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We frequently make predictions on the basis of a set of
probabilistic cues—for instance, which team will win the
sports game tonight or whether it will rain today. Often,
all of the relevant information is not available. For instance,
when one is looking at the sky to predict whether or not
it will rain, one probably does not know whether the
barometric pressure is rising or falling, which otherwise
would have been factored into one’s judgment. It is not
only important to understand how people process the in-
formation that is available in these types of tasks, but
also to understand how people respond when potentially
predictive information is not available.

Studies of multiple-cue probability learning typically
use tasks with complete information availability, but sit-
uations in which one has partial information are far more
common. In this article, we briefly review conclusions
that others have drawn regarding the effects of some in-
formation’s being unknown (which we also refer to as
missing or partial information) on people’s judgments
and then present three experiments in which we investi-
gated the issue further.

There are several ways in which missing information
can be handled when one is evaluating the probability of an
outcome or hypothesis. We use the evidential support ac-
cumulation model (ESAM; Koehler, White, & Grondin,
2003) of how people generate probability judgments in a
multiple-cue probability learning task to derive predictions
that follow from different possible methods of processing

missing information. ESAM was developed using the
framework of support theory (Tversky & Koehler, 1994);
thus, that theory, as well as the relevant aspects of ESAM,
are reviewed before the predictions of the different meth-
ods for processing missing information are outlined. Three
experiments involving a multiple-cue probability learn-
ing paradigm in which six symptoms probabilistically
discriminate among three possible flu strains are then de-
scribed that test the predictions of the alternative meth-
ods for processing missing information.

Previous Research
In some of the previous research that used tasks involv-

ing partial information, participants have been required
to estimate the status of an unknown cue (e.g., Yamauchi
& Markman, 2000). When we talk of partial information
in this paper, we refer to a situation in which participants
learn to use a certain set of diagnostic cues and are then
asked to judge category membership or hypothesis likeli-
hood on the basis of only a subset of those cues. Most pre-
vious research using this type of design has not focused
on the differences between the judgments given in the
partial information condition and those given when com-
plete information is available (e.g., Cuqlock-Knopp &
Birch, 1988; Medin, Altom, Edelson, & Freko, 1982).

Ganzach and Krantz (1990) proposed that cues with
unknown values or status (hereafter referred to as “un-
known cues,” for brevity) are assumed to have their pre-
viously observed mean value or status. This accounted
for people’s judgments in a task quite different from the
one investigated here. In one experiment, participants
predicted a hypothetical student’s academic achievement
(measured by GPA) on the basis of measures of motiva-
tion and intelligence. They based their judgments on
prior knowledge and so received no feedback. The de-
pendent measure was how regressive to the mean the pre-
dictions were when based on only one of the two cues.
Participants who had previously made judgments based
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In a multiple-cue probability learning task, participants learned to use six discrete symptoms (i.e.,
cues) to diagnose which of three possible flu strains a hypothetical patient suffered from. For some pa-
tients, information regarding the status of certain symptoms was not available. Various possible ways
in which the missing cue information might be processed were distinguished and tested in a series of
three experiments (Ns � 80, 109, and 61). The results suggest that the judged probability of the outcome
variable (i.e., flu strain) was assessed by “filling in” the missing cue information with a mean value
based on previous observations. The predictions of other methods of processing missing cue informa-
tion are inconsistent with the data.
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on both cues made more regressive judgments when only
given one cue value than did participants who had previ-
ously only made judgments based on one of the cues. In
a subsequent experiment, one group of participants was
told that the second cue existed, but never had experience
using it. The regressiveness of these participants’ judg-
ments was no different from that of the judgments of par-
ticipants who heard no mention of the second cue. In a
task involving more novel predictor and criterion vari-
ables (car velocity and tire wear as predictors of braking
distance), feedback was given. The same difference in
the regressiveness of the judgments based on one of the
cues was observed for approximately the first quarter of
the 240 trials. However, as the experiment proceeded, the
participants exposed to only one cue began to make their
judgments essentially as regressive as the judgments of
the participants exposed to both cues.

Ganzach and Krantz (1990) interpreted these results
as showing that when participants made predictions from
two cues, they set up a model to combine the two values
to generate a judgment. When asked to generate a pre-
diction on the basis of only one cue, the participants used
the same model as before and inferred that the other cue
was at its mean value and therefore made their judgments
reasonably regressive. This is in contrast to the partici-
pants who only had experience making predictions based
on one of the cues, who simply matched the extremity of
the prediction to the extremity of the known cue (Kahne-
man & Tversky, 1973); this caused their predictions to be
less regressive than those of the former group.

Gluck and Bower (1988) presented partial and full in-
formation trials when eliciting probability judgments
from their participants. Their task involved four symptoms
that probabilistically predicted two diseases. In some tri-
als, they told participants that one cue was present and
gave no information about the other three cues (partial
information trials). On all other trials, the participants
knew the status of all four cues (full information trials).
One can compare the probability judgments given in
each partial information trial to the judgment given in
the full information trial that had the same cue present
but all others absent (instead of unknown). People gave
less extreme judgments in the partial information trials
(they were spread over a range of approximately 0.45)
than in the matched full information trials (in which the
judgments were spread over a range of 0.63). Gluck and
Bower concluded that participants had not treated un-
known symptoms as being equivalent to absent symp-
toms. Nosofsky, Kruschke, and McKinley (1992) found
similar results when substitutive cues were used (e.g.,
stuffy vs. runny nose) instead of present /absent cues.
These researchers (Gluck & Bower, 1988; Nosofsky
et al.,1992) considered only one other method of pro-
cessing unknown cues, and that was to ignore them when
generating a response, which was then implemented in
the adaptive neural network model developed by Gluck
and Bower.

While previous research has offered some insights, the
data collected to date do not distinguish among a num-

ber of possible ways in which people may process miss-
ing information when making probability judgments. In
the present experiments, a far richer data set was ob-
tained with which to evaluate different possible methods
of processing unknown cues.

Overview of the Present Research
Precise predictions from different possible methods of

processing unknown cues can only be derived within the
context of a broader model of how probability judgments
are generated. We use ESAM to derive such predictions
within the context of a multiple-cue probability learning
task.

We used a simulated medical diagnosis task in which
the participants learned the relationship between cues
(six present /absent symptoms) and hypotheses (three flu
strains). Each cue’s status was probabilistically related
to each of the hypotheses. After attempting to diagnose
a series of patients in order to learn the cue–hypothesis
relationships, participants judged the probability of a
designated flu strain given the status of all of the symp-
toms or only the status of some of the symptoms for a
particular patient. Comparing the two sets of judgments
allows us to assess the effects of not knowing the status
of some symptoms on people’s probability judgments.
The results can then be evaluated in the context of ESAM
to test the predictions of different possible methods of
processing unknown cues.

A probability judgment was elicited for each possible
hypothesis given a particular pattern of cues. One mea-
sure that can be extracted from these judgments that il-
luminates many of the underlying processes is the sum of
the probability judgments assigned to the competing hy-
potheses given a particular pattern of cues. Although
probability theory requires that these probabilities sum
to 100%, in previous research involving this type of task,
when there are more than two hypotheses the probability
judgments typically sum to more than 100% (Koehler,
2000; Koehler et al., 2003).

Support Theory
Support theory (Tversky & Koehler, 1994) accounts

for the counterintuitive phenomenon of total probability
judgments exceeding 100%, a finding that has been ob-
served in multiple domains. The theory asserts that proba-
bility judgments are generated by comparing the support
for each hypothesis, and that when multiple hypotheses
are packed together into one conglomerate, they lose
support so that the support for the conglomerate as a
whole is less than the sum of that for its individual com-
ponent hypotheses. The relationship between the support
for the conglomerate and that of its components is said
to be subadditive.

When a probability judgment is required and there are
three or more hypotheses, the support for the hypothesis
being judged (the focal hypothesis) must be compared
with the support for multiple alternative hypotheses,
which are packed together into a residual hypothesis and
thereby lose support. This discounting of support for the
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residual hypothesis causes the probability judgment for
the focal hypothesis to be positively biased. When a
probability judgment is elicited for each hypothesis, the
residual is discounted each time and so each probability
judgment is positively biased, resulting in the total prob-
ability judgment for all hypotheses for a given cue pat-
tern being greater than 100%.

Koehler, Brenner, and Tversky (1997) proposed an ex-
tension of this theory. They posited that as the support
for the focal hypothesis increases, the residual hypothe-
sis is discounted more heavily. According to this princi-
ple of enhanced residual discounting, as the amount of
evidence for the focal hypothesis increases, the evidence
in support of the alternatives is less fully considered in
judgments of probability.

ESAM
Support theory was developed to account for judg-

ments in a wide range of tasks, and so did not state how
the support for each hypothesis is actually computed.
Koehler et al. (2003) developed ESAM as a model of how
support is assessed for each hypothesis in a multiple-cue
probability learning environment. The model compares
the resulting support values using the framework of sup-
port theory and the assumption of enhanced residual dis-
counting. For a full description of ESAM, see Koehler
et al. (2003). Quantitative data fitting is unnecessary to
test the predictions of the methods of processing unknown
cues considered here, and so only the qualitative predic-
tions of the model need to be described.

Of interest in the present research is that the total
probability judgments exhibit systematic variability be-
yond simply exceeding 100%, which can be accounted
for by ESAM. We use dichotomous cues (symptoms)
that are either present or absent (e.g., whether or not the
patient has a sore throat). In this type of task, previous
studies have shown that the cue patterns that include a
larger number of present symptoms receive higher total
probability judgments than those with fewer present symp-
toms (Koehler, 2000; Koehler et al., 2003).

ESAM captures this effect because of its two main as-
sumptions. First, ESAM assesses the evidential support
for each hypothesis by summing the diagnostic value of
the status of each cue. Second, to capture the observation
that a cue’s presence is more salient than is its absence
(as in judgments of causation and covariation, e.g., Kao
& Wasserman, 1993; Smedslund, 1963), a symptom’s
presence is assumed to contribute a larger amount to the
support for each hypothesis than does its absence. These
two assumptions result in cue patterns with more present
cues conveying higher support values on average than
cue patterns with fewer present cues. Following the prin-
ciple of enhanced residual discounting, ESAM therefore
implies that when more cues are present in a cue pattern,
more residual discounting occurs because of the overall
increased support for the focal hypothesis. More discount-
ing of the residual when making each judgment results in
a higher total probability judgment for cue patterns with

more present symptoms than for those with fewer pres-
ent symptoms, consistent with the observed data.

Therefore, the greater salience of present symptoms and
greater residual discounting when there is more support for
the focal hypothesis combine to account for the total prob-
ability judgments increasing as the number of present cues
in a pattern increases. We frame our analysis of the effects
of how unknown cues are processed around this account.

Unknown Cues in ESAM
Although ESAM can account for the effects of the

number of cues that are present or absent in a cue pattern
on the total probability judgments, no provision is made
in ESAM to account for the effect of unknown cues. We
can assess how unknown cues are processed by deter-
mining what contribution they make to the support for
each hypothesis in contrast to the contribution that the
same cues give when they are present or absent. We do
this by looking at the total probability judgments for pat-
terns in which some cues are unknown and compare
those with the total probability judgments for patterns in
which those same cues are present, and in which those
same cues are absent.

Unknown cues could affect the support assessment
process in a variety of ways. Below, alternative methods
for processing unknown cues are outlined and the pat-
tern of total probability judgments that they predict is de-
scribed. Figure 1 shows the predictions of the different
methods graphically. In Figure 1 and throughout this
paper the term critical cues refers to the cues that are
known (i.e., to be present or absent) in the full informa-
tion judgments but unknown in the partial information
judgments, and the term noncritical cues refers to those
cues that are known in both the full and partial informa-
tion judgments.

The simplest method of processing unknown cues is to
ignore them. Unknown cues would therefore contribute
nothing to the total support for each hypothesis. We call
this method ignore. When implemented within ESAM, it
predicts that total probability judgments for partial in-
formation patterns will always be equal to (if absent cues
are also given zero weight in the support assessment pro-
cess) or less than (if absent cues are given some nonzero
weight) the total probability judgments for the corre-
sponding full information patterns in which the critical
cues are absent.

The next simplest method is to assume that unknown
cues are assigned a default status. If the cue is a binary
symptom (present or absent, as in our studies), then the
critical cues could be assumed to be absent (assume-
absent method), and so the diagnostic value given by the
unknown cue being absent is added for each unknown
cue. This method predicts that total probability judg-
ments for partial information patterns will be equal to
the total probability judgments for corresponding full in-
formation patterns in which the critical cues are absent.
Alternatively, one can assume that the critical cues are
present (assume-present method). One would therefore



1010 WHITE AND KOEHLER

use the diagnostic value given by the unknown cue being
present and so predict that total probability judgments
for partial information patterns will be equal to the total
probability judgments for corresponding full informa-
tion patterns in which the critical cues are present.

Alternatively, one can infer that unknown cues are at
their previously observed mean status (infer-mean method).
In the case of binary (present /absent) cues, this amounts
to setting the diagnostic value associated with the un-
known cue equal to a weighted average of the diagnostic
value for the cue’s presence and for its absence, where
the weight reflects the relative frequency with which the
cue has been observed to be present versus absent. Ef-
fectively, this method adds the typical level of support
conveyed by a given cue when it is known, and predicts
that the total probability judgments for partial informa-
tion patterns will fall somewhere between the total prob-
ability judgments given for corresponding patterns in
which the critical cues are absent and in which they are
present. Exactly where they fall between these two ex-
tremes is determined by the previously observed mean
status of the critical cues and the response-scaling free
parameter that is already part of ESAM.

Another possibility would be to add a constant amount
(which does not vary across cues) to the evidential support
for each cue whose status is unknown (add-a-constant
method). This proposal is based on the intuition that in

the face of the uncertainty produced by an unknown cue,
the individual might “hedge” his/her assessment by adding
a fixed amount of support to each hypothesis in response
to each unknown cue. This approach may be simpler than
the infer-mean method. The amount of support added for
each unknown cue would have to be estimated by a free
parameter, which would determine whether the total
probability judgments for partial information patterns
would be greater than, equal to, or less than the total prob-
ability judgments for full information judgments.

A final method assumes that the cue being unknown is
itself diagnostic information, just as is its being present
or absent. We call this the unknown-diagnostic method. As
stated above, we assume that the presence and absence of
a cue have different saliencies, and so ESAM differentially
weights their respective diagnostic values when assessing
the support for each hypothesis by use of a free parameter.
In a similar way, the relative salience of unknown cues
would need to be reflected in the weight given to the diag-
nostic value of an unknown cue by use of a free parameter
(with the diagnostic value of a cue’s unknown status
being computed in the same way as is the diagnostic
value of a cue being present or absent). This method can
therefore predict the total probability judgments to be
higher or lower for partial information patterns than for
full information patterns, depending on the value of the
free parameter (which could be manipulated by varying
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Figure 1. Total probability judgments for cue patterns containing certain numbers of noncritical cues
present given certain statuses of the critical cues predicted by the different methods of processing unknown
cues.
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the salience of unknown cues). This method reduces to
the add-a-constant method when a cue’s being unknown
is not diagnostic, as in our experiments.

We now describe three experiments designed to in-
vestigate which of the models based on various possible
methods of processing unknown cues best captures the
observed data. The first two experiments were part of a
broader investigation by White (2002). They were de-
signed to not only study the effects of missing informa-
tion on probability judgments but also to investigate how
sensitive people’s judgments are to intercue dependencies
(i.e., when the predictive value of one cue depends upon
the status of another cue). The results regarding sensitiv-
ity to the intercue dependencies are reported elsewhere
(White & Koehler, 2003). Here, we focus only on the re-
sults pertaining to the processing of the unknown cues.
The third experiment was conducted later for the sole
purpose of clarifying how people process unknown cues.

EXPERIMENT 1

We used a multiple-cue probability learning paradigm
with six cues (A–F) and three hypotheses (Flu Strains 1, 2,
and 3). There were two cue structures. In the independent-
diagnostic cue structure, all six cues were conditionally
independent of each other and each gave diagnostic infor-
mation regarding the likelihood of the three flu strains. In
the dependent-nondiagnostic cue structure, the cue–
hypothesis co-occurrence frequencies were the same as
in the independent-diagnostic cue structure, but cues
D–F were redundant with and imperfectly dependent
upon cues A–C. This was achieved by grouping the six
cues into pairs (cues A and D were paired, as were cues
B and E, and cues C and F); the first cue in each pair
(cues A–C) gave diagnostic information and the second
cue in the pair (cues D–F) depended only on the status of
cues A–C and not directly on the patient’s flu strain. Cues
D–F therefore gave no information beyond that which
cues A–C gave regarding the likelihood of the three flu
strains. The differences between the cue structures is the
focus of our other report on this experiment (White &
Koehler, 2003). Of importance to the present research is
that after being exposed to all six cues on every trial of
the training phase, in one block of the subsequent judg-
ment phase participants only had information about cues
A–C, while in the other block they had information con-
cerning all six cues.

Method
Participants

Eighty volunteer participants were recruited from introductory
psychology courses at the University of Waterloo and participated
for course credit.

Procedure
Participants completed the task in separate rooms. The task was

administered and all instructions were displayed by a computer.
Training phase. Participants saw 252 fictitious patients in the

training phase who each suffered from one of three flu strains

(named Flu Strain 1, 2, and 3) in a random order. On each trial, a
computer presented the participant with a patient who had a fever
plus a certain combination of the six symptoms (named headache,
sore throat, earache, chills, dizziness, and cough). Each patient ei-
ther suffered from a symptom (denoted by the name of the symp-
tom appearing in capital letters, e.g., HEADACHE, which we refer to
as a “present” symptom) or did not suffer from the symptom (de-
noted by the name of the symptom appearing in lowercase letters
with the word no in front of it, e.g., “no headache,” which we refer
to as an “absent” symptom). Each symptom was probabilistically
related to the three flu strains (referred to as hypotheses here), but
the participants had no knowledge of what the relationships were at
the beginning of the training phase. Participants selected which of
the three flu strains they believed that each patient was suffering
from on the basis of the patient’s pattern of symptoms. This was im-
mediately followed by feedback indicating whether their choice was
correct and which flu strain the patient actually had.

For each participant, different symptom names were randomly
assigned to the six symptoms. All of the symptoms were displayed
on the screen in a constant spatial order for each participant, but the
spatial order varied randomly between participants.

Judgment phase. Following completion of the training phase,
participants read instructions regarding the judgment phase. In
these trials, participants saw a fictitious patient who had a certain
combination of symptoms (plus fever) and estimated the probabil-
ity that the patient was suffering from a designated flu strain (by se-
lecting a probability judgment between 0% and 100% in 10% in-
crements). In this phase, participants were not told which flu strain
the patient actually suffered from.

The judgment phase consisted of two blocks. In the full infor-
mation block, there were 192 trials in a random order in which the
participants were provided with information about all six symp-
toms. In the partial information block, there were 24 trials in a ran-
dom order in which the participants only had information about
symptoms A, B, and C; symptoms D, E, and F (the unknown symp-
toms) were not shown on the screen. Participants were informed
that if a symptom was not shown, then this gave no information
about its status, and could be either present or absent. The partici-
pants completed the two blocks of judgments in a counterbalanced
order. The order of the two judgment blocks did not affect the results
of the analyses, and so the data were collapsed across the two orders.

Materials
Training phase. Table 1 shows the number of times that each

symptom was present and absent in the training phase when a pa-
tient had a certain flu strain. The prior probabilities or “base rates”
of the three flu strains were equal. The frequency counts shown in
Table 1 were the same in both cue structures; only the frequency
with which certain pairs of cues occurred with each hypothesis dif-
fered. The results from the two cue structures did not differ in regard
to the analyses presented below, indicating that our results general-
ize across different types of cue structures. For ease of presentation,

Table 1
Cue Frequency Counts for the Training Phase of Experiment 1

Flu Strain 1 Flu Strain 2 Flu Strain 3 Total
(n � 84) (n � 84) (n � 84) (n � 252)

Symptom � � � � � � � �

A 76 8 25 59 25 59 126 126
B 25 59 76 8 25 59 126 126
C 25 59 25 59 76 8 126 126
D 66 18 30 54 30 54 126 126
E 30 54 66 18 30 54 126 126
F 30 54 30 54 66 18 126 126

Note—�, cue is present; �, cue is absent.
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the data are collapsed across the two cue structures in the results re-
ported below.

Judgment phase. In the full information block, the 192 trials
consisted of each of the 64 possible six-symptom patterns com-
bined with each of the three flu strains. In the partial information
block, the 24 trials consisted of each of the eight possible three-
symptom patterns combined with each of the three flu strains.

Results

A data collection problem resulted in the deletion of
the data from 1 participant. The accuracy (i.e., proportion
of trials on which the correct diagnosis was chosen) of
the remaining participants during the second half of the
training phase was 58%. This compares with chance ac-
curacy of 33% and with the maximum theoretical accu-
racy of 79% and 68% in the independent-diagnostic and
dependent-nondiagnostic cue structures, respectively. The
maximum theoretical accuracy is defined as that achiev-
able by someone who knows all of the cue–hypothesis
relationships perfectly before the beginning of the train-
ing phase, and uses them in a Bayesian manner to select
the most likely hypothesis on each trial. Participants ap-
peared to have learned the cue–hypothesis relationships
reasonably well, although not perfectly.

Since the status of cues D–F was not known on the par-
tial information trials, we refer to these as the critical
cues; the status of cues A–C was always known and so we
refer to these as the noncritical cues. The data from the

pattern in which all of the cues (critical and noncritical)
were “absent” and the pattern in which all of the cues were
“present” were excluded from the analyses below because
prior research suggests that probabilities are judged dif-
ferently for these special cases than they are for the more
typical patterns (Koehler, 2000; Koehler et al., 2003).

Our primary dependent measure is the total probability
assigned to the three possible flu strains given a particular
cue (i.e., symptom) pattern. Normatively, this value
should always be 1, or 100%. Figure 2 shows the mean
total probability judgment as a function of the number of
present noncritical cues, separately for patterns in which
the critical cues were unknown, all present, or all absent.
Consistent with previous research (Koehler, 2000; Koehler
et al., 2003), the mean total probability judgments are con-
sistently greater than 100% (i.e., they display subadditiv-
ity) and increase with the number of present cues.

We conducted an analysis of variance (ANOVA) to as-
sess the effects of the status of the critical cues (present,
absent, or unknown) and the number of noncritical cues
present (one or two). The status of the critical cues af-
fected the total probability judgments [F(2,156) � 38.5,
MSe � 688.5, p � .001], as did the number of noncriti-
cal cues present [F(1,78) � 43.9, MSe � 601.6, p �
.001]. These two factors did not interact (F � 1). More
specifically, when the critical cues were unknown, the
total probability judgments were different from those
given when the critical cues were absent [F(1,78) �

Figure 2. Total probability judgments for cue patterns containing certain
numbers of noncritical cues present given certain statuses of the critical cues
in Experiment 1.
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16.6, MSe � 927.1, p � .001] or present [F(1,78) � 30.0,
MSe � 1,114.9, p � .001].

When the critical cues were unknown, the total prob-
ability judgments fell between those given when the crit-
ical cues were all present and all absent. In testing the
predictions of various possible methods of processing
unknown cues, it is helpful to have a simple measure of
where in this range the total probability judgments fell
when the critical cues were unknown. To measure this,
we compare the difference between the mean total prob-
ability judgment given when the critical cues were un-
known (Tunk) and absent (Tabs) with the difference when
the critical cues were present (Tpres) and absent (Tabs) to
obtain a ratio Runk:

(1)

The value of Runk can be compared with the value pre-
dicted by each of the methods of processing unknown
cues described above. If unknown cues are ignored, then
Tunk � Tabs, and so Runk � 0. The assume-absent method
predicts that Tunk � Tabs, and so Runk � 0; the assume-
present method predicts that Tunk � Tpres, and so Runk � 1.
The infer-mean method predicts that Tabs � Tunk � Tpres,
and so 0 � Runk � 1. The add-a-constant and unknown-
diagnostic methods predict that Tunk (and therefore Runk)
will vary depending on each method’s extra free parameter.

The value of Runk can be calculated for each partici-
pant. However, the range between the mean total proba-
bility judgment given when the critical cues were pres-
ent and absent (Tpres � Tabs) is extremely small for some
participants, making the denominator of Runk very small,
thereby making Runk extremely large. To avoid the dis-
proportionate impact of these extreme values, we re-
moved the data from the participants whose range for the
denominator was less than 4% on the probability scale.
This value is somewhat arbitrary but was chosen in order
to exclude all of the extreme values of Runk in the three
experiments reported here. Some non-extreme values of
Runk are also excluded by using this cutoff, but these are
usually unreliable values anyway, as a very small change
in Tunk would cause Runk to change dramatically in these
cases. In the present experiment, use of this cutoff value
results in exclusion of the data from 2 participants. The
mean value was Runk � .40 (median � .33, SEM � .11),
which was significantly different from 0 [t(77) � 3.74,
p � .001] and 1 [t(77) � 5.70, p � .001]. The distribution
of Runk is unimodal, which argues against the possibility
that the observed mean arises from a mixture of strate-
gies (with some of the people using an assume-present
strategy and some using an assume-absent strategy).

Before discussing the implications of this pattern of
results, we first describe the results of a second study de-
signed to establish the generalizability of our findings.

EXPERIMENT 2

Experiment 2 was similar to Experiment 1, except as
follows. To ensure that the differences observed between

the partial and full information judgments were not due
to the two types of judgments being elicited in different
blocks, the partial and full information trials were ran-
domly mixed. In addition, to eliminate any possible nov-
elty effects of the partial information trials in the judg-
ment phase, partial information trials were included in
the training phase. Instead of always having the status of
cues D–F unknown in the partial information trials (i.e.,
designating cues D–F as the critical cues), all possible
combinations of which three cues were known and which
three were unknown were sampled (e.g., on one trial,
only information about cues C, D, and F was given, and
on another, only information about cues A, C, and E).
The training phase was also lengthened to ensure that par-
ticipants had ample opportunity to learn the cue structure.

Three cue structures were used, one in which cues D–F
were imperfectly dependent upon cues A–C (dependent-
nondiagnostic) and two in which all six cues were condi-
tionally independent of each other (independent-diagnostic
and independent-nondiagnostic). The cue structure again
had no effect on the results of the analyses presented
below, and so the data are collapsed across cue structures.

Method
Participants

One hundred and nine volunteer participants were recruited from
introductory psychology courses at the University of Waterloo and
participated for course credit.

Procedure
Training phase. The number of training trials was increased

from 252 to 336, of which 240 were full information training trials
and 96 were partial information trials. Training trials were again
identical for all participants assigned to a given cue structure, but
were presented in a different random order for each participant that
mixed the partial information and full information trials.

Judgment phase. This phase consisted of 120 full information
trials and 88 partial information trials randomly mixed together.

Materials
Training phase. See Table 2 for the frequencies that each cue

had each status in conjunction with each flu strain over the course
of the training trials.1

R
T T

T Tunk
unk abs

pres abs

=
−
−

.

Table 2
Cue Frequency Counts for the Training Phase of Experiment 2

Flu Strain 1 Flu Strain 2 Flu Strain 3 Total
(n � 112) (n � 112) (n � 112) (n � 336)

Symptom � � ? � � ? � � ? � � ?

All Cue Structures

A 88 8 16 28 68 16 28 68 16 144 144 48
B 28 68 16 88 8 16 28 68 16 144 144 48
C 28 68 16 28 68 16 88 8 16 144 144 48

Independent-Diagnostic and Dependent-Nondiagnostic Cue Structures

D 76 20 16 34 62 16 34 62 16 144 144 48
E 34 62 16 76 20 16 34 62 16 144 144 48
F 34 62 16 34 62 16 76 20 16 144 144 48

Independent-Nondiagnostic Cue Structure

D 48 48 16 48 48 16 48 48 16 144 144 48
E 48 48 16 48 48 16 48 48 16 144 144 48
F 48 48 16 48 48 16 48 48 16 144 144 48

Note—�, cue is present; �, cue is absent; ?, cue is unknown.
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Judgment phase. There are 192 possible full information judg-
ments. However, only 40 of the 192 judgments are mathematically
distinct. This is because the relationship that each cue within each
set of three cues (i.e., A–C and D–F) had with each hypothesis is a
mirror image of that had by one of the other cues in that set with one
of the other hypotheses. For example, if we denote a present symp-
tom with a capital letter and an absent symptom with a lowercase
letter, then the probability judgment of Flu Strain 1 for cue pat-
tern Abc def is logically equivalent to the probability judgment for
Flu Strain 2 for cue pattern aBc def. To obtain a reliable measure of
each of these 40 judgments, we elicited three judgments for each,
yielding 120 full information judgments. Applying the same logic
to the partial information judgments, we elicited one example of
each of the 88 mathematically distinct judgments (out of the full set
of 480 possible partial information judgments that have three cues
known).

Results

A data collection problem resulted in the removal of
the data from 1 participant. The accuracy of the remain-
ing participants had asymptoted by the end of the train-
ing phase.2 In the second half of the training phase, mean
accuracy was 58%, 56%, and 51% for the independent-
diagnostic, dependent-nondiagnostic, and independent-
nondiagnostic cue structures, respectively, compared
with chance accuracy of 33% and the maximum theoret-
ical accuracy of 77%, 68%, and 66% in each cue struc-
ture, respectively. Again, participants appeared to have
learned the cue–hypothesis relationships reasonably well,
although not perfectly.

In this experiment, the three critical cues for a given
judgment could be any possible subset of the six cues.
Therefore, each pattern in which the critical cues were
unknown was matched to corresponding patterns in which

the critical cues were all present or absent. Figure 3 dis-
plays the results. This experiment incorporated many
methodological changes from Experiment 1, yet the same
effects were observed. The same factors were included in
the ANOVA as in Experiment 1: the status of the critical
cues (present, absent, or unknown) and the number of
noncritical cues present (one or two). The status of the
critical cues significantly affected the total probability
judgments [F(2,214) � 74.4, MSe � 637.9, p � .001], as
did the number of noncritical present cues [F(1,107) �
27.9, MSe � 332.4, p � .001], and again, these factors
did not interact (F � 1).

The more specific contrasts that were evident in Exper-
iment 1 were again evident here. The total probability
judgments given when the critical cues were unknown
were different from those given when the critical cues
were absent [F(1,107) � 31.0, MSe � 585.1, p � .001]
and present [F(1,107) � 44.5, MSe � 950.9, p � .001].
Only the magnitude of this latter effect depended on the
number of noncritical cues [F(2,214) � 5.73, MSe �
393.4, p � .01], but this interaction was not significant
in any of the equivalent comparisons in Experiment 1.

The mean value of Runk was .52 (median � .39, SEM �
.081), which differed significantly from 0 [t(102) � 6.44,
p � .001] and 1 [t(102) � 5.89, p � .001]. As in Exper-
iment 1, we removed the data from the participants whose
range for the denominator of Runk was less than 4% be-
fore this analysis, which was the case for 5 participants.

Discussion of Experiments 1 and 2

Total probability judgments given when the critical
cues were unknown were higher than those given to the

Figure 3. Total probability judgments for cue patterns containing certain
numbers of noncritical cues present given certain statuses of the critical cues
in Experiment 2.



MISSING INFORMATION IN MCPL 1015

full information judgments in which the critical cues
were absent. This implies that people did not assume that
the unknown cues were absent (the assume-absent method
of processing unknown cues). This result agrees with the
findings of Gluck and Bower (1988). It is not in line with
the predictions of ignoring unknown cues (Figure 1),
which predicts that the total probability judgments given
when the critical cues were unknown would be less than
or equal to those given to the full information judgments
in which the critical cues were absent. In addition, the
total probability judgments given when the critical cues
were unknown were lower than those given when the
critical cues were present, implying that people did not
use the assume-present method. These effects appear to
be robust across different cue structures. The cue struc-
ture did influence other aspects of the judgments, as re-
ported elsewhere (White & Koehler, 2003), indicating
that the consistent effects of unknown information are
not attributable to a general insensitivity to differences
between the cue structures.

Three of the methods for processing unknown cues
described above can account for the observed results: the
infer-mean, add-a-constant, and unknown-diagnostic
methods. The proposal that unknown cues were inferred
to be at their previously observed mean status (the infer-
mean method) is arguably the most parsimonious of the
three because it requires no additional free parameters to
account for the observed results. However, further ma-
nipulations are needed to tease apart the predictions
made by the three remaining methods.

EXPERIMENT 3

In Experiments 1 and 2, each cue was present half of
the time and absent half of the time. In this experiment,
we vary the frequency of cue presence versus absence to
test a specific prediction of the infer-mean hypothesis—
namely, that the total probability judgments given when
the critical cues are unknown will vary on the basis of the
mean status of the critical cues. The infer-mean method
predicts this because it assumes that the diagnostic value
associated with an unknown cue is equal to a weighted
average of the diagnostic value for the cue’s presence and
for its absence, where the weight reflects the relative fre-
quency with which the cue has been observed to be pres-
ent versus absent.

In the training phase, three of the six cues (cues A, B,
and C) were present 49% of the time and absent 51% of
the time (high present-frequency cues), and the other
three cues (cues D, E, and F) were present 24% of the
time and absent 76% of the time (low present-frequency
cues). Of the three methods of processing unknown cues
consistent with the results of Experiments 1 and 2, only
the infer-mean method predicts any difference in the par-
tial information total probability judgments, depending
on whether the critical cues are high present-frequency
or low present-frequency cues. Specifically, the infer-
mean method predicts that the value of Runk will be higher

when the critical cues are high present-frequency cues
than when they are low present-frequency cues. The two
other methods of processing unknown cues that can also
account for the data from Experiments 1 and 2 (the add-
a-constant and unknown-diagnostic methods) predict
this value to be constant across this manipulation.

We also varied the number of cues that were not known
in the partial information pattern, with some participants
being told the status of five of the six cues (the one-
unknown condition) and the others being told the status
of three of the cues (the three-unknown condition). The
number of unknown cues was varied to generalize the re-
sults of Experiments 1 and 2 beyond the situation in which
exactly half of the cues are unknown.

Method
Participants

Sixty-one volunteer participants were recruited from introduc-
tory psychology courses at the University of Waterloo and partici-
pated for course credit. They were randomly assigned to the two
judgment phase conditions (31 to the one-unknown condition and
30 to the three-unknown condition).

Procedure
Training phase. The training phase consisted of 288 full infor-

mation trials in a random order. Experiment 2 showed that the dif-
ferences between the probability judgments observed in Experi-
ment 1 were not caused by the novelty of the partial information
trials in the judgment phase, and so partial information trials were
not included in the training phase of this experiment.

Judgment phase. In the one-unknown condition, this phase con-
sisted of 144 trials: 40 full information trials and 104 partial infor-
mation trials. In the three-unknown condition, this phase consisted
of 192 trials: 120 full information trials and 72 partial information
trials. Full and partial information trials were again randomly mixed.

Materials
Training phase. Only one cue structure was used in which all of

the symptoms were conditionally independent of each other. The
number of times that each cue had each status in conjunction with
each hypothesis is shown in Table 3.

To ensure that the relative frequency of the cue statuses was the
only thing that differed between the two sets of cues, the diagnos-
tic value of the cues for the three hypotheses was equated. Specifi-
cally, the information in the contingency table containing the three
cues in each group, the two statuses of each cue, and the three hy-
potheses must be equated. Therefore, a method for measuring the
strength of the relationship between multiple cues and multiple hy-
potheses in a 3 � 2 � 3 multidimensional contingency table is re-

Table 3
Cue Frequency Counts for the Training Phase of Experiment 3

Flu Strain 1 Flu Strain 2 Flu Strain 3 Total
(n � 96) (n � 96) (n � 96) (n � 288)

Symptom � � � � � � � �

A 86 10 28 68 28 68 142 146
B 28 68 86 10 28 68 142 146
C 28 68 28 68 86 10 142 146
D 57 39 6 90 6 90 69 219
E 6 90 57 39 6 90 69 219
F 6 90 6 90 57 39 69 219

Note—�, cue is present; �, cue is absent.



1016 WHITE AND KOEHLER

quired. McGill (1954) developed such a measurement method,
based on information theory, that measures the information trans-
mitted in the form of the number of “bits” per signal. To correctly
choose between two hypotheses (in this case, flu strains) one would
need one bit of information, and to choose between four hypothe-
ses, one would need two bits of information. Since this task involves
three flu strains, between one and two bits of information would be
needed to allow one to make the correct choice every time. By
McGill’s measure, cues A–C transmit 0.372 bits, and cues D–F
transmit 0.373 bits per signal, suggesting that the diagnostic value
of cues A–C and D–F were effectively equal.3

Judgment phase. In the one-unknown condition, we sampled
each of the 40 distinct full information judgments once and each of
the 104 distinct one-unknown partial information judgments once.
In the three-unknown condition, the 120 full information trials con-
sisted of three examples of each of the 40 mathematically distinct
groups of judgments. Of the 88 distinct partial information judg-
ments, we were most interested in those patterns in which either all
three of the high present-frequency cues or all three of the low
present-frequency cues were unknown. There are only 12 mathe-
matically distinct judgments fitting these criteria. Again, each of
these was sampled three times, yielding 36 more judgments. We
randomly chose 12 of the remaining 76 distinct three-unknown par-
tial information judgments and sampled each of these three times.

Results and Discussion

Accuracy had asymptoted by the end of the training
phase. The mean for the second half of the training phase
was 67%, compared with chance accuracy of 33% and
the maximum theoretical accuracy of 82%. This sug-
gests that the participants learned the cue–hypothesis re-
lationships at least as well as did those in Experiments 1
and 2.

The data were split on the basis of whether the critical
cues were low or high present-frequency cues. Since
only one of the cues was unknown in each partial infor-
mation pattern of the one-unknown condition, there was
only one critical cue for each judgment in this condition.
Whichever set of cues contained the critical cue was
deemed to be the critical set of cues even though not all of
the cues in the set were unknown. In the three-unknown
condition, the only partial information judgments used
for this analysis were those in which either all of the low
or high present-frequency cues were unknown.

The predictions of the infer-mean method of process-
ing unknown cues could be assessed by looking for in-
teractions between the status of the cues (present, absent,
unknown) and which set of cues were the critical cues
(low or high present-frequency cues) in a way similar to
how we assessed the effects in Experiments 1 and 2. The
complete ANOVA includes three within-subjects vari-
ables: the status of the critical cues (absent, present, or
unknown), which cues were the critical cues (low or high
present-frequency cues), and the number of noncritical
cues present (one or two). The ANOVA also includes one
between-subjects variable: the number of unknown cues
(one or three). The results of this ANOVA are very hard
to interpret since the interaction between all four of these
variables is significant [F(2,118) � 4.57, MSe � 1,038.9,
p � .05]. Therefore, even though the interaction between
the two most important variables—whether the high or

low present-frequency cues are the critical cues, and the
status of the critical cues—is significant [F(2,118) �
3.56, MSe � 1,038.9, p � .05], the form of this inter-
action depends on the level of the other two variables.
We therefore turn to the simpler and more direct predic-
tions that the infer-mean method makes regarding the
Runk measure.

Two values of Runk are computed for each individual,
one for each of the critical cues being high and low present-
frequency cues. Two variables (the number of cues pres-
ent and the status of the critical cues) disappear in the
analysis of Runk because data from each level of these
variables goes into this one aggregate measure (see the
Results section of Experiment 1 for a complete descrip-
tion of how this measure is computed). The other vari-
able that still remains is the number of unknown cues
(one or three), which was varied between participants.

As predicted by the infer-mean method of processing
unknown cues, the total probability judgments given
when the critical cues were high present-frequency cues
were higher than those given when the critical cues were
low present-frequency cues (relative to when the critical
cues were absent and present): median Runk � .52 and
.21, respectively [means: Runk � .82 and .20, respec-
tively; F(1,52) � 5.43, MSe � 1.89, p � .05].4 The num-
ber of missing cues had no effect on this measure and did
not interact with whether the unknown cues were high or
low present-frequency cues (Fs � 1.0). As in Experi-
ments 1 and 2, we removed the data from the participants
whose range for the denominator of Runk was less than 4%
for either the high or low present-frequency cues before
these analyses, which was the case for 7 participants.

GENERAL DISCUSSION

The only method of processing unknown cues consid-
ered in this paper that can account for the results of Ex-
periments 1–3 is the infer-mean method. This result ap-
pears to be quite robust, with the predictions of this
method being confirmed across different cue structures
(Experiments 1 and 2) and across differing numbers of
unknown cues (Experiment 3). We therefore assert that
once people have learned to use multiple cues to predict
the likelihood of certain outcomes, if information con-
cerning some of those cues is not available, they will
infer that those cues are at their previously observed
mean status and generate a judgment on the basis of that
inference. It does not appear that people simply ignore
those cues or give those cues a preset default value (ab-
sent or present), or treat the unknown status of each
missing cue as diagnostic.

Even though we have framed the infer-mean method
of processing unknown cues in terms of people “filling
in” an unknown cue with its previously observed mean
status on each trial and calculating a diagnostic value
based on that inference, there are other process interpre-
tations of this model. As we mentioned when introduc-
ing this model, the support given by an unknown cue
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could be equated with the typical or average amount of
support given by that cue on trials in which its status was
known. This would yield identical predictions to those
of the filling-in model, as would a third variant: People
could infer that unknown cues are either present or ab-
sent on each individual trial, where the probability of
making each inference reflects the relative frequency that
the unknown cue was present and absent when it was
known. The data from the present experiments cannot
distinguish between these different psychological pro-
cesses, all of which would have the same effect on the
total probability judgments.

It could be argued that the methods of processing un-
known cues proposed here would make different predic-
tions in the framework of a model other than ESAM, and
a different method of processing unknown cues might
then be able to account for the present results. Without a
fully developed model, however, specific predictions of
the more complex methods of processing unknown cues
are difficult to derive, so having a model is essential.
There are two general types of models: those that assess
information on a cue-by-cue basis and those that assess
entire exemplars. We now address how well other mod-
els can account for the patterns of data that are of inter-
est here, and how likely it is that the processes underly-
ing these models will match the processes underlying
people’s behavior in this type of task.

In regard to other models that integrate information on
a cue-by-cue basis (e.g., Gluck & Bower, 1988), although
the rules governing how the outputs of these models are
converted into probability judgments could be changed,
currently none of the models is able to generate proba-
bility judgments that sum to more than 100% (subaddi-
tivity). In addition, even though other models explicitly
allow for different cues to have varying saliencies, they
do not explicitly allow for different cue statuses to have
varying saliencies. One way around the latter problem
would be to assume that a cue’s presence and absence are
represented separately. Each status of each cue could
then have its own salience value. However, the separa-
tion at a representational level of a cue’s presence and
absence lacks empirical support. Even given these addi-
tional assumptions, it is not clear whether these other
models would be able to account for the systematic vari-
ation in subadditivity as a function of the number of
present cues.

Models that base their judgments on the similarity of
the current exemplar to a set of stored exemplars (e.g.,
Medin & Schaffer, 1978) suffer from similar problems.
In addition, many characteristics of the task used in the
present experiments have been found by other researchers
to encourage the use of cue abstraction and integration
processes rather than exemplar-based processes (Juslin,
Jones, Olsson, & Winman, 2003; Juslin, Olsson, & Ols-
son, 2003). Specifically, the task used here involved
probabilistic rather than deterministic outcomes, propo-
sitional rather than pictorial cues, and the responses of
interest (probability judgments) were more continuous

than categorical. Exemplar-based models are therefore
based on processes that are arguably unlikely to be used
by participants in this task. In addition, previous work in
our lab using the same paradigm showed that when ESAM
bases the support for each hypothesis on the similarity of
the current exemplar to stored exemplars, the judgments
produced fit the data less well than did the judgments
produced when support was based on a cue-by-cue analy-
sis (Koehler et al., 2003, pp. 182–184).

In any case, it is reassuring that our results agree with
the findings of Ganzach and Krantz (1990), who also
concluded that unknown cues are inferred to be at their
mean value or status using a quite different approach
from that used here. This converging evidence provides
strong support for the hypothesis that if people are ac-
customed to basing their responses on a certain cue, and
if the status or value of that cue is not available to them,
they will continue to consider that cue in calculating
their response, but will act as if the cue is at its mean sta-
tus or value. If one must infer the value of an unknown
cue, then using the previously observed mean value of
that cue will generally produce reasonably accurate judg-
ments. This behavior is adaptive if the mechanism in-
volved in making estimates and judgments from imperfect
cues forces one to choose a value for each relevant cue.
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NOTES

1. Every cue had an equal chance of being unknown in each partial
information trial, and so each was unknown in 48 of these 96 trials. The
fact that a cue was unknown had no diagnostic value because the num-
ber of times it was unknown in conjunction with each flu strain was the
same (16 times each).

Two of the cue structures were similar to those used in Experiment 1.
Cues A–C were always diagnostic in all three cue structures. In the
independent-diagnostic cue structure, Cues D–F were also always di-
agnostic. In the dependent-nondiagnostic cue structure, Cues D–F were
nondiagnostic when the status of Cues A–C was known and diagnostic
when the status of Cues A–C was not known. For the sake of com-
pleteness, an independent-nondiagnostic cue structure was added where
Cues D–F were always nondiagnostic.

2. This was determined by arbitrarily splitting the training phase into
six blocks and assessing that the mean accuracy per block had leveled
off by the last training block.

3. The cue structure used also yields similar results on several other
measures of the strength of association. We describe one more method
to illustrate this. The mathematically correct probabilities were calcu-
lated using the frequencies that each cue had each status in conjunction
with each flu strain during the training phase. These frequencies were
combined using Bayes’s rule (assuming conditional independence) to
generate one probability for each flu strain for each possible full infor-
mation pattern. The resulting 192 probabilities were analyzed to mea-
sure how much the status of each set of cues affected them.

Each cue pattern was matched with a corresponding pattern in which the
status of Cues A–C was switched with the status of Cues D–F. For in-
stance, the probability of a patient having Flu Strain 1 given Cue Pat-
tern abc DeF was matched with the probability of the patient having Flu
Strain 1 given AbC def (cue patterns that would be matched with them-
selves [e.g., AbC DeF] were not included in the analyses to avoid inflating
the apparent correspondence between the sets of cues). We would expect
a high correlation between the probability pairs to the extent that Cues
A–C and D–F have similar diagnostic implications. Using this method,
the correlation between the probabilities is r � .9998, and the square root
of the mean squared difference between each pair of probabilities is 0.8%
on a 0%–100% scale. In short, the diagnostic value of the two sets of cues
appears to be well equated no matter which metric is used.

4. The normality of the distribution of Runk when the critical cues
were high present-frequency cues could be questioned because the
mean and median values are different (.82 and .52, respectively). The
difference between the mean and median values is mainly caused by
one extreme value of Runk � 9.75 for 1 participant when the critical cues
were high present-frequency cues. When this participant’s data is re-
moved, the mean (.64) and median (.51) are fairly similar while the dif-
ference between Runk for the high and low present-frequency cues re-
mains unchanged [respectively: means � .64 and .18; SEMs � .15 and
.14; F(1,51) � 4.17, MSe � 1.31, p � .05]. As in the previous experi-
ments, the distribution of Runk approximates a normal distribution quite
well when the data from this participant is removed.

(Manuscript received July 9, 2003;
revision accepted for publication January 28, 2004.)
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