems in Table 2. The first problem was isomor­
phic to the examples (see Table 2A). The second problem (B) was
a permutation problem like the examples, but humans provided the
value of n (see Table 2B). The third and fourth problems (C and
D) were combination problems. In the first combination problem,
humans picked objects, which is the same notion shown in the ex­
amples (see Table 2C). In the second combination problem, ob­
jects picked humans (see Table 2D). Thus, the test problems rep­
resented a range of difficulty as a function of whether they
involved permutations or combinations and whether humans were
picking objects, or objects were picking humans.

The subjects worked at their own pace and were asked to show
all their work. In general, they took about 30 min to complete the
experiment. Each permutation problem was scored for whether a
subject used the correct denominator. For instance, the solution to
the second permutation problem is 1/11 * 1/10. Ifa subject wrote
1/14 * 1/13, confusing the roles of the chairs and secretaries, the
denominator would be scored as incorrect. For combination prob­
lems, the numerator and denominator were both scored as correct
or incorrect. Two raters independently scored the problems; their
scores agreed 92% of the time. Any disagreements were resolved

Equation
(n = 31)

Permutation Problem I (people pick objects)
Denominator 94

Permutation Problem 2 (objects pick people)
Denominator 23

CombinationProblem I (people pick objects)
Denominator 71
Numerator 13

CombinationProblem2 (objects pick people)
Denominator 23
Numerator IO

Subgoal
(n = 35)

89

34

74
40

20
43



The transfer results suggest that the subjects in both
groups were equally misled by superficial role reversals
ofobjects and humans in the denominator. However, the
subgoal subjects were more likely to adapt their solution
procedure to find the numerator correctly in combina­
tion problems.

Relationship between training examples and expla­
nations produced by subjects on how to solve problems.
The subjects' explanations of how to solve problems in
the domain were scored for whether they mentioned the
subgoal of dividing the overall probability into a series
of individual probabilities. Six equation subjects and 5
subgoal subjects produced explanations that were too
general or idiosyncratic to be scored. These explanations
typically consisted of statements such as "I would read
through the example and write it up on the board for the
person." These subjects were excluded from the follow­
ing analyses.

The subgoal group mentioned the notion of dividing
the overall probability into a set of individual probabil­
ities far more often than the equation group [83% vs.
8%; G2(l) = 35.3,p < .0001]. This was expected, since
the subgoal group studied example solutions that labeled
and isolated individual probabilities, whereas the equa­
tion group did not.

Relationship between explanations and transfer per­
formance. It was expected that the subjects who men­
tioned the subgoal of finding individual event probabil­
ities in their explanations would be more likely to
correctly find the denominator in the reversed-role prob­
lems and the numerator in the combination problems.

There was no difference in denominator performance
for the first permutation problem for the subjects who
mentioned the notion of dividing a probability into in­
dividual probabilities (the "IndProb" subjects) com­
pared with the subjects who did not mention this notion
in their explanations (the "OneProb" subjects) [G2(l) =

.18,P == .67; see Table 5]. This is not surprising, since in
this problem humans choose objects, as in the examples.

TableS
Performance (Percent Correct) on Test Problems

as a Function of Subjects' Explanations in Experiment 1

Group
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As expected, the IndProb subjects were more suc­
cessful than the OneProb subjects at finding the correct
value for the denominator in the second permutation
problem, which involved reversed roles for humans and
objects [G2(l) = 3.84,p = .05; see Table 5].

In the first combination problem, humans and objects
played the same roles that were in the examples, and
therefore it is not surprising to find that there was no dif­
ference between the groups in finding the correct value
for the denominator in this problem [G2(l) = .15, P ==
.69; see Table 5]. As expected, the IndProb subjects were
more successful than the OneProb subjects at finding the
correct value for the numerator [G2(l) = 6.26,p == .01;
see Table 5].

Although the anticipated difference between the
groups in finding the correct value for the denominator
in the second combination problem-a reversed-roles
problem-was not found [G2(I) = 2.18, P = .14], the
IndProb group had a 15% advantage (see Table 5). As
expected, the IndProb subjects were more successful
than the OneProb subjects at finding the correct numer­
ator value [G2(l) = 8.29,p == .004; see Table 5].

These results follow the trend ofthose that were found
when the instructional groups were compared on the
transfer problems. This makes sense, since the subgoal
subjects were by far the ones most likely to mention the
notion of dividing an overall probability into individual
probabilities.

It could be argued that learners who write "better" de­
scriptions (e.g., mention the subgoal offinding individ­
ual event probabilities) are also the ones who are better
at transfer. One defense against this argument is to note
that the experimental manipulation of type of examples
studied influenced transfer success.

Although the subgoal subjects did not reliably out­
perform the equation subjects on the denominators for
reversed-role problems, they were clearly superior at find­
ing the correct numerators for the combination problems.
In addition, the IndProb group outperformed the OneProb
group on finding the denominator for one ofthe reversed­
role problems. Although most of the results support the
predictions, the unreliability of the denominator effect
for the reversed-role problems suggested that a second,
more focused experiment would be appropriate.

EXPERIMENT 2

Permutation Problem I
Denominator 89 93

Permutation Problem 2
Denominator 14 37

Combination Problem I
Denominator 78 74
Numerator 14 44

Combination Problem 2
Denominator II 26
Numerator 11 44

"Does not mention breaking problem into individual probabilities.
tMentions breaking problem into individual probabilities.

OneProb*
(n = 27)

IndProbt
(n = 28) The procedure and materials for Experiment 2 were

identical to those ofExperiment 1, except for three fea­
tures: (I) the subjects studied three rather than two train­
ing examples, (2) the subjects were not asked to write
explanations of how to solve problems, and (3) for half
of the subjects, the combination problems did not con­
tain the last sentence shown for each combination prob­
lem in Table 2.

The number ofexamples presented to the subjects was
increased to improve the likelihood that they would
learn the procedures demonstrated in the examples and
perhaps improve transfer to the test problems. They were
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not asked to write explanations, since this task was un­
usual and may have influenced learning in unanticipated
ways. Finally, the last sentence for each combination
problem in Table 2 was removed for half of the subjects
in order to examine whether they signaled to the subjects
that these problems were different from the training ex­
amples and needed to be approached differently. Perhaps
with this cue removed, the subgoal subjects would not
outperform the equation subjects.

Method
Subjects. The subjects were 78 students from introductory psy­

chology classes at the Georgia Institute of Technology who par­
ticipated in the experiment for course credit. None of the subjects
had taken a probability course prior to participating in the exper­
iment.

Materials and Procedure. The subjects received a booklet con­
taining training examples and test problems. They all studied three
isomorphic worked-out permutation example problems in which
humans picked objects (including the two used in Experiment I).

The subjects were randomly assigned to the equation group
(n = 40) or the subgoal group (n = 38). After studying the exam­
ples, they solved the four test problems in Table 2. The subjects
worked at their own pace and were asked to show all their work.
In general, they took about 25 min to complete the experiment.
Two raters independently scored the problems, and their scores
agreed 90% of the time. Any disagreements were resolved by
discussion.

Results and Discussion
The results were similar to those from Experiment 1

and supported most ofthe predictions. The subgoal group
strongly outperformed the equation group on the nu­
merators for the combination problems and showed a
trend toward superior performance on the denominator
for one of the two reversed-role problems.

As expected, both of the groups did well in determin­
ing the denominator for the first permutation problem,
and there was no significant difference in their perfor­
mance [G2(l) = 0.63,p = .43; see Table 6]. As in Ex­
periment 1, both of the groups showed inferior perfor­
mance in determining the denominator for the second
permutation problem-a problem with reversed roles for
humans and objects. As predicted, there was an advan­
tage (20%) for the subgoal group, although this differ­
ence just missed significance [G2(l) = 3.47, p = .06;
see Table 6].

Performance on the combination problems was ini­
tially broken down as a function of training group and
whether or not the problems contained the last sentence
presented for each combination problem in Table 2. There
was no main effect of sentence for either problem, nor
was there an interaction between group and presence of
the sentence; thus, the analyses and the results for the
combination problems are collapsed across this factor in
Table 6.

In the first combination problem, humans picked ob­
jects, and, as anticipated, the subjects were fairly, and
equally, successful at finding the denominator [G2(1) =
.009, p = .92; see Table 6]. As expected, the subgoal

Table 6
Perfonnance (Percent Correct) on Experiment 2 Test Problems

Group

Equation Subgoal
(n =40) (n = 38)

PermutationProblem I
Denominator 90 95

PermutationProblem 2
Denominator 22 42

Combination Problem I
Denominator 85 84
Numerator 0 29

CombinationProblem 2
Denominator 30 32
Numerator 0 32

subjects outperformed the equation subjects at finding
the correct numerator [G2(l) = 17.7, p = .0001; see
Table 6].

The predicted superior performance by the subgoal
subjects did not occur for finding the correct value for
the denominator in the second combination problem, a
reversed-roles problem [G2(l) = 0.02, p = .88; see
Table 6]. As expected, the subgoal subjects outper­
formed the equation subjects at finding the correct nu­
merator [G2(1) = 19.6,p = .0001; see Table 6].

It was hypothesized that the subgoal subjects learned
the subgoal to find individual event probabilities, but the
equation subjects did not. This subgoal was predicted to
aid performance in finding the denominator for reversed­
role problems and the numerators for combination prob­
lems. Both experiments clearly demonstrated the numer­
ator effect. Experiment 1 demonstrated a trend toward
the denominator effect for the reversed-role problems,
primarily when the subjects were partitioned into those
who mentioned, or failed to mention, the subgoal of
finding individual event probabilities in their explana­
tions. This trend was stronger for the permutation prob­
lem than for the combination problem. Experiment 2
also showed this effect more strongly for the permuta­
tion problem. It is not clear if there are certain features
of these two problems that differentially affected de­
nominator performance. The subjects' explanations of
how to solve problems were consistent with the claim
that the subgoal subjects were more likely to learn the
subgoal to find individual event probabilities than the
equation subjects.

The fact that the denominator effect was less reliable
than the numerator effect may be due to the role of su­
perficial features. The training examples presumably led
the subjects to expect objects to provide the value for the
denominator, and perhaps this expectation tended to
override any benefits due to learning subgoals, espe­
cially since a value for objects was always provided in
each problem. The tendency to put a 1 as the numerator
may have been more easily overridden by subgoallearn­
ing because its connection with either humans or objects
is less clear.



EXPERIMENT 3

Experiment 3 was an attempt to generalize the find­
ings from the first two experiments to another domain:
algebra word problems. This domain was chosen be­
cause prior work had demonstrated poor transfer from
training to transfer problems despite attempts to improve
examples (e.g., Reed et aI., 1985). Consider the algebra
example in Table 7A, in which one has to determine how
long it would take someone to do a job given that cer­
tain information about their work rate and time and an­
other person's work rate and time are provided. This
problem involves using an equation for determining
work that requires representing each worker's work rate
and time: (rate] X time.) + (rate, X time.) = 1.

Learners are good at memorizing how to solve prob­
lems that are isomorphic to the one in Table 7A. In this
problem, both of the workers' rates are represented as
constants. The time spent working by Worker 1 is rep­
resented as a variable, and Worker 2's time is repre­
sented as a function of that variable. However, learners
may not encode the example solution by determining a
representation for each rate and time and then inserting
these representations into the equation. Instead, they
have a more superficial understanding of the solution
procedure, which involves matching the form used in
the example, finding similar values in the problem
statement, and inserting them into the equation. As a re­
sult, ifa new problem requires a different representation
of the rates and times, these learners may be unable to
solve the problem. That is, the learners may not have
learned that certain subgoals exist-the subgoals of rep­
resenting each worker's rate and time-and that these
subgoals might be achieved differently (i.e., different
ways of representing rate and time depending on the
givens in the problem) from the way they were achieved
in the example.

For instance, the problem in Table 7B requires that
Worker I's rate be represented as a variable. In addition,
instead of having the workers' times be represented as a
variable and a function of that variable, the times are rep­
resented as a constant and a function of that constant.
Nevertheless, the new representations can be inserted into
the same equation that was used for the example in
Table 7A. Similarly, the problem in Table 7C requires
that Worker I's rate be represented as a variable, and
Worker 2's rate be a function ofthat variable. Their times
are both represented as constants. These representations
are different from those used in the examples.

It is hypothesized that if the representations for rates
and times are highlighted separately from the equation
in the example solutions, then learners will be more likely
to learn that rate and time are individual representations
that must be determined for each worker. In addition, it
is hypothesized that if subjects learn the subgoals ofrep­
resenting workers' rates and times, then they will be
more likely to correctly solve a novel problem requiring
novel representations for rates and times than would sub­
jects who do not learn those subgoals.
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Table 7
Example and Test Work Problems in Experiment 3

A. Mary can rebuild a carburetor in 3 hours and Mike can rebuild one
in 4 hours. How long would it take Mary to rebuild a carburetor if she
and Mike work together, but Mike works for \IS hour more than Mary?

Solution
1/3 = Mary's rate
1= time Mary spent rebuilding carburetor
1/4 = Mike's rate
1+ 1/2 = time Mike spent rebuilding carburetor
(1/3*1) + [1/4*(1+ 1/2)] = I
7/12*1= I - 1/8
1 = 7/8*1217 = 3/2 hours = time Mary spent rebuilding carburetor

B. Mr. Jones can refinish a dresser in 5 hours. After working for 2
hours, he is joined by his wife. Together they finish the job in I hour.
How much ofthe job could his wife do in I hour when working alone?

Solution [not seen by subjects]
[1/5*(2+1)] + (w*l) = I
3/5 + w = I
w = 2/5 = wife's rate
so, in I hour, wife could do 2/5 ofjob

C. Barbara and Connie can finish a job in 6 hours when they work to­
gether. Barbara works twice as fast as Connie. How much of the job
could Connie do in I hour when working alone?

Solution [not seen by subjects]
(2c*6) + (c*6) = I
l2c+6c=1
18c = I
c = 1/18 = Connie's rate
so, in I hour, Connie could do 1/18 ofjob

Subjects who learn the subgoal to represent each
worker's rate should be more successful at representing
the rate as a variable in the problem in Table 7B and rate
as a variable and rate as a function of a variable in the
problem in Table 7C. Subjects who learn the subgoal to
represent each worker's time should be more successful
at representing the time as a constant and a function of
a constant in the second problem (B) and as a constant
in the third problem (C).

Method
Subjects. Sixty-two students from introductory psychology

classes at the Georgia Institute of Technology participated for
course credit.

Materials and Procedure. The subjects studied three isomor­
phic example word problems dealing with work, including the
example in Table 7A. The "rate and time label" (RTL) group (n =
21) studied examples in which the representations for rates and
times were presented separately from the equation (see Lines 1--4
in the solution to the example in Table 7A). The "time label" (TL)
group (n = 20) studied examples that presented the representa­
tions for each worker's time (i.e., Lines 2 and 4 from the example
in Table 7A). The "rate label" (RL) group (n = 21) studied exam­
ples that presented the representations for each worker's rate (i.e.,
Lines I and 3 from the example in Table 7A).

After studying the examples, the subjects received three prob­
lems to solve. One was isomorphic to the training examples, and
the other two involved new and old ways of representing rate
and/or time (see Tables 78 and 7C).

Results and Discussion
All of the groups performed well at representing rate

and time in Problem I, which was isomorphic to the
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Table 8
Performance (Percent Correct) on Test Problems in Experiment 3

Group

RTL TL RL
(n=21) (n=20) (n = 21)

Problem I
Rate Worker I (constant) 100 100 100
Rate Worker 2 (constant) 100 100 95
Time Worker I (variable) 100 100 100
Time Worker 2 95 95 100

(function of a variable)

Problem 2
Rate Worker 1 (constant) 100 95 100
Rate Worker 2 (variable) 86 55 86
Time Worker I 81 90 57

(function of a constant)
Time Worker 2 (constant) 90 90 57

Problem 3
Rate Worker I (variable) 90 60 90
Rate Worker 2 86 50 86

(function of a variable)
Time Worker 1 (constant) 90 100 62
Time Worker 2 (constant) 90 100 62

Note-RTL, rate and time label; TL, time label; RL, rate label.

training examples (see Table 8). This is not surprising,
since the subjects could match the representations from
the training examples and simply plug in the new values.

In Problem 2 (Table 8), almost all of the subjects cor­
rectly represented the rate as a constant for Worker 1.
Again, this is reasonable since this was the representa­
tion used in the training examples. The RTL and RL
groups were significantly more successful than the TL
group at representing the rate for Worker 2 as a variable
[G2(2) = 6.63,p = .04]. The RTL and TL groups were
more successful than the RL group at representing the
rate for Worker 2 as a constant [G2(2) = 8.78,p = .01]
and Worker 1 as a function of that constant [G2(2) =
6.50,p = .04].

In Problem 3 (Table 8), the RTL and RL groups were
significantly more successful than the TL group at rep­
resenting the rate for Worker 1 as a variable [G2(2) =
7.59, p = .02] and Worker 2 as a function of that vari­
able [G2(2) = 8.63, p = .01]. The RTL and TL groups
were more successful than the RL group at representing
the rates for Workers 1 and 2 as constants [G2(2) = 13.66,
p = .001, in both cases]. Across the problems, the most
common errors were that the subjects either left out the
representation for time or rate in the equation, or wrote
that not enough information was given in the problem.

The results from this experiment are consistent with
the hypothesis that subjects who learned the subgoals of
representing workers' rates and times would represent
them more successfully on novel problems. However, al­
ternate explanations exist. One is that the highlighting
manipulation essentially provided labels for the vari­
ables, and thus made them more meaningful. This "mean­
ingfulness" helped the subjects to properly use the vari­
ables in the equation for the novel transfer problems. The
results from Experiment 3, taken alone, are not sufficient
to discriminate between this explanation and the subgoal

explanation. However, the pattern of results across the
three experiments is consistent with a subgoal explana­
tion. It is not clear how the "subgoal" solution in the first
two experiments made the variables more meaningful.

One could consider the subgoal explanation ofthe re­
sults as being an attempt to make the notion of mean­
ingfulness more precise. Subgoals can be viewed as a
way ofmaking a solution procedure more meaningful by
providing guideposts that the solver must reach en route
to achieving the overall solution to the problem. In the
algebra experiment, the guideposts were to explicitly
represent the rate and time for each worker. Even if these
guideposts are somewhat arbitrary, at least from the
point of view of the solver, they still provide organiza­
tion and guidance that may make the solver less likely
to stray from the correct solution path (cf. Mawer &
Sweller, 1982).

It is worth noting that performance on the test prob­
lems was generally quite good. This suggests that even
for relatively sophisticated subjects (most ofthe students
in the experiment had at least one term of college cal­
culus), examples that more effectively convey subgoals
can improve transfer performance.

GENERAL DISCUSSION

The aim of the present study was to examine whether
examples that teach a subgoal structure for solving prob­
lems in a domain could be created and whether learning
these subgoals would help subjects solve problems that
required novel methods for them. The numerator per­
formance results and some of the denominator perfor­
mance results in the probability experiments, and the
rate and time results in the algebra experiment, suggest
that subgoals can be conveyed to learners through ex­
amples, and that learning these subgoals helps people
achieve them in novel problems. This is quite encourag­
ing in comparision with the usual finding in the prob­
lem-solving literature, which has shown poor transfer
from training materials to test problems that require
more than a simple repetition of a set of memorized
steps (e.g., Reed et al., 1985; Ross, 1987, 1989). These
findings suggest that examples that emphasize a useful
subgoal structure can help turn learners into the "good"
learners observed by Chi et al. (1989), who tended to
find meaning, such as goals, for the mathematical steps
in the examples and who made use of this information
when solving novel problems.

Mayer and Greeno (1972) experimentally manipu­
lated the meaningfulness of instruction in solving bi­
nomial probability problems by varying whether the
instruction focused on mechanical operations or on con­
cepts that were presumed to be part of subjects' prior
knowledge. They found that the "mechanical" group
was more successful at solving familiar problems,
whereas the "concept" group was better at answering
"understanding" questions about the domain, such as
whether the number of successes could be greater than
the number trials. The present study extends Mayer and



Greeno's findings by showing that learning subgoals
promotes transfer to novel problems while also helping
learners exhibit some level of understanding, as shown
by the explanations produced by the subgoal subjects in
Experiment 1.

CONCLUSIONS

The present results are consistent with the claim that
learning subgoals will help learners determine which
parts of a solution procedure need to be modified in
order to solve novel problems. The results also provide
a starting point for determining how to "emphasize" a
subgoal in an example. The approach used here was to
create example solutions that isolated components of the
procedure that could be construed as subgoals. The vi­
sual separation and the labeling, and perhaps their in­
teraction, may have all played a role in subgoallearning.

Smith and Goodman (1984) examined subgoal learn­
ing by comparing a group ofsubjects who followed a set
of steps for assembling an electric circuit with a group
whoreceiveda structurally oriented"explanatory schema"
with the steps. This schema consisted of statements that
provided a rationale for carrying out sets of steps. Each
rationale was essentially a statement of a goal that the
steps were achieving (e.g., "The next thing that you will
have to do is to assemble the on-off switch"). When as­
sembling a new circuit, the subjects who had previously
received the explanatory schema were more accurate at
building the substructures corresponding to the goals,
even though the required steps were not identical to the
ones followed during training.

The present results, and those from Smith and Good­
man (1984), suggest that research aimed at determining
factors that affect subgoallearning, such as the use of'Ia­
bels and visual separation of steps in examples, would
have clear pedagogical benefits. In addition, it is im­
portant, both in terms of theory development and the
production of effective training materials, to explore
what constitutes a good subgoal structure for a given do­
main. Perhaps a theory-motivated technique can eventu­
ally be developed for determining effective subgoal
structures for any given domain.
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