Memory & Cognition
2004, 32 (2), 260-270

Convex hull or crossing avoidance? Solution
heuristics in the traveling salesperson problem

JAMES N. MACGREGOR
University of Victoria, Victoria, British Columbia, Canada

EDWARD P. CHRONICLE
University of Hawait, Honolulu, Hawaii

and

THOMAS C. ORMEROD
Lancaster University, Lancaster, England

Untrained adults appear to have access to cognitive processes that allow them to perform well in the
Euclidean version of the traveling salesperson problem (E-TSP). They do so despite the famous com-
putational intractability of the problem, which stems from its combinatorial complexity. A current hy-
pothesis is that humans’ good performance is based on following a strategy of connecting boundary
points in order (the convex hull hypothesis). Recently, an alternative has been proposed, that perfor-
mance is governed by a strategy of avoiding crossings. We examined the crossing avoidance hypothesis
from the perspectives of its capacity to explain existing data, its theoretical adequacy, and its ability to
explain the results of three new experiments. In Experiment 1, effects on the solution quality of number
of points versus number of interior points were compared. In Experiment 2, the distributions of ob-
servedpaths were compared with those predicted from the two hypotheses. In Experiment 3, figural ef-
fects were varied to induce crossings. The results of the experiments were more consistent with the
convex hull than with the crossing avoidance hypothesis. Despite its simplicity and intuitive appeal,
crossing avoidance does not provide a complete alternative to the convex hull hypothesis. Further elu-
cidation of human strategiesand heuristics for optimization problems such as the E-TSP will aid our un-

derstanding of how cognitive processes have adapted to the demands of combinatorial difficulty.

In the everyday world, the capacity of human beings to
make optimal decisions may be constrained by lack of
time, lack of information, and limited processing capacity
(Simon, 1947). Indeed, circumstances frequently require
that we react to complex situations with rapid decisions
under uncertain and incomplete information. The fact
that the decisions are often good, or at least satisfactory,
has been a subject of continuinginterest to cognitive psy-
chology. One adaptive response to complex environmen-
tal demands appears to be that the cognitive system applies
various simplifying heuristic procedures. For example, in
the field of problem solving, heuristic search procedures,
such as hill-climbing and means—ends analysis, have been
recognized for some time (Newell & Simon, 1972). Var-
ious heuristic devices have also been identified in the area
of probabilisticjudgment and reasoning (Tversky & Kah-
neman, 1973). More recently, a number of simple cogni-
tive algorithms for inferential reasoning that “satisfice”
have been proposed (Gigerenzer & Goldstein, 1996).
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A potentially fertile source of complex problems for
exploring the human capacity to find good, quick solutions
is the field of combinatorial optimization, where many
computationally intractable problems have now been
identified. One problem from this field that has already
attracted the interest of psychologists is the Euclidean
traveling salesperson problem (E-TSP), described below.
A reason for this interest is that people appear to be able to
find optimal or near-optimal solutions to E-TSPs quickly
and with little apparent effort (MacGregor & Ormerod,
1996; Vickers, Butavicius, Lee, & Medvedev, 2001). This
ability of normal adults on E-TSPs has also suggested
that it is a kind of task that may be useful in the context
of neuropsychological testing (Basso, Bisiacchi, Cotelli,
& Farinello, 2001; Vickers et al., 2001).

An E-TSP consists of finding the shortest closed path
(tour) that passes through each of a set of n points in the
plane and returns to the start. Because the number of pos-
sible paths, given by (n — 1)!/2, increases rapidly as n in-
creases, finding the shortest path by exhaustive search of
the problem space quickly becomes infeasible. For this
reason, there has been a long-standinginterest in the fields
of computer science and operations research in devising
approximate procedures that can construct near-optimal
paths in reasonable times. An investigation of human
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performance on E-TSPs reported that untrained adults,
solving “by eye,” produced paths that were as good as, or
better than, those produced by a number of such tour con-
struction heuristics (MacGregor & Ormerod, 1996). This
finding held across problems with sets of points from
n = 10 to n = 60, the largest studied, and has been cor-
roborated and extended by subsequent research (Mac-
Gregor, Ormerod, & Chronicle, 1999). The results sug-
gest that people have available some effective heuristic
procedures for finding short paths.

As an explanation of these and related results, we pro-
posed the convex hull hypothesis. The convex hull is the
polygon formed by connecting the points that fall on the
outermost boundary of the array of nodes that constitute
an E-TSP. Our proposal was that human solutions are
guided by this set of points (MacGregor & Ormerod,
1996; Ormerod & Chronicle, 1999). The essential notion
is that the solution process begins by supposing that ad-
jacent boundary points are connected by arcs (MacGre-
gor, Ormerod, & Chronicle, 2000). The problem then
simplifies to a series of decisions about which arcs to dis-
connectin order to “insert” interior points between them.
This proposition has the double attraction of appealing,
on the one hand, to general principles of human percep-
tion and, on the other, to effective heuristics that have been
discovered in the area of operations research (Golden,
Bodin, Doyle, & Stewart, 1980).

Despite a broad base of empirical support, the convex
hull hypothesis has not gone unchallenged (Graham,
Joshi, & Pizlo, 2000; Lee & Vickers, 2000; Vickers et al.,
2001). The most recent challenge has come in the form of
the crossing avoidance hypothesis, which proposes that
people construct tours that avoid crossing lines (van Rooij,
Stege, & Schactman, 2003). Here, we examine this hy-
pothesis in detail from several perspectives: first, its ca-
pacity to explain existing data; second, its theoretical ad-
equacy and psychological plausibility; and third, how
well it compares with the convex hull hypothesis in ex-
plaining the empirical results of three new experiments.

Empirical Support for Crossing Avoidance

Van Rooijj et al. (2003) did not propose any psycho-
logical mechanism for crossing avoidance, nor did they
suggest that it operates in isolation of other possible
strategies. Nevertheless, in evaluating the hypothesis, it
is worth examining how well a crossing avoidance strat-
egy can explain existing empirical findings without ad-
ditional assumptions. Consequently, in what follows, we
will take a baseline approach and examine the crossing
avoidance hypothesis in a pure form. We do not imply
that this is what van Rooij et al. had in mind.

As was noted above, a well-established empirical
finding is that human solutions to E-TSPs are of a high
quality. Consequently, a fundamental issue is whether a
strategy of avoiding crossings will produce similarly
high-quality solutions. There is no logical requirement
that it must. Although it is true that the optimal solution
has no crossings, it does not follow that a tour with no
crossings will be optimal or, necessarily, close to opti-
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mal. Some tours with crossings are longer than some
without, and it is by no means a given that avoiding
crossings automatically leads to good solutions. We ad-
dressed this issue by having an algorithm generate ran-
dom solutions (with the constraint of no crossings) to in-
stances of TSPs we had used in a previous experiment
and compared the results with human solutions. The test
used six 10-node instances, with numbers of interior
points ranging from one to six (from MacGregor &
Ormerod, 1996, Experiment 1). The algorithm produced
100 tours without crossings for each of the problems.
The results are summarized in Table 1, which shows, for
each of the six instances, the mean path lengths for
(1) 100 no-crossing tours, (2) 45 subject-generated tours,
and (3) 45 tours generated by our convex hull model
(MacGregor et al., 2000).

In all instances, the mean lengths of the paths produced
by the crossing avoidance heuristic were significantly
longerthan those of the 45 experimental subjects (¢ values
ranged from 6.47 to 18.53,df = 143, all ps <.001). In the
best case, crossing avoidance resulted in a mean path
length that was 12% longer than the subjects’; in the worst
case, it resulted in a mean that was 18% longer. In com-
parison, the best and the worst fits for our convex hull
model were 0.5% and 3.4% shorter than the subjects’
means, respectively (MacGregor et al., 2000). A standard
measure of problem difficulty, widely used in both oper-
ations research (Golden et al., 1980) and psychological
studies (Graham et al., 2000; MacGregor et al., 1999;
Vickers et al., 2001), is to express path lengths as a per-
centage above the optimal path length (PAO). By this met-
ric, the average subject performance ranged from 0.8% to
3.8% above optimal across the six problems, the convex
hull model ranged from 0% to 4.8%, and the crossing
avoidance heuristic ranged from 14.6% to 21.4% above
optimal. Clearly, simply avoiding crossings does not pro-
duce solutions that are as close to optimal as those of un-
trained adults or those of the convex hull approach.

Theoretical basis and psychological plausibility of
crossing avoidance. Mathematically, optimal tours fol-
low the hull because optimal tours have no crossings. Be-
cause of this, van Rooij et al. (2003) argued that crossing avoid-
ance is more elementary than following the convex hull.
Although this is true mathematically, crossing avoidance
may not be psychologically more elementary. In fact, van
Rooij et al. provided little psychological support for the

Table 1
Mean Percentage Above Optimal for Euclidean Traveling
Salesperson Problem Paths Produced by Crossing Avoidance,
Human Subjects, and a Convex Hull Model

Crossing Convex
Instance Avoidance People Hull
1 14.6 0.8 0.0
2 20.2 35 0.0
3 21.4 2.8 1.7
4 16.2 3.8 4.8
5 19.0 3.0 2.5
6 18.9 3.8 0.8
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hypothesis, other than that “it seems plausible to assume
that people are, at least, sensitive to the fact that optimal
tours have no crossings” (p. 217). People may be, but this
sensitivity, by itself, is an inadequate basis for finding op-
timal or near-optimal tours, as has been illustrated above
by the relatively poor performance of a crossing avoid-
ance heuristic. It also raises the question of what psycho-
logical process or processes might underlie the produc-
tion of tours without crossings.

A possible process might be to plan tours mentally, re-
ject any that result in a crossing, and repeat this until a
noncrossing tour is found. There are at least two reasons
that this approach is psychologically implausible. One is
that tours without crossings are likely to be relatively
scarce. Consider, for example, an instance with n points
and no interior points. Here, there is only one closed path
without crossings, but for n > 3, there are (n — 1)!1/2 — 1
paths with crossings. This differential frequency of tours
with and without crossings becomes increasingly large
as n increases. For example, with n = 12, there are al-
most 20 million paths with crossings, as compared with
only one without. With sufficiently large n, the relative
sparseness of noncrossing tours would make an unguided
search of the solution space an unworkable strategy.

A second problem with the unguided search approach
arises because of the limitations of mental lookahead,
the capacity to plan one or more moves ahead. Research
in other areas of problem solving has suggested that this
capacity may be quite limited (MacGregor, Ormerod, &
Chronicle,2001; Phillips, Wynn, McPherson, & Gilhooly,
2001). In the case of E-TSPs, it has been reported that
normal subjects plan a small section of the route before
the first move and then program their moves during ex-
ecution, exhibiting a constant degree of planning in the
process (Basso et al., 2001). This result suggests that a
small moving window of mental lookahead is applied
during the solution process. In contrast, since a crossing
can occur on any connectionup to the nth, it appears that
a minimum lookahead of n connections would be re-
quired to guarantee crossing avoidance. Given both of
these processing capacity issues, of search space and
lookahead, it seems likely that for people to avoid cross-
ings, they must have available some heuristic procedure
that aids them in doing so, without requiring excessively
broad or deep searches. One extremely effective heuris-
tic that reduces crossings is the convex hull approach we
favor, although we do not propose that people use the
boundary points as a guide intentionally to avoid cross-
ings. Nevertheless, despite the potential difficulties of
specifying a process for crossing avoidance, the simplic-
ity of the proposal demands that it be examined closely.
For this reason, we conducted three experiments de-
signed to examine the crossing avoidance hypothesis and
contrast it to the convex hull hypothesis.

EXPERIMENT 1

A prediction from the convex hull hypothesis is that
the relative difficulty of E-TSPs will be a direct function
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of the number of interior nodes, rather than the total
number of nodes (MacGregor & Ormerod, 1996). This
prediction arises because the hypothesis holds that the
hull points are essentially given, in that they form the
perceptual boundary of the array, leaving the person free
to focus on how to connect the interior points. Adding to
the number of boundary points should, therefore, add lit-
tle or nothing to the psychological complexity of the
task. In MacGregor and Ormerod (1996), this prediction
was tested in two experiments in which the total number
of points was held constant (at # = 10 and n = 20 for Ex-
periments 1 and 2, respectively) and the number of inte-
rior points varied. In both cases, problem complexity,
measured by the uncertainty of solution paths across
subjects, was found to vary directly with increasing
numbers of interior points. In addition, a reanalysis of
existing data with E-TSPs ranging from 10 to 60 nodes
showed that number of interior points correlated signifi-
cantly with problem difficulty measured by the mean path
length of the 50 subjects, expressed as PAO (MacGregor
& Ormerod, 1996). Lee and Vickers (2000) questioned
the meaningfulness of the distinction between total and
interior points, claiming that they were “diagnostically
equivalent.” In a reply, MacGregor and Ormerod (2000)
pointed out that it was possible to vary total points and
number of interior points orthogonally, although at that
time no single experiment had done so. Subsequently,
such an experiment was reported (Vickers et al., 2001).
Unfortunately, the way in which number of interior points
was manipulated made the relevant results uninterpretable.
Specifically, for each of three levels of total points (n =
10, 25, and 40), two levels of number of interior points
were defined, high and low. Across the three levels of
total points, problems in the high interior points condi-
tion had 5, 18, and 32 interior points. The low interior
points condition had 3, 16, and 28 interior points. The
resulting overlap between conditions was extreme, with
instances in the low interior points condition having five
times as many interior points as instances in the high in-
terior points condition. Even if we were to interpret in-
terior points as a proportion of total points (rather than
as the absolute number), the same problem remains.
Consequently, the experiment did not manipulate num-
ber of interior points in a clear and systematic way, and
the results regarding the effect of interior points are un-
interpretable.

At this point in time, it is not clear whether the diffi-
culty of E-TSPs varies only with the number of interior
points or with both the number of interior points and the
total number or whether the two factors interact in some
way. The convex hull hypothesis makes the strong predic-
tion that there will be an effect of interior points butno in-
dependenteffect of total points (since the total points that
are not interior points are, therefore, boundary points and
their connectionorder is held to be a psychological given).
For the same reason, the convex hull approach predicts
no interaction effect. The crossing avoidance hypothesis,
since it makes no distinction in the status of boundary
versus interior points, would have no basis for making a
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similar prediction. In fact, as was outlined in the introduc-
tion, the psychological difficulty of avoiding crossings
presumably increases as some function of the number of
potential crossings to be avoided, which in turn will vary
with n. Consequently, a strict crossing avoidance hypoth-
esis would appear to predict only a main effect of total
points. However, observing such an effect will depend on
the dependent variable used to measure problem diffi-
culty, as will be discussed below.

In previous studies, a number of measures of problem
difficulty have been used, including the proportion of
optimal tours (Graham et al., 2000; MacGregor et al.,
1999), the variety of different solutions across subjects
(MacGregor & Ormerod, 1996), response point uncer-
tainty (RPU), which reflects the relative frequency with
which subjects’ paths incorporate the same point-to-
point connections (MacGregor & Ormerod, 1996; Vick-
ers etal.,2001), and path length expressed as PAO (Gra-
ham et al., 2000; MacGregor & Ormerod, 1996; Vickers
et al., 2001). Normally, these measures will be corre-
lated. For example, the simplest problem used by Mac-
Gregor and Ormerod (1996) had one interior point. In
this case, most subjects found the optimal solution, re-
sulting in a high proportion of optimal tours, a low vari-
ety of different tours, low RPU, and low PAO. The most
difficult problem had 16 interior points. In this case, no
subject found the optimal solution, resulting in the low-
est possible proportion of optimal tours and a necessar-
ily higher PAO. The subjects produced a wider variety of
different tours, resulting also in a higher RPU.

In previous experiments, we measured the effect of
number of interior points by the variety of different paths
produced across subjects, expressed as RPU. With few
interior points, people tended to produce the same or
similar paths. With more interior points, the paths they
produced tended to diverge. However, a problem arises
in using this measure in the present case to distinguish
between the convex hull and the crossing avoidance hy-
potheses, for the following reason. It is a mathematical
fact that avoiding crossings means that boundary points
are connected in sequential order of adjacency. Thus, a
successful crossing avoidance strategy will resultin tours
with virtually no uncertainty about the order of connec-
tion of boundary points, and therefore, RPU will tend to
vary only with the number of interior points. In other
words, the two hypotheses predict the same outcome.
Note, however, that they differ in terms of the potential
demands on processing capacity. In the case of the con-
vex hull hypothesis, boundary points impose no or little
processing load. In the case of a strict crossing avoidance
hypothesis, there is no reason why boundary points should
impose lower processing demands than do interior points,
unless additional assumptions are introduced.

An alternative measure to RPU is the length of path
produced, expressed as PAO. From the perspective of the
convex hull hypothesis, the decision-making load in
E-TSPs is concentrated on connecting the interior points.
The more interior points there are, the more optionshave
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to be considered and, other factors being equal, the more
frequently nonoptimal decisions will occur. Consequently,
PAO should increase as the number of interior points in-
creases. From the perspective of crossing avoidance, un-
less other mechanisms are introduced, the number of deci-
sions will increase as the total number of nodes increases.
From this perspective, the more nodes there are, the
more choices there are to be considered in a limited time
period, and the more nonoptimal choices will occur. Con-
sequently, PAO should increase as the total number of
nodes increases, not the number of interior nodes.

Method

Subjects. Twenty-seven graduate and undergraduate students
from Lancaster University were tested in an individual setting.

Materials. The materials were four E-TSPs with 40 points (two
with 5 interior points and two with 15) and four E-TSPs with 20
points (two each with 5 and 15 interior points). Each problem was
laser printed on a separate A4 sheet. The 40-point problems were
created in the following way. The 4 points on the hull (4 = either
25 or 35) were generated by randomly sampling an angle from 0°
to 359°. If any angle was within 360/2h degrees of one previously
selected, it was resampled. Angles were converted to radians and
were plotted at 80 units from the center of the sheet. For the m in-
terior points, the same procedure was followed, except that points
were plotted at a random distance that was from 0 to 60 units from
the center. (This ensured that no interior points were close to the
hull, since points close to the hull may effectively act like hull
points.)

Each of the four 40-point problems was used to create an equiv-
alent 20-point problem by randomly deleting 20 points from the
hull (with the constraint that no point that was previously an interior
point became a boundary point). The result was that each 20- and
40-point pair had an identical arrangement of interior points. The
four 40-point problems were combined into booklets, as were the
20-point problems. The order of problems within booklets was
counterbalanced.

Procedure. The subjects were randomly assigned to either a
40-point or a 20-point condition. The nature of the task was briefly
introduced, and the subjects were instructed to start from any point
and to connect the points in the shortest path, so that each point was
visited once and once only, before returning to the start. The subjects
were asked to circle their starting point and indicate the direction of
travel of the path. A time limit of 2 min per problem was imposed.

Results and Discussion

Initially, there were 14 subjects in the 20-point condi-
tion and 13 in the 40-point condition. Subsequently, 2
were excluded from the former and 4 from the latter con-
dition for producing incomplete or ambiguous paths. Six
of the remaining 12 subjects in the 20-point condition
and 5 of the 9 in the 40-point condition were male.

Path lengths. For each instance, the subjects’ path
lengths were calculated and transformed into a PAO. (In
3 of the 40 node instances, we were unable to find a guar-
anteed shortest path. In these cases, we used the lower
bound—the shortest length possible for the optimal path.)
Within each of the total points conditions, there were two
examples of the interior points conditions. For each sub-
ject, the average score across these two examples was
computed, yielding a single score for each subject on the
5 interior point problems and on the 15 interior point
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problems. The resulting mean PAOs for the 20-point
problems were 5.82 (SD = 4.08) and 12.20 (SD = 8.67)
for the 5 and 15 interior point problems, respectively.
The corresponding results for the 40-point problems
were 5.36 (SD = 3.37) and 8.18 (SD = 10.09).

The results were analyzed using an analysis of variance,
with total points as a between-subjects factor and number
of interior points as a within-subjects factor. There was a
significant main effect of interior points [F(1,19) = 6.73,
MS, = 0.003, p < .02]. The direction of the findings indi-
cated that the quality of the subjects’ tours decreased sig-
nificantly as the number of interior points increased. The
main effect of total points was not significant [F(1,19) =
0.75, MS, = 0.007], nor was the interaction effect signif-
icant [F(1,19) = 1.01,MS_ = 0.003].

The results supported the prediction from the convex
hull hypothesis, that the number of interior points, and
not the total number of points, is a main source of prob-
lem difficulty. On the other hand, it is not clear how the
crossing avoidance hypothesis could explain the results
without introducing additional assumptions.

Indentations. A descriptive characteristic of tours is
the number of indentations they exhibit. (An indentation
occurs whenever interior points are connected between ad-
jacentboundary points.) Previously, we reported evidence
that people’s tours tend to have fewer indentations than
would be expected by chance (MacGregor & Ormerod,
1996). We examined the present results for similar ten-
dencies. Of the 84 subject tours, 49 (58%) had only one
indentation,the minimum possible. In these cases, the path
passed through each adjacentboundary point, except for
the “gap” that accommodated the interior points. For the
four stimuli with 5 interior points, the expected number
of indentations by chance was 3. In contrast, the mean
number for the subjects’ tours ranged from 1.08 to 1.83.
For all four stimuli with 5 interior points, the mean num-
ber of indentations was significantly lower than would
be expected by chance (all ps < .01, by one-sample
t tests). Similar results obtained for the four instances
with 15 interior points. For these, the expected number
of indentations by chance was 8, whereas the observed
means were in all cases significantly lower, ranging from
1.33 to 3.00.

Van Rooij et al. (2003) have argued that because the
optimal tours of MacGregor and Ormerod (1996) had
few indentations, the finding that subjects’ tours have few
indentations “follows directly from the close to optimal
performance by participants” (p. 217). However, although
this would have been true for optimal performance, there
is no reason why it should also be true for “close to op-
timal” tours, since there is no necessity that close-to-
optimal tours will have the same number of indentations
as the optimal. Nevertheless, here we tested whether the
mean number of indentations of the subjects’ tours was
lower than the mean for the optimal tours. In doing so,
we excluded tours in which the optimal had only one in-
dentation. We also excluded subject tours that were op-
timal, since, by necessity, those would have the same
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number of indentations as the optimal. For the four opti-
mal tours with more than one indentation, the mean num-
ber of indentations was 2.5. The corresponding mean for
the subjects’ tours, 2.19, was significantly lower, by a one-
sample t test [t(42) = —2.46,p < .02]. Thus, the observed
number of indentations not only was significantly lower
than those of chance tours, but also was significantly
lower than those of optimal tours. The result suggests
that the low number of indentations is not an artifact, as
was proposed by van Rooij et al., but arises from the pro-
cess by which tours are generated.

A possible criticism of the present experiment con-
cerns the artificial nature of the stimuli it employed. In
particular, the method of generating stimuli and the large
number of boundary points gave many of the present
stimuli an overall circular appearance. This may have in-
fluenced performance, a possibility previously voiced by
Lee and Vickers (2000). If the circular appearance of the
outlines influenced performances in this case, it would
be reasonable to expect that responses would vary sys-
tematically with an increasing degree of circularity. This
would be determined by the number of points on the
boundary. In these terms, the most circular stimuli were
those with 35 boundary points (40 total, 5 interior), fol-
lowed by 25 (40 points, 15 interior) and then 15 (20 total,
5 interior), with the least circular having 5 boundary
points (20 total, 15 interior). If perceived circularity dri-
ves performance, the quality of the tours should decrease
in this order. It did not. In terms of the analysis reported
earlier, this would predict a main effect of total points,
with the 40-point problems being superior to the 20-point
problems, as well as a main effect of interior points. The
complete absence of any main effect of total points ar-
gues against such an interpretation.

EXPERIMENT 2

The first experiment contrasted conditions in which
the convex hull hypothesis made a strong prediction
about the effect of interior points and the crossing avoid-
ance hypothesis made no clear prediction. In the second
experiment, we sought to create conditions in which the
two hypotheses made contrasting predictions. To do so,
the experiment used E-TSPs with a single interior point.
Two such TSPs were used in the experiment, one in which
the single point was positioned equidistant from each of
the boundary points and one in which it was slightly off-
set by 13 mm, approximately 10% of the diameter of the
figure. The instances are shown in Figure 1, together
with the optimal paths.

Predictions

Strict crossing avoidance. A strict interpretation of
the crossing avoidance hypothesisis thatitis the necessary
and sufficient explanation of performance on E-TSPs.
Each of the instances shown in Figure 1 has nine solu-
tions that avoid crossings. If human solutions are guided
solely by a strategy of avoiding crossings, each of the
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Figure 1. The Euclidean traveling salesperson problems used
for the offset point (upper panel) and the center point (lower
panel) conditionsin Experiment 2.

nine possible solutions should be generated with ap-
proximately equal frequency.

Modified crossing avoidance. A less extreme inter-
pretation of the crossing avoidance position would be to
assume that when given more than one option that avoids
crossings, people will select what appears to be the short-
est. One simple way to implement this would be to com-
bine crossing avoidance with a nearest neighbor heuristic.
This could be done, for example, by assuming, that a
starting point is selected at random from the 10 points, a
connection is made from this to the nearest point that
does not cause a crossing, and this is repeated until the
path closes. Applying this heuristic to the offset interior
point instance results in the following set of outcomes.
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Of the nine noncrossing paths, one (the optimal) results
from 3 of the 10 starting points. It, therefore, has a fre-
quency of 30%. Of the remaining possible paths, two
occur at a frequency of 20%, three at a frequency of
10%, and three at 0%. A modified prediction is, there-
fore, that the observed frequencies of each possible so-
lution will be proportional to these theoretical frequen-
cies. (We note that a heuristic similar to this has been
proposed in Vickers, Lee, Dry, & Hughes, 2003.)

For the center interior point instance, the modified
version of the crossing avoidance predicts something
closer to an equiprobable distribution. Because every
point on the boundary is nearer to an adjacent boundary
pointthan itis to the center point, any boundary start will
lead the path around the hull until there is no option re-
maining but to connect to the interior point. When the
center is selected as the start point, the connection should
be made with equal likelihood to any of the boundary
points. Thereafter, the path will move in the direction of
the closest point and will continue in that direction. Over-
all, these principles result in three solutions that have a
predicted frequency of 22.2%, three with a frequency of
11.1%, and three with a frequency of 0%.

Convex hull. From the perspective of the convex hull
hypothesis, an E-TSP with one interior point reduces to
a decision about which two adjacent points on the hull to
connect to the interior point. The criterion for this deci-
sion most consistent with human performance is that of
cheapest insertion (MacGregor et al., 2000). In the pres-
ent context, cheapest insertion means connecting the in-
terior point to the two boundary points that will add least
to the current path length. The resulting increment in
path length is given by the sum of the distances of the in-
terior pointto each of the boundary points minus the dis-
tance between the two boundary points. A strict applica-
tion of this rule leads to the prediction that all solutions
will conform to the paths illustratedin Figure 1, which are
the optimal solutions. However, this requires that people
operate with perfect information about the distances be-
tween points. A more realistic prediction, recognizing
that there will be some error associated with distance
judgments, is that the frequency of selection of possible
solution paths will be a decreasing monotonic function
of the incremental distances associated with them.

Method

Subjects. The subjects were 117 undergraduate students at Lan-
caster University.

Materials. The materials consisted of the E-TSPs shown in Fig-
ure 1, centered on A4 paper and laser printed in black on white. The
points were approximately 2 mm in diameter, and the diameter of
the roughly circular array of points forming the E-TSPs was about
127 mm.

Procedure. Testing was conducted in a group setting. The sub-
jects were randomly assigned to the two conditions, resulting in 57
participants in the center point condition and 60 in the offset con-
dition. The problem was briefly introduced, and they were in-
structed to start from any point and to connect the points in the
shortest path, so that each point was visited once and once only, be-
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fore returning to the start. No time limit was imposed, but in prac-
tice, all the subjects completed the task within 2 min.

Results and Discussion

Nine subjects failed to follow the problem instructions
and were excluded from further analysis, 2 from the cen-
ter condition and 7 from the offset condition. Of the re-
maining 108, 3 subjects produced solutions with cross-
ings (2.9%). Since our interest here was in the relative
frequency of the nine possible noncrossing solutions,
these three solution paths were also excluded from sub-
sequent analyses. This left 105 paths for analysis, 53 for
the center point TSP and 52 for the offset. The results of
primary interest were the frequencies of the different
noncrossing solution paths. These are shown in Table 2,
together with information relating to the predictions.

The left half of the table provides the results for the
offset condition;the right half provides the corresponding
results for the center condition. Within each half of the
table, the first column shows the nine possible noncrossing
paths, expressed as the adjacentboundary points between
which the interior point is inserted. The second column
shows the observed frequency of occurrence of each
path. The third column gives the increment in path length
associated with that choice, and the fourth, gives the rel-
ative frequency of that path predicted by the modified
crossing avoidance heuristic.

Since, for both conditions, the nine paths in the table
are those that avoid crossings, a strict interpretation of
the crossing avoidance hypothesis would predict that all
nine should be selected with equal frequency. The results
did not support this prediction for either condition. For
the offset condition, the hypothesis of equidistribution
was rejected beyond the .001 level of significance [ }2(8,
N = 52) = 83.83]. A similar result was obtained for the
center condition [¥%(8, N = 53) = 118.56, p < .001].

The modified version of the crossing avoidance hy-
pothesis predicted that the frequency of path selection
for the offset condition should be directly proportional to
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the values shown in the fourth column of Table 2. The
correlation of these values with the observed frequencies
shown in column 2 of the table was r = .47. Although it
was in the predicted direction, the correlation failed to
reach significance. A similar result was obtained for the
center condition, where r = .41. To increase statistical
power, the results were combined across both conditions,
resulting in » = .43, which approached statistical signif-
icance (p = .07).

The convex hull hypothesis predicted that the observed
frequency of selection of paths would be a decreasing
monotonic function of the associated incremental path
lengths, shown in Table 2. This prediction was strongly
supported for both the offset and the center point condi-
tions. For the offset condition, a negative exponential
function of incremental path length accounted for 92%
of the variance in the observed frequency of path selec-
tion [F(2,6) = 66.83, p < .001]. For the center condi-
tion, incremental path length accounted for 93% of the
variance in path selection [F(2,6) = 74.26, p < .001].

The experiment provided strong evidence against a
strict crossing avoidance explanation of performance on
E-TSPs. Following a strategy that simply avoids cross-
ings, even if a feasible process for such a strategy could
be implemented, does not appear to be sufficient to ac-
count for the wide variation in the frequency with which
noncrossing paths were generated. Supplementing cross-
ing avoidance with a nearest neighbor decision rule im-
proved the fit somewhat. In this case, the correlation was
positive between the predicted and the observed fre-
quencies of solution paths, although still not significant.
By combining the data across the experimental condi-
tions, the result approached significance. However, it ac-
counted for less than 20% of the variance in observed
frequencies, as compared with over 90% for the convex
hull approach. It is conceivable that by adding additional
mechanisms, a suitably elaborated form of the modified
version might do better. However, at this point, it appears
that to the extent that crossing avoidance guides human

Table 2
Observed Frequencies of the Nine Noncrossing Solutions for the Offset and Central
Conditions of Experiment 2, Together With the Associated Incremental Path Lengths and
Predicted Relative Frequencies Under a Modified Crossing Avoidance (C-A) Hypothesis

Offset Interior Point

Central Interior Point

Increment Modified Increment Modified
Observed in Path C-A Observed in Path C-A

Path  Frequency Length Frequency  Path  Frequency Length Frequency
3-4 22 57.83 3 9-1 29 64.51 222
2-3 14 60.00 .0 1-2 11 76.03 111
9-1 8 78.70 2 6-7 4 97.39 .000
1-2 7 70.19 .1 5-6 3 79.99 222
4-5 1 83.79 .0 2-3 2 81.10 .000
5-6 0 82.66 2 8-9 2 90.01 111
6-7 0 114.01 .0 3-4 1 80.04 222
7-8 0 117.34 1 4-5 1 96.48 .000
8-9 0 114.79 .1 7-8 0 93.95 111
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performance, it must do so in consort with other, un-
known mechanisms. On the other hand, the results ob-
served here are consistent with the convex hull approach.

EXPERIMENT 3

In the first two experiments, most of the paths gener-
ated by the subjects connected adjacent boundary points
in order and exhibited no crossed lines. This is consistent
with previous findings. In the next experiment, we tried
to distinguish between the convex hull and the crossing
avoidance hypotheses by inducing paths that contra-
vened both principles. The convex hull hypothesis pro-
poses that boundary formation is fundamental to human
E-TSP solution. However, we recognize that it is not the
only Gestalt factor involved. Other figural effects have
been observed, including grouping by proximity and
regularity (MacGregor & Ormerod, 1996; MacGregor
et al., 1999). This raises the possibility that the relative
salience of the convex hull could be varied by changes in
other figural factors. If boundary perception s critical to
E-TSP performance, as the convex hull hypothesis pro-
poses, a manipulation of boundary salience should in-
fluence E-TSP performance. Similarly, if crossing avoid-
ance is subject to figural effects, it may be possible to
induce crossings by manipulating other factors. To test
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Figure 2. The Euclidean traveling salesperson problems used
for the low-salience (upper panel) and the high-salience (lower
panel) conditionsin Experiment 3. Points annotated A, B, C, and
D are referred to in the text.
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this, we used the stimuli shown in Figure 2, modified
from an example suggested previously (MacGregor &
Ormerod, 1996, Figure 5). The annotation of some points
as shown in the lower figure was not present in the stim-
uli given to the subjects.

In both of the instances in Figure 2, the principle of
good continuation invites a solution path that will ulti-
mately result in a crossing. One question is whether peo-
ple apply enough lookahead to foresee this and take the
steps necessary to avoid it. There is also a difference be-
tween the two instances. Although there are an equal
number of boundary points in each case, the convex hull
is somewhat more salient in the lower instance, because
of the relative positioning of the boundary points. The
expectancy is, therefore, that although there are likely to
be more crossings in both instances than is usual in
E-TSPs, this tendency will be greater in the upper instance,
where the effects of the convex hull will be weaker. On
the other hand, neither the strict nor the modified crossing
avoidance hypothesis appears to have any basis for pre-
dicting a difference between the instances. Furthermore,
if crossing avoidance “follows directly from a very basic
and visually-transparent property of the Euclidean plane;
that is, the shortest path between two points is a straight
line” (van Rooij et al., 2003, p. 218), there is perhaps no
reason to expect the incidence of crossings to be any
greater than that in previous research. If so, a large ma-
jority of tours should avoid crossings in both conditions.

Method

Subjects. The subjects were the same as those in Experiment 2.

Materials. The materials consisted of the E-TSPs shown in Fig-
ure 2, centered on A4 paper. The points were approximately 2 mm
in diameter, and the horizontal extent of the problem from the left-
most to the rightmost point was approximately 127 mm.

Procedure. The procedure was conducted immediately follow-
ing the previous experiment, with the subjects first completing the
instance for Experiment 2, followed by the present instance. The
subjects were randomly assigned to either the low-salience or the
high-salience condition (shown by the upper and lower panels of
Figure 2, respectively), resulting in 58 in the former condition and
59 in the latter. This was done in such a way as to counterbalance
any effects of Experiment 2. That is, 30 of the subjects in the low-
salience condition had been in the offset condition for Experi-
ment 2, whereas 28 had been in the center condition. Similarly, in
the high-salience condition, 30 had been in the offset condition and
28 in the center condition. The instructions were identical to those
in Experiment 2, with the exception that the subjects were in-
structed to start from the unfilled point and to connect the points in
the shortest path, so that each point was visited once and once only,
before returning to the start. No time limit was imposed, but in
practice, problems were completed within 2 min.

Results and Discussion

Sixteen subjects failed to follow the problem instruc-
tions and were excluded from further analysis, leaving
50 in the low-salience and 51 in the high-salience condi-
tions. The results of primary interest were the proportion
of solutionsthat followed the convex hull or that resulted
in crossings in the two conditions. For the low-salience
condition, the number following the hull was 26 (52%),
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and the number of crossings was 24 (48 %). For the high-
salience condition, the corresponding results were 38
(75%) and 13 (25%). The difference in the proportion of
crossings between the two conditions was highly signif-
icant in the predicted direction [ y2(1, N = 101) = 15.43,
p <.001].

Overall, the incidence of crossings was 37 (37%),
which was substantially greater than any observed pre-
viously. Van Roojj et al. (2003) reported an overall inci-
dence of 6%. By basing the expected frequency on this
value, the frequency observed here was significantly
greater than would be expected on the basis of previous
results [y2(1, N = 101) = 153.87,p < .001].

The experiment provided further evidence consistent
with the convex hull hypothesis, by demonstrating that the
incidence of crossings induced by the manipulation varied
inversely with the salience of a figure’s boundary. Thus,
although the principle of good continuation induced
crossings in both conditions, it did so to a lesser extent in
the condition in which the boundary was more salient.
Nevertheless, the fact that good continuation influenced
tours provided additional evidence of the potential impor-
tance of perceptual factors in the solution process.

We should mention two potential reservations about
the results. The first concerns the procedure, which in-
volved the same subjects as those in Experiment 2. How-
ever, it is not unusual for people to complete more than
one E-TSP during an experimental session, and in fact,
it appears to be the norm. Previously, we have found no
effects of order (MacGregor & Ormerod, 1996). We in-
tentionally used the present order of presentation to en-
sure that most of the subjects would have the experience
of producing paths without crossings before they partic-
ipated in the procedure in which we attempted to induce
crossings. Thus, if order were to have any effect in the
present case, it would be more likely to go against the
experimental hypothesis than to support it.

A second potential reservation concerns a possible al-
ternative explanation for the observed differences be-
tween the two conditions. It might be argued that in the
high-salience condition, the proximity of the boundary
point, D, to the curve implied by good continuation at
Points A, B, and C weakened the effects of good contin-
uation, thereby creating the difference (see Figure 2).
However, it is important to note that Points A and B and
Points B and C are much closer to each other than they
are to Point D. Thus, in both experimental conditions, the
principles of good continuation and proximity favored
following the curve through A, B, and C, rather than fol-
lowing the boundary through D.

GENERAL DISCUSSION

In previous studies, we have developed a convex hull
hypothesis to explain human performance on the E-TSP,
a classic problem in combinatorial optimization (Mac-
Gregor & Ormerod, 1996; MacGregor et al., 1999, 2000;
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Ormerod & Chronicle, 1999). An alternative explana-
tion, based on crossing avoidance, has recently been pro-
posed by van Rooij et al. (2003). The crossing avoidance
proposal is attractive, both for its simplicity and for its
intuitive appeal. We therefore examined the hypothesis
closely from the perspectives of its capacity to explain
existing data, its theoretical adequacy, and how well it
compared with the convex hull hypothesis in three new
experiments. Throughout, we restricted examinationto a
parsimonious form of crossing avoidance, unsupported
by additional assumptions. In doing so, we do not imply
that this is what van Rooij et al. had or have in mind as a
process model.

An important finding to be explained is that adults can
readily produce good E-TSP solutions. Because this as-
pect of performance was not addressed by van Rooij et al.
(2003), we compared a crossing avoidance heuristic with
previous performance data. The resulting solutions com-
pared poorly with those of experimental subjects.

A second limitation appears when considering how
crossing avoidance might operate as a process. Statisti-
cally, solutions without crossings are likely to be rela-
tively rare, as compared with those with crossings, and
may be difficult to discover through an unguided search
process. What seems to be required is a heuristic that
will avoid or, at least, limit crossings without an exten-
sive search. The convex hull hypothesis provides such a
heuristic.

In addition, the results of three new experiments lent
no support to the crossing avoidance hypothesis as a pro-
cess account of performance on E-TSPs. The first ex-
periment tested a prediction from the convex hull hy-
pothesis, that performance is a function of the number
of interior points, not total points. The results showed a
significant main effect of interior points. Since the pure
crossing avoidance view makes no distinction between
boundary and interior points in terms of processing, it is
difficult to see how it could explain the finding. On the
other hand, since difficulty of avoiding crossings pre-
sumably increases with increases in the number of cross-
ings to be avoided, it might be expected that difficulty
would increase with increases in the total number of
points. There were no effects of total number of points.

In the second experiment, two E-TSPs were used, each
with nine possible solutions without crossings. If cross-
ing avoidance were the only strategy, each of the nine so-
lutions should occur with equal frequency. For both in-
stances, the observed distributions differed significantly
from this expectation.

The third experiment manipulated figural factors in two
E-TSPs in an attempt to induce line crossings. This was
successful, with crossings appearing in 37% of the solu-
tions, as compared with a base rate of 6% from previous
studies. The frequency of crossings was significantly lower
for the instance in which the convex hull was more salient.

Nevertheless, although the results of this and the other
experiments reported here are difficult to reconcile with
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an account of human performance on E-TSPs that relies
on pure crossing avoidance, it seems very reasonable
that people will, at the level of local decisions, make
choices in which crossings are avoided. This is sup-
ported by some further analysis of the data from Exper-
iment 1 of those tours that exhibited crossings. Of the
total of 84 tours, 13 exhibited crossed arcs (15%). This
is within the range of 2%—19% reported for previous
studies (van Rooij et al., 2003). Of these 13 paths with
crossings, 10 (77%) connected boundary points in order
of adjacency, consistent with the convex hull hypothesis.
This is within the wide range, previously reported, of
0%—-83%. Of interest is the way that crossings came
about. For these 10 tours, crossed arcs came about in one
of two ways. In half of the cases, the subjects started on
an interior point and connected all of the interior points
before reaching a boundary point. On reaching the bound-
ary, they immediately chose a direction of travel that de-
termined that a crossing must eventually occur. That is,
on reaching the boundary, they turned the wrong way.
From this point, they followed the boundary points in
order of adjacency. With all boundary points connected,
the last step closed the path, at which point the crossing
took place. In the remaining half of these 10 cases, the
subjects worked in the opposite way. That is, the path
began with a boundary point and connected all boundary
points in order of adjacency, before moving to the inte-
rior. Then, in the course of connecting the interior points,
a decision was taken that made a crossing inevitable. Fi-
nally, the three cases of crossings in which boundary
points were not connected in order of adjacency all fol-
lowed the same pattern, in which the path proceeded
from a boundary point through a series of interior points,
to emerge at a boundary point on the opposite side of the
array. This resulted in the connection of nonadjacent
boundary points, making an eventual crossing inevitable.

Although all paths with crossings are obviously in-
consistent with the crossing avoidance hypothesis, the
results nevertheless provided some interesting evidence
that could be interpreted as supportive. Specifically, in
all 13 cases of crossings, the majority of the subjects de-
ferred the crossing for as long as possible. That is, in 11
of the 13 instances with crossings, the crossing occurred
on the final line drawn, even though it was determined at
a much earlier point. For the 20 node problems, for ex-
ample, crossings became inevitable on line 8.3, on aver-
age, butdid not occur until line 19.6, on average. For the
three crossings that occurred on 40-point instances, the
equivalentvalues were 25 and 40, on average. For the first
5 cases described above, this apparent deferral of cross-
ings could have been a result of a strategy of connecting
boundary pointsin order. However, in the remaining cases,
it may be evidence for a local heuristic in which cross-
ings were avoided until no degrees of freedom remained.
The result is consistent with the interpretation that, in ad-
dition to following the convex hull, people have avail-
able a heuristic for avoiding crossings when connecting
interior points.
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It seems apparent from the foregoing that considerable
research remains to be done in specifying the range of
heuristics, and the strategic implementation of those
heuristics, that can account for human performance in all
instances of E-TSPs. Nonetheless, itis our view, supported
by converging experimental evidence, that the convex
hull heuristic has considerable explanatory power. The
utility of this heuristic may be explainable by a connec-
tion between the visual properties of E-TSPs and the ca-
pability of the human visual system to discriminate the
boundaries of objects from their backgrounds. In this re-
spect, detecting the shortest closed path may be consis-
tent with the computational approach to vision, which
takes the perspective that reconstructing environmental
structure from visual input involves generating approxi-
mately optimal solutions to a series of computational
problems (Marr, 1982).

The E-TSP represents only one example of a class of op-
timization problems that is beginning to attract the interest
of psychologists. Brusco (2001) studied performance on
the p-median problem, an NP-complete distribution prob-
lem, and found that people were capable of generating op-
timal and near-optimal solutions. Vickers, Mayo, Heitman,
Lee, and Hughes (2004) compared performance on three
different computationallyintractable or difficult optimiza-
tion tasks: E-TSP, minimal spanning tree, and generalized
Steiner tree problems. For all three types of problems, av-
erage performance was close to optimal. In addition, per-
formance scores across problem type were correlated and
were correlated with scores on Raven’s advanced pro-
gressive matrices. They proposed that there is a close re-
lationship between intelligence and optimization perfor-
mance. It has also been proposed that performance on
optimization tasks may be useful in identifying impaired
cognitive functioning in the context of neuropsycholog-
ical testing (Basso et al., 2001; Vickers et al., 2001).

Whether or not it demands an evolutionary perspec-
tive, the capacity of people to quickly find optimal or
very good solutions to complex problems is an issue of
wide interest in current cognitive psychology. Cognitive
responses have been shown to approximate optimal de-
cisions in a wide variety of contexts, includingreasoning
(Oaksford & Chater, 1994), classification (Nosofsky,
1998), and memory (Anderson & Schooler, 1991). Thanks
to Simon (1947), cognitive psychology has long recog-
nized that human behavior occurs under conditions of
bounded rationality and that we do not have the time, the
information, or the cognitive processing capacity to de-
rive proven optimal answers. Nevertheless, by adopting
heuristics that merely “satisfice,” remarkably accurate
decisions may be made (Gigerenzer & Goldstein, 1996).
The latter authors asked, “What are these simple, intel-
ligent algorithms capable of making near-optimal infer-
ences?” (p. 651). In the present article, we have attempted
to answer this question in a specific context. We suggest
that, more generally, optimization problem solving may
provide a useful set of tasks with which to further ex-
plore the question.
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The rational approach to cognition holds that the cog-
nitive system may be usefully viewed as adapted to find
optimal (or close-to-optimal) solutions to problems that
the environment presents (Anderson, 1990). From this
perspective, it has been argued that tasks that have been
taken to demonstrate the irrationality, or nonoptimality,
of behavior may do so because they engage cognitive
processes that are adapted to deal with different real-
world problems (Oaksford & Chater, 1998). By the same
token, one might argue that when tasks do elicit optimal
or near-optimal responses, it is because they engage pro-
cesses adapted to deal with similar real-world problems.
This is where the potential usefulness of optimization
problems as a research tool may lie. First, they provide a
gold standard of optimality against which to measure
human performance. Second, when human behavior ap-
proximates this standard, these artificial tasks may pro-
vide indicators about the structure of real environmental
problems to which the human brain has adapted. Third,
they offer a flexible set of stimuli for further laboratory
study of the cognitive processes involved.
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