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Research on human category learning has a history that
extends back at least to Hull’s (1920) study of learning to
categorize Chinese symbols and his conclusions in favor
of an associative learning proposal. It was an important
domain early in the cognitive revolution, when theorists
argued for various hypothesis-testingtheories (e.g., Bower
& Trabasso, 1963; Levine, 1975). The hypothesis-testing
theories were based on research with stimuli that had a
very simple, often one-dimensional categorical structure.
The 1970s saw a renewed interest in more complex, fuzzy
categories and in proposals for prototype theories (Reed,
1972; Rosch, 1975) and exemplar theories (e.g., Medin &
Schaffer, 1978). The rise of connectionistmodels resulted
in the proposal of associative theories (e.g., Gluck &
Bower, 1988) not that different from the originalHull pro-
posal. Whereas the original research focused on accuracy
data, there has been a new emphasis on latencydata, to help
choose among theories (e.g., Lamberts, 1998; Nosofsky
& Palmeri, 1997a). Recently, neuroimagingand other cog-
nitive neurosciencedata have been recruited in order to try
to decide among alternative theories (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998;E. E. Smith, Patalano,&
Jonides, 1998). There has been an impressive growth in the
characterizations of the phenomena in category learning.
However, the field does not seem to be coming any closer
to a consensus as to what the mechanism of category
learning is.

This paper is based on the assumption that this contest
between alternative theories has been cast too narrowly, in
two different senses. First, this contest has been too narrow

in that categorization learning may not be the outcome of
a singlemechanism.There is a new, emergingview that cat-
egorizationbehaviormight be some mix of different meth-
ods of categorization (e.g., Ashby et al., 1998;Erickson &
Kruschke, 1998; E. E. Smith et al., 1998; J. D. Smith,Mur-
ray, & Minda, 1997). Erickson and Kruschke (1998) pro-
posed that the outputs of an exemplar and a rule module
are mixed to produce a final result. Ashby et al. and J. D.
Smith et al. proposed an alternative possibility, which is
that, on a trial-by-trial basis, participantschoose to use ei-
ther an implicit system or a verbal rule system. Both the
Erickson and Kruschke (1998) and the Ashby et al. mod-
els are basically connectionist systems.

The second way this contest has been narrow is that it
has tended to focus only on categorizationdata. There is lit-
tle reason to believe that categorization learning is an iso-
lated cognitiveprocess. The same mechanisms that are in-
volvedin categorizationshouldbe involvedin othercognitive
processes, and the same mechanisms that are responsible
for category learning should be involved in learning other
knowledge. Most researchers in the field seem to accept
this, at least implicitly. For instance,Nosofsky and Palmeri
(1997b) justify aspects of their model with results on per-
ceptual identification. The cognitive neuroscience litera-
ture that Ashby et al. (1998) cite often involvesnoncatego-
rization tasks. Although there may be informal agreement
on this, up to now there has been no effort to formally in-
tegrate categorization into a general set of mechanisms
that apply in mul200tiple domains. Constraining models
of categorizationto be more generally consistentwith cog-
nition eliminates many degrees of freedom in the formu-
lation of the theories. For instance, the processes of mem-
ory failure and the timing of cognitive steps should be the
same in a model of cognition as in models of other cogni-
tive tasks. Moreover, if we are going to mix different meth-
ods of categorizationin a hybrid model and we do not want
our degrees of freedom to multiply, the parameters that

629 Copyright 2001 Psychonomic Society, Inc.

This research was supported by Grant N00014-96-1-0491 from the
Office of Naval Research. We thank Christian Lebiere, Robert Nosofsky,
Thomas Palmeri, Alex Petrov, and Lynne Reder for their comments on
this paper. Correspondence concerning this article should be addressed
to J. R. Anderson, Department of Psychology, BH345D, Carnegie Mel-
lon University, Pittsburgh, PA 15213-3890 (e-mail: ja@cmu.edu).

A hybrid model of categorization

JOHN R. ANDERSON and JONATHAN BETZ
Carnegie Mellon University, Pittsburgh, Pennsylvania

Category learning is often modeled as either an exemplar-based or a rule-based process. This paper
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govern one method should be the same as the parameters
that govern another method.

This paper will present a model of categorization that
implements two strategies for categorization in the same
system,ACT-R (Anderson& Lebiere,1998).ACT-R is a cog-
nitive architecturewhose basic mechanisms and processes
have been determined by the development of models in
such domains as verbal learning, strategy choice, cogni-
tive arithmetic, analogy, and scientific reasoning.However,
until this paper, it has not been appliedto the domainof cat-
egorization learning.Besides constrainingthe model of cat-
egorization to operate in a way consistent with models of
other phenomena, ACT-R provides a theory of how partic-
ipants choose among multiple strategies for categorization.

The model in this paper will combine a rule-based sub-
model and an exemplar submodel. Our submodels will be
based on two relatively successful models proposedby the
same authors—Nosofsky, Palmeri, and McKinley’s (1994)
rule-plus-exception (RULEX) model and Nosofsky and
Palmeri’s (1997b) exemplar-based random walk (EBRW)
model. There were two motivations for trying to use ex-
isting models, rather than creating models from scratch.
One is that it reduces the possibility that the success of this
effort could be produced by clever tricks we put into our
made-up models. The other is that it will avoid unneces-
sarily complicating the field with more models that differ
from each other in ways whose importance is unclear.
Rather, by showing how these models can be implemented
in ACT-R, we will contribute to convergence in the field
by showing how the mechanisms in these models relate to
the mechanisms in ACT-R.

It is not by any means a foregone conclusion that we
will be able to implement either of these models in ACT-R,
and we regard it as a contribution to show that we can. As
we will argue in the conclusion, many architectures, in-
cludingpast versionsof ACT (e.g., Anderson, 1983),would
not be capable of this. Moreover, there are models of cat-
egorization that could not be implemented in ACT-R—
particularly, many of the connectionistmodels. To the ex-
tent that RULEX and EBRW are successful models,
implementing them in ACT-R extends credit to ACT-R by
showing that it is compatible with the data on categoriza-
tion. To the extent ACT-R has provided successful models
of other domains, it extends credit to thesemodels by show-
ing that they are generally compatible with what is known
about cognition.

This effort makes a second contribution that goes be-
yond showing a general compatibilitybetween ACT-R and
these categorizationmodels. This is that ACT-R has an ex-
planation for how people choose between two bases, such
as rules and exemplars, for categorizing stimuli. Accord-
ing to the ACT-R theory of choice (Lovett, 1998), partic-
ipants track how well each basis is working on the stimu-
lus set and select each method in rough proportion to its
past history of success (see also Reder, 1987, 1988). This
is a learningmechanism that ACT-R brings to the table that
has not been part of existing theories of categorization.

It is worth noting from the outset that this paper is side-
stepping the traditional contest of models. We will not be
claiming that there is some new datum that uniquely leads
us to prefer the hybrid ACT-R model over other models in
the arena. We will be content to show that it does as well
as other models. The search for the decisive data set has
brought a lot of enlightenment to category learning, but it
has not succeeded in identifying the correct model. We
think that it is an equally important contribution to show
that a model is more generally compatible with what is
known about human cognition.

The Exemplar-Based Random Walk Model
The EBRW model combines major propertiesof Nosof-

sky’s (1988) generalized context model of classification
(GCM) and Logan’s (1988) instance-based model of au-
tomaticity. According to the GCM, participants store the
individualexemplars of the categories as they study them.
Participants tend to classify a stimulus into the category of
the instances to which it is most similar. Logan’s model
describes how people learn to perform skilled actions.
Performance of skilled actions initially depends on using
some algorithm.Each time the action is successfully com-
pleted, an instance is stored in memory. Later, these stored
instances can be recalled and used to perform the task.
Skilled performance, then, is a race between executing the
algorithmfor the task and recalling prior instances. Expe-
rience with a skilled action leads to storage of many in-
stances, and eventually these instances are used more than
the initial algorithm. This model accounts for the power-
law decreases in reaction time observed with training.1

The EBRW model combines the GCM concept of cat-
egory learning as comparison with stored exemplars with
Logan’s (1988) concept of a race among stored instances.
Unlike Logan’s model, all stored instances race to be re-
trieved, instead of just those that are identical to the pre-
sented stimulus. The speed at which an exemplar is re-
called is proportional to its similarity to the presented
stimulus. The exemplar with the fastest retrieval time is
used to assign a category to the stimulus. In this way, the ex-
emplars that have been used more frequently and are more
similar to the presented stimulus are more likely to affect
its categorization decision.

After an exemplar is retrieved, an internal counter is
updated on the basis of the category of the retrieved exem-
plar. For example,considerthe situationof choosingbetween
two categories. The internal counter would begin at 0. Re-
trieved exemplars from one category would cause positive
increments, whereas exemplars from the other category
would cause negative increments. When the counter ex-
ceeds a thresholdabsolutevalue, the model categorizes the
stimulus into either the positive or the negative category.

The two factors that determine classification time are
the number of steps in the random walk and the speed of
each step. The EBRW model predicts that stimuli that are
very similar to instances in one category and very dissim-
ilar to instances in other categories should have rapid clas-
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sification times. Such stimuli would most often provoke
recalls from exemplars in only one category, so the ran-
dom walk would move consistently in one direction.Also,
stimuli that are similar to stored exemplars from different
categories should show slower response times, because
such stimuli would provoke recalls of exemplars in differ-
ent categories, and therefore, the random walk would vac-
illate. The EBRW model also predicts that increased ex-
perience with stimuli will decrease reaction time. As more
exemplars are stored in memory, the retrieval time that
wins the race in each step of the random walk will be
faster, so the total time for the random walk to complete
will also be faster.

The Rule-Plus-Exception Model
The RULEX model paints a very different picture of

categorization.This model searches through the space of
possible rules to classify stimuli. Rules are tested one by
one, until a rule is found that meets a performance crite-
rion. Exceptions to rules can be stored to account for stim-
uli that are incorrectly classified by the chosen rule.

Search begins with rules that classify stimuli according
to a singledimension—for example, that an item is in a cat-
egory if it is red. Initially, RULEX tries to find perfect rules
that can classify all stimuli without exceptions. A perfect
rule is discarded when feedback indicates that it has pro-
duced an incorrect category judgment. If a perfect rule
lasts throughan entire blockof trials, it is kept permanently,
and there is no need for further search. If all perfect rules
are eliminated, search continues with single-dimension,
imperfect rules that are not required to classify all the in-
stances. Each single-dimension imperfect rule is tested for
a number of trials, usually one block. If the rule satisfies
a lax criterion of accuracy over this test window, it is tested
according to a stricter criterion for some number of trials,
usually anotherblock of trials. If the rule passes this stricter
criterion of accuracy, it is kept permanently. At this point,
the system begins learning exceptions, to counter the mis-
takes of the imperfect rule. If the rule does not pass the
stricter criterion, it is discarded, and another rule is selected.
If no single-dimension imperfect rule satisfies the stricter
criterion, search continues with imperfect, conjunctive
rules. These rules are tested in a manner similar to single-
dimension imperfect rules. If no rule passes the stricter
criterion, only a set of exceptions are stored. However, it
never gets this far in the experiments that we will consider.

Exceptions are formed when a permanent rule makes a
misclassificationof a stimulus. A stored exception is an as-
sociation between an incomplete pattern and a category
label. For example, with four-dimension binary stimuli, if
the permanent rule is “The value 2 on Dimension 3 indi-
cates Category B” (denoted **2* Þ B), a possible excep-
tion would be *12* Þ A. In forming exceptions, any di-
mensions used in the permanent rule are used, and all the
remaining dimensions are sampled with a fixed probabil-
ity. If an exception leads to making an incorrect category
decision, it is eliminated.

When the model needs to make a categorydecisionabout
a presented stimulus, it first checks for any applicable ex-
ceptions. If there are multiple exceptionsthat apply, the ex-
ceptionthat specifiesvalues for themost dimensionsis used.
If no exceptions apply, a judgment is made according to
the current rule.

A primary predictionof the RULEX model concerns the
transfer pattern of responses made to novel stimuli. Accord-
ing to RULEX, through random choices, different partic-
ipants will come to different rules that lead to different
transfer patterns. However, some rules are much more
likely, given the way RULEX searches its rule space. The
transfer patterns that are due to these rules will occur most
frequently.

ACT-R

Before describing the ACT-R model for categorization,
we need to describe some features of the ACT-R architec-
ture. According to ACT-R, cognitionemerges from the in-
teraction of two types of knowledge—declarative knowl-
edge that encodes explicit facts that the system knows and
procedural knowledge that encodes rules for processing
declarativeknowledge. In ACT-R, informationprocessing
is under the control of a current goal. In response to that
goal, a production rule is chosen from procedural memory
for application.Typically, a productionrule will call for the
retrieval of some piece of information, called a chunk, from
declarative memory, which will result in a transformation
of the goal. Then, the cycle of production selection and
information retrieval will apply to this new goal state. Two
aspects of ACT-R that are important for present purposes
are the process by which production rules are selected to
apply to the goal and the process by which chunks are se-
lected to be retrieved.

Selection of Production Rules
Conflict resolution is the term used to refer to selection

among production rules. A good illustration of conflict
resolution occurs in Lebiere’s (1998) model of the devel-
opment of arithmetic knowledge,which bears a good num-
ber of similarities to Logan’s (1988) model of skill acqui-
sition. In Lebiere’s model (as in many models of cognitive
arithmetic—e.g., Ashcraft, 1995; Campbell, 1997; Reder
& Ritter, 1992; Siegler, 1988), when a child is faced with
the goal of adding two numbers, such as 4 and 3, there are
two strategies that can apply. In Lebiere’s model, these two
strategies are implemented as production rules. One rule
calls for a retrieval of the information:

IF the goal is to find a + b
and c can be retrieved as the sum of a and b

THEN the answer is c.

The other rule sets a subgoal to try back-up computation:

IF the goal is to find a + b
THEN set a subgoal to count b units past a,
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after which a series of productionswill compute the answer.
The first production rule has the advantage that it can pro-
duce the answer faster, because it does not call on a count-
ing subprocedure.However, the model may fail to retrieve
anything, and it will have to go on to the back-up compu-
tation. Also, the model may retrieve the wrong answer.
ACT-R’s selection among such production rules is deter-
mined by their expectedutility, which ACT-R calculates as
PG – C, where P is the expected probability that the goal
will succeed, G is the value of the goal, and C is the ex-
pected cost of the that rule. In this paper, we will use the
ACT-R defaults of 20 for G and of measuring C as the time
in seconds for the goal to be achieved.

These utilitiesare noisy, real-valuedquantitiesin ACT-R.
Because of noise, a normally lower valued utility will
sometimes become larger than a normally higher valued
utility. The production chosen on a particular trial will be
the production that, among those matching the goal, has
the highest utility on that trial. The probabilityof that hap-
peningwill be a functionof the mean utility, Ei , of that pro-
duction, the mean utilities of competing productions, and
the noise in utility. The formula describing this is

Probability of choosing i

(Conflict Resolution, Equation 1)

where the summation in the denominator is over the vari-
ous productions j that might apply. This is a “soft max”
rule, which tends to select the production with maximum
utility, but not always because the utilities are noisy and
can reverse on a particular trial. The parameter tE in the
above distribution is related to the standard deviation, sE,
of the noise by the formula tE = Ï6sE /p. This equation is
the same as the Boltzmann equation used in Boltzmann
machines (Ackley, Hinton, & Sejnowsky, 1985; Hinton &
Sejnowsky, 1986). In this Botlzmann machine context, tE
is called the temperature. Throughout the models in the
paper, our estimate of tE will be 2.2.

This process of selecting productionswill be key in our
ACT-R model for categorization. Production rules will
embody three competing ways of classifying a stimulus.
One is by implementing the EBRW strategy. The second
is by implementing the RULEX strategy. The third, which
will be the only one applicable at the beginning, is by
guessing.2 On any trial, ACT-R will choose to pursue one
of these strategies. With experience,one of these strategies
will tend to have the most success and, therefore, will be
chosen most often. The characteristics of various domains
may force ACT-R to configure itself to behave exclusively
according to one of the strategies. The system is designed
to have a high utility for using rules initially. This is be-
cause it takes some time to discover successful rules, and
so it needs to have this bias to make it persevere until a
successful rule can be found. This setting of the model, to

prefer rules, can be interpreted as reflecting a bias that cat-
egories are rule-based, and this corresponds to a naive
classical view of category structure (E. E. Smith, 1989).
The bias means ACT-R will transition from guessing to
rule-based classification if it can form rules. If it cannot
form rules or if they prove unsuccessful, it will have to re-
sort to exemplar-based classification.As we will also see,
sometimes even though it finds an adequate set of rules, it
may switch to exemplar-based classification after exten-
sive practice, because this proves faster.

Retrieval of Declarative Chunks
Declarative knowledge in ACT-R is represented in units

called chunks. In our model, the relevant chunks are ones
that encode exemplars and categorization rules. Thus,
ACT-R can have chunks encoding both the example “the
large red trianglewas in categoryA” and the rule “red objects
are in category A.” Retrieval of declarative chunks from
memory is probabilistic, like conflict resolution. This
probabilistic retrieval can be illustrated in the arithmetic
domain, where chunks will encode facts like 3 + 4 = 7.
When faced with the problem 3 + 4, the child will tend to
retrieve the correct 3 + 4 = 7 chunk, but other chunksmight
be retrieved. The child may fail to retrieve anything or
may retrieve similar chunks, like 3 + 5 = 8 or 3 * 4 = 12,
and produce the wrong answer. Or, as Siegler (1988) has
argued, the child may have once solved 3 + 4 with the an-
swer 6, and now the 3 + 4 = 6 fact is a weak chunk in the
database, which can intrude.

According to ACT-R, the selection among different
chunks is determined by their levels of activation. For our
purposes, two factors are relevant in determininga chunk’s
level of activation. One is the amount of past practice that
the chunk has had. ACT-R assumes that activation in-
creases as a logarithmicfunctionof amountof practice.Sec-
ond, activation will reflect the degree of match between
the chunk and the retrieval specifications. For example,
the chunk encoding 3 * 4 = 12 will mismatch a 3 + 4 re-
trieval probe with respect to the plus operator and so will
not be as active as the 3 + 4 = 7 chunk. In general, ACT-R
calculates a mismatch by summing the differences be-
tween all the elements (3, +, and 4, in the example) in the re-
trieval probe and the values in the declarative chunk. This
partial matching process will become particularly impor-
tant in applying ACT-R to categorization tasks with con-
tinuously varying dimensions, since it is possible that no
memory chunk exactly matches the stimulus to be cate-
gorized. The formula giving the activation,Ai, of chunk i is

Ai = ln Ni - Mi , (Activation, Equation 2)

where Ni is the number of trials of practice and Mi is the
degreeof mismatch of chunk i to the production.3 Note that
the effect of practice is implemented differently in ACT-R
than in EBRW or Logan’s (1988) model. In the EBRW
model and Logan’s model, each repetition of an example
causes another instance to be stored. In ACT-R, when an
example is repeated, the base-level activation for the sin-
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gle chunk encoding the example is higher. Nonetheless, as
others have noted (e.g., Nosofsky & Alfonso-Reese,1999;
Wixted, Ghadisha, & Vera, 1997), models that assume
strengthening of a single trace can be equivalent in their
predictions to models that assume that repetitions create
new encodings.

Just as with utilities, activations are noisy, real-valued
quantities. ACT-R will retrieve the most active chunk if it
is above a minimum threshold of activation, but this can
vary from retrieval to retrieval. The actual predictions of
the model are obtained by Monte Carlo simulations, but
two equationshavebeen shown (Anderson & Lebiere, 1998)
to give good approximate characterizationsof the model’s
behavior. The probability of retrieving a chunk i is given
by the formula

Probability of retrieving

(Chunk Choice, Equation 3)

where the summation is over all possible chunks j. This is
basically the same soft-max equation as in production
choice, and tA reflects the noise in the activation values.4
ACT-R will retrieve a chunk only if it is above an activa-
tion threshold. The probability that a chunk will fall above
a threshold of activation is given by

Probability =

(Retrieval Probability, Equation 4)

where t is the thresholdand sA is also related to the standard
deviation,sA, of the activationnoise and to tA by the formula
sA = Ï3s /p = tA /Ï2. The value of the activation noise sA
was kept constant in these simulations at .55 (and so tA
was constant at .78). This is comparable with values used
in other simulations (e.g., Anderson, Bothell, Lebiere, &
Matessa, 1998). Finally, the time to retrieve a chunk is de-
scribed by ACT-R’s retrieval time equation:

Time = Fe2Ai. (Retrieval Time, Equation 5)

In the simulations, we set the latency scale factor F to
1.0 sec, which is a typical (and default) value.

Within the general ACT-R architecture just sketched, a
system was created that implemented both the EBRW
model and the RULEX model. Basically, this involved
having production rules direct the selection and execution
of categorization strategies whereas declarative informa-
tion encoded the examples and rules that provided the cat-
egory information.

THE ACT-R HYBRID MODEL

As we noted earlier, ACT-R has three ways of classify-
ing a stimulus: guessing, using a rule module based on
RULEX, and using an exemplar module based on EBRW.
The actual simulation resides at the Published Models link

at the ACT-R home page (http://act.psy.cmu.edu/), where
one can inspect the code and try various parameter com-
binations for the data sets described later. However, here
we will try to explain the basic principles by which these
three modules operate. Table 1 gives snippets of produc-
tion rule firings that illustrate each of the methods classi-
fying a stimulus. Each of these snippets presents the cycle
number denoting the sequence of that productionfiring in
a larger run and the time in seconds of that production fir-
ing. Although no method is always correct, for compara-
bility the snippets chosen show the methods correctly
classifyinga stimulus. The first snippet, illustratingguess-
ing, is the simplest. The first production issues a guess,
and the second processes the feedback that the guess was
correct. Then follows a sequenceof three rules that fire after
every successful classification event. The first encodes
the association of the four features of the stimulus with
the category. This will provide an exemplar for later use by
the exemplar module. The remaining two terminate this
study and note that the overall trial was successful. The
choice of guessing in this example occurred only because
there were no rules or exemplars available at the early
point in the run from which this snippet comes. The guess
option is rated so low that it is never chosen when an ex-
emplar or a rule can applyand it neverachievesenoughsuc-
cess to make it preferable. In the subsections to follow, we
will describe in more detail the implementationof the rule
and exemplar modules in ACT-R.

Implementing EBRW in ACT-R
The EBRW subsystem of the ACT-R hybrid model dif-

fered slightly from the original EBRW model, owing to
differences in similarity evaluationand the structure of de-
clarative memory. In Nosofsky and Palmeri’s (1997b)
original formulation of the EBRW model, the similarity
between two exemplars i and j is calculated as the
weighted Euclidean distance between the two:

where the summation is over the dimensions and wm rep-
resents the attention weight on dimension m. Attention
weights are restricted so that all must be greater than 0 and
the sum of all attentionweights is 1. The xim is the value of
exemplar i on dimensionm. This valuecan be found through
multidimensionalscaling (MDS) studies or can be derived
from the physical values used to generate the stimuli. In
ACT-R, similarity is calculated through a city-block dis-
tance metric. Here, the difference between chunk i and
pattern j is

(Mismatch, Equation 6)

Although the equation above does not explicitly represent
the weightings wm from the EBRW equation, they are im-
plicit in the scaling of the xim. In both systems, the simi-
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larity between a presented stimulus and a stored exemplar
affects the probability of recalling a stored exemplar and
the time to recall that exemplar. With the exceptionof this
difference in metric, the combinationof ACT-R Equations
2, 3, and 6 essentially is identical to EBRW. Note that the
ACT-R equations were not at all fashioned to fit the cate-
gorization literature. Thus, the equivalence of ACT-R and
EBRW reflects a significant convergence of theories de-
veloped to fit very different data sets.

The structure of declarative memory in ACT-R is also
different than the EBRW model. In the EBRW model,
multiple instances of an exemplar can be stored and can
race against each other to be retrieved. In ACT-R, identi-
cal chunks are merged, so there can be only one copy of a
stored exemplar. However, the strength of the merged
chunk grows, according to Equation 3, since each merge
contributes to the count Ni.5

Part 2 of Table 1 illustrates the sequence of production
rule firings in a successful classification by an exemplar.
The first production chooses the exemplar method, and
then the next six productions implement the random walk.
The threshold for the random walk in this example is 4,
and six examples are retrieved to exceed this threshold—
five voting in one direction and one in the opposite direc-
tion. Then, a production terminates the search, and an-
otherproductionprocesses the feedback.Finally, the snippet
ends with the same final three productionsas in Part 1 (ex-
cept that, in this case, it is only a two-dimensional stimu-
lus) to encode the current example.

Implementing RULEX in ACT-R
In the ACT-R implementation of the RULEX model, it

is important to understand that classificationrules are rep-
resented as chunks in declarative memory. That is to say,

Table 1
Traces of the Various Methods of Classification in the ACT-R Model

1. Classification by guessing
Cycle 10 Time 2.297: Guess
Cycle 11 Time 3.246: Random-Guess-Was-Right
Cycle 12 Time 3.296: Encode-4features
Cycle 13 Time 3.346: Study-Complete
Cycle 14 Time 3.396: Done-Right

2. Classification by retrieving examples
Cycle 2173 Time 287.301:Choose-To-Classify-By-Exemplar-2feature
Cycle 2174 Time 287.479:Recall-2feature
Cycle 2175 Time 287.579:Recall-2feature
Cycle 2176 Time 287.679:Recall-2feature
Cycle 2177 Time 287.779:Recall-2feature
Cycle 2178 Time 287.879:Recall-2feature
Cycle 2179 Time 287.979:Recall-2feature
Cycle 2180 Time 288.079:Done-Classifying-By-Exemplar
Cycle 2181 Time 288.259:Correct-Finish-From-Exemplar
Cycle 2182 Time 288.309:Encode-2features
Cycle 2183 Time 288.359:Study-Complete
Cycle 2184 Time 288.409:Done-Right

3A. Classification by applying rule
Cycle 1483 Time 348.160:Choose-To-Classify-By-Rule
Cycle 1484 Time 348.216:General-Rule-Match
Cycle 1485 Time 349.180:Feature1-Is-Nil
Cycle 1486 Time 349.233:Feature2-Is-Nil
Cycle 1487 Time 349.291:Feature3-Against-Rule-V1
Cycle 1488 Time 349.423:Feature4-Is-Nil
Cycle 1489 Time 349.474:Done-Applying-Presentation
Cycle 1490 Time 349.524:Done-Classifying-By-Rule
Cycle 1491 Time 350.183:Classification-By-Rule-Is-Right
Cycle 1492 Time 350.233: Increment-Correct-Count
Cycle 1493 Time 350.306: Imperfect-Rule-Satisfies-Stricter-Criterion
Cycle 1494 Time 350.365:Encode-4features
Cycle 1495 Time 350.415:Study-Complete
Cycle 1496 Time 350.465:Done-Right

3B. Classification by exception to rule
Cycle 1497 Time 350.515:Choose-To-Classify-By-Rule
Cycle 1498 Time 350.568:Use-exception-4dim
Cycle 1499 Time 350.806:Classification-By-Rule-Is-Right
Cycle 1500 Time 350.856: Increment-Correct-Count
Cycle 1501 Time 350.911: Imperfect-Rule-Satisfies-Stricter-Criterion
Cycle 1502 Time 350.963:Encode-4features
Cycle 1503 Time 351.013:Study-Complete
Cycle 1504 Time 351.063:Done-Right
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a rule used for classification is not a production rule. The
procedural/declarative distinction in ACT-R is made ac-
cording to whether knowledge is explicit or implicit; de-
clarative knowledgeis explicit,whereas procedural knowl-
edge is implicit. Therefore, it makes sense to represent
rules for categorization as chunks in declarative memory
because RULEX implies that such rules can be explicitly
reasoned about by participants.

In the ACT-R implementation of the RULEX model,
production rules implement both the search through alter-
native categorization rules and the assessment of the ac-
curacy of particular rules. When the system attempts to
find a new rule, a productionfires, to select the kindof clas-
sification rule to look for. Imperfect rules are selected only
if all the perfect rules have been exhausted. The process of
forming exceptionsto rules according to the RULEX spec-
ification is quite complex to implement in ACT-R, because
of all the special cases (although it is by no means impos-
sible, and we did successfully implement it as an exercise).
In light of its complexity, we decided to replace it with a
simpler system, in which exceptions are specified on all
dimensions, unlike the partial specifications in RULEX.

Limitations on memory capacity are realized differ-
ently in the original RULEX and its ACT-R implementa-
tion. In RULEX, a parameter affects the rate at which new
exceptions can be added to memory. In ACT-R, the sub-
symbolicmechanisms of declarativememory achieve sim-
ilar effects. Consider the situation in which a permanent
rule has been formed and many exceptions are already
stored in memory but the system attempts to form a new
exception. In RULEX, the limit on memory could prevent
this new exception from being stored successfully. In
ACT-R, the exception is guaranteed to be stored, but there
is no guarantee that it will be available in a later recall. If
the activation of the newly formed exception falls below
the threshold for retrieval, it cannot be used. Therefore,
the ACT-R implementation of RULEX maintains the as-
sumption that memory is limited but does not enforce that
assumption in the same way.

Parts 3A and 3B of Table 1 give traces of the production
system’s firing when it successfully classifies stimuli by
the rule module. The difference between the two subparts
is that in 3A it applies the general rule and in 3B it applies
an exception. The first production to fire, Choose-To-
Classify-By-Rule, retrieves the currently operative rule
from declarative memory and chooses to apply it. If no
exception can be retrieved (Part 3A), General-Rule-Match
will start the process of comparing features. The model
goes through the four dimensions, comparing them
against the rule. The rule in this case is a one-dimensional
rule, where only Dimension 3 is operative. In all the data
sets we will be modeling in this paper, the actual rules are
one-dimensional. When the feedback is received that the
rule is right, Increment-Correct-Count updates the count
required by RULEX for judging the viability of the rule,
and Imperfect-Rule-Satisfies-Stricter-Criterion notes that
the rule still satisfies the stricter criterion. In both Parts

3A and 3B, the model goes through the same final encod-
ing of the example as in Parts 1 and 2.

Summary of the ACT-R Implementation of the
EBRW and RULEX Models

As Table 1 illustrates, ACT-R implements its choice
among the three methods essentially by a “big switch” that
chooses one of the methods in the first production that
fires in each snippet. Provided there are exemplars or rules
that can be retrieved, the model will not choose the guess
method, as in Part 1 of the table. The rule and exemplar
methods will compete according to their relative success.

The mapping of the EBRW and RULEX models into
ACT-R was fairly direct. However, it is not the case that
the processes of ACT-R exactly correspond to the processes
of EBRW or RULEX. The followinghighlightssome of the
differences.

1. ACT-R strengthens merged traces, whereas EBRW
forms multiple traces that race against each other.

2. ACT-R uses a city block similarity metric, whereas
the EBRW model typically uses an Euclidean metric.
However, it should be noted that EBRW is not constrained
to use an Euclidean metric.

3. ACT-R implementsmemory failures by retrieval lim-
itations,whereas RULEX implementsmemory failures by
storage limitations.

In each of these cases, ACT-R had a prior architectural
commitment that forced us to take a somewhat different
path. However, we did not think that these differences
were critical, and they were not.

In addition to these differences, there is another cate-
gory of issues involvedin implementing the two models in
the same ACT-R architecture.Generally, there is the ques-
tion of whether the parameters that work for one model
will work for another model. More specifically, there is
the issue of whether the system of declarative memory
that selects among traces in EBRW is consistent with the
system that enforces memory limitations in RULEX.
Also, there is the question of whether ACT-R would select
among these two strategies to deliver the right mixture for a
particularexperiment.Therefore, this implementationeffort
is a nontrivial test both of the architectural compatibilityof
EBRW and RULEX and of the ACT-R architecture itself.

The key claim is thatACT-R has the facility to implement
the essence of the two models and can predict when one
model will be deployed versus the other. To put this claim
to test, the hybrid ACT-R model was tested against three
datasets.The first twodatasets (Nosofsky& Palmeri, 1997b;
Nosofsky et al., 1994) came from the papers that proposed
the models that form the subsystems in the hybrid model.
The third data set (Erickson & Kruschke, 1998)came from
a study that showed the interaction of rule-based and
exemplar-based systems. In describing the simulations of
the individual data sets, we will try to focus on the most
significant aspects of the models. The actual simulations
are available for inspection from the Published Models
link at the ACT-R home page (http://act.psy. cmu.edu/).
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DATA SET 1
Nosofsky and Palmeri (1997b)

Experiment 1

Nosofsky and Palmeri (1997b) report a study that tested
their EBRW model. Three participantswere presented with
a set of 12 color squares. The stimuli had a constant hue but
varied on the dimensionsof brightness and saturation.The
category structure of the stimuli is shown in Figure 1. The
participants made judgments on these stimuli over 150

blocks. In each block,all 12 stimuli were presented for clas-
sification.The results showed power-law speed-up in clas-
sification for each participantand faster response times on
stimuli that were further from the category boundary, as
predicted by the EBRW model. An important feature of
these stimuli for the purposes of the ACT-R simulation is
that the dimensionsare integral (Garner, 1974) and, so, par-
ticipants cannot articulate the separate dimensions. As a
consequence,when the RULEX submodel of ACT-R tries
to formulate rules for classifying these stimuli, it will al-
ways experience failure. Thus, it will quickly switch to an
exemplar approach.

A major componentin modelingthese data in ACT-R was
setting the similarity values between differing levels of
brightnessand saturationappropriately. The originalEBRW
experiment included a posttest portion in which partici-
pants made similarity judgments about each possible pair-
ing of stimuli. Nosofsky and Palmeri (1997b) used these
judgments to derive an MDS solution for each participant.
We used these solutions to set the subjective similarities
for ACT-R among the various brightnesses and satura-
tions. The MDS solution tells us the relative differences
between the values, but it does not tell us the absolute dif-
ferences. Nosofsky and Palmeri (1997b) estimated scal-
ing parameters to convert these relative differences into
absolute differences, and we did the same.

We estimated, for each participant, a retrieval time for
each item retrieved, an intercept time corresponding to the
time to encode the stimulus and respond, and a retrieval
threshold for the activation of a chunk in order for it to be
retrieved. There was also a counter threshold in the ran-
dom walk for classifying a stimulus, but we held this con-
stant at 4 across participants, in contrast to Nosofsky and
Palmeri (1997b), who estimated different parameters for
different participants (4 was their median value). These
are given in Table 2, which gives the parameters for all the
data sets. In addition, note that two parameters, the utility
noise (tE = 2.2) and the activation noise (tA = 0.78), were
set once for all simulations.

Table 2
Parameter Sets and Fits

Retrieval Time Retrieval Intercept Counter- Learning Generalization
Parameter Threshold Parameter Threshold Correlations Correlations

Data Set (sec) Parameter, t (sec) Parameter ACT-R EBRW ACT-R EBRW

1. Nosofsky and
Palmeri (1997b)
Participant 1 0.10 -0.3 0.18 4 .94 .94 .87 .89
Participant 2 0.05 0.5 0.18 4 .77 .78 .97 .99
Participant 3 0.05 0.0 0.25 4 .95 .96 .93 .95

2. Nosofsky, Palmeri,
and McKinley
(1994) 0.05 0.8 0.20 1 - - .85 .92

3. Erickson and
Kruschke (1998) 0.05 0.0 0.20 1 .99 .98 .94 .91

Note—Retrieval time is the minimum step time, in seconds, for one retrieval in the random walk. Retrieval threshold is the minimum activation re-
quired for a chunk to be retrieved. Intercept is encoding and response time. Counter threshold is the magnitude of the counter value that triggers a
decision in the random walk. The ACT-R columns show the correlations between the predictions of the ACT-R hybrid model and the data. The
EBRW columns show the correlations between the predictions of the EBRW model and the data.

Figure 1. Schematic illustration of the color stimuli used in
Nosofsky and Palmeri (1997b). Circles represent one category,
and squares represent the other category. From “An Exemplar-
Based Random Walk Model of Speeded Classification,” by R. M.
Nosofsky and T. J. Palmeri, 1997, Psychological Review , 104,
p. 274. Copyright 1997 by the American Psychological Associa-
tion. Reprinted with permission.
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The fits that Nosofsky and Palmeri (1997b), report for
their model came from searching for the best-fitting set of
six parameters. We informally tried to find parameters that
would give “close” values in a Monte Carlo simulation. In
doing this,we adjusted the retrieval time, the intercept,and
the retrieval threshold. Thus, ours might be viewed as a
three- or four- (depending on how one views the constant
counter threshold) parameter model, but not one that is
optimized to give best fit.6 Our goal is not to producea bet-
ter model, but just to establish that ACT-R can yield pre-
dictions that are similar to EBRW.

The learningdata from this experiment are presented in
Figure 2. These data show an approximate power-law de-
crease in response time over the training period. Table 2
also gives the correlations between predicted and ob-
served data with the Nosofsky and Palmeri (1997b) pre-
dictions.Although the ACT-R fits are good and nearly iden-
tical to those from Nosofsky and Palmeri (1997b), it is
worth noting that the learning in the early part of the curve
is more complex in ACT-R, because the model is some-
times trying to form rules and failing (because the dimen-
sions are not analyzable) and because the model is some-
times failing to retrieve exemplars and guessing. Both of
these failed paths tend to lead to long reaction times. How-
ever, these events decrease in frequency with practice in a
way that approximatespower-law learning.Both Delaney,
Reder, Staszewski, and Ritter (1998) and Rickard (1997)
have shown that mixtures of strategies can yield approxi-
mate power-law learning.

Figure 3 shows the data from the last 120 blocks in terms
of the time to classify the 12 stimuli in Figure 1. By this
time, all the responses are based on the counting process,
and the EBRW and ACT-R models basically correspond in
terms of mean number of steps to classify each stimulus.
Table 2 also shows the mean generalizationcorrelations for
ACT-R and the Nosofsky and Palmeri (1997b) model. Al-
though the ACT-R fits are not quite as good as the Nosofsky
and Palmeri (1997b) fits, they are clearly quite similar, and
the ACT-R predictions have not gone through the same op-
timizationprocess.The highcorrelationbetween the EBRW
and the ACT-R models illustrates our earlier observation
about the essential convergence between the two theories.

There are two features of the ACT-R architecture that
are critical to the model’s ability to implement essential as-
pects of the EBRW algorithm. First, the trace strengthen-
ing processes (Activation, Equation 2) and the latency
function (Retrieval Time, Equation 5) are primarily re-
sponsible for the power-function speed-up (Figure 2).
ACT-R’s strengthening component has been noted to be
equivalent to Logan’s race among instances (e.g., Ander-
son, Fincham, & Douglass, 1999). Second, the partial
matching process (Activation, Equation 2) and the sto-
chastic noise in activations (Chunk Choice, Equation 3)
combine to produce the different speed in classifying dif-
ferent stimuli (Figure 3). The present endeavor indicates
that ACT-R partial matching is nearly equivalent to
GCM’s similarity-based retrieval. These two components
and the random walk algorithm are the critical pieces to

the EBRW account of the data. We just implemented the
random walk, and this is not a test of ACT-R (except as
noted below). However, the success of this effort supports
the learning and partial matching processes of ACT-R.
Moreover, since these components have participated in
accounts of many other cognitive tasks (Anderson &
Lebiere, 1998), the success of this effort indicates that the
EBRW model is consistent with some general aspects of
cognition.

With respect to the random walk algorithm, it is not a
trivial matter that the timing parameters worked out, since
ACT-R places definite limits on the range of times. Every
productioncycle takes at least 50 msec but retrievals from
declarative memory can make the cycle take longer. On
the other hand, we have argued (Anderson et al., 1998)
that every production cycle cannot take much longer than
500 msec. Thus, in ACT-R, the timing of the steps are
bounded to within an order of magnitude. By the end of
theexperiment,ACT-R was takingfrom about50–100 msec
to consider each exemplar in the random walk. We had
worried that ACT-R would not be able to perform the steps
in the random walk fast enough to match the data and were
somewhat surprised that we were able to fit the data with
the timing parameters in Table 2.

Although the ACT-R model is a fairly faithful imple-
mentation of the EBRW random walk algorithm, the ACT-R
partial matching and strengthening mechanisms, which
implement the algorithm, are different from the EBRW
mechanisms, even if equivalentfor the purposesof this ex-
periment. One could imagine doing tests of the differences,
focusing on things like the difference between the cityblock
metric and the Euclidean metric. Although such tests
would be valuable and might lead us to reformulate cer-
tain aspects of ACT-R theory, they would not change the
conclusion that the two systems are nearly equivalent in
the effects of their architectural assumptions.

Note that the RULEX component of this model did not
play any role, because we did not provide the model with
any rules to try. This corresponds to the observation that
participants find it hard to articulate dimensional rules for
the stimuli of the experiment. We do not claim that ACT-R
provides any explanation of the inability of participants to
analyzesuch color stimuli into their underlyingdimensions.
It simply represents that fact in its encodingof the situation.
A basic premise of the model is that the rule component is
available if and only if participants can identify the dimen-
sions of the stimuli. This makes our interpretation of the
RULEX system like the explicit verbal system of Ashby
et al. (1998). We regard the cognitive neuroscience data
that Ashby et al. cite for it as evidence for this component.

DATA SET 2
Nosofsky et al. (1994) Experiment 1

We will now consider an experiment reported by Nosof-
sky et al. (1994) that introduced the RULEX model. In this
experiment, 227 participantswere presented with 16 train-
ing blocks of nine trials each, showing line drawings of
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Figure 2. Comparison of ACT-R learning data with participant learn-
ing data from Nosofsky and Palmeri (1997b).
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Figure 3. Comparison of mean response times for each individual stimulus
from each participant and the ACT-R and EBRW model predictions for each
participant from Nosofsky and Palmeri (1997b).
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rocket ships that varied on four binary-valueddimensions.
During training, feedback was provided after each classi-
fication decision. After training, the remaining possible
patterns from the stimulus space were presented, and the
participants were prompted to make a classification deci-
sion on these novel stimuli. The complete category struc-
ture of the stimuli is presented in Table 2. These stimuli
are isomorphic to those used in Experiment 2 of Medin
and Schaffer (1978). No single-dimensionrule or conjunc-
tive rule can correctly classify all the stimuli in this exper-
iment. Therefore, any successful rule-oriented classifica-
tion strategy will require storing exceptions. There is
enough structure in the stimulus set and the structure is
simple enough that a rule-based approach does enjoy a fair
amount of initial success. Therefore, it is possible to learn
a rule that correctly classifies most of the stimuli and then
learn a small number of specific exceptions to that rule.

The generalization patterns shown by participants on
novel stimuli are given in Figure 4. There are seven trans-
fer stimuli, each with two possible responses, for a total of
27 possible generalization patterns. Palmeri and Johansen
(1999)suggest ignoringTransfer Stimuli 3 and 7 in Table 3,
since they received the same classification on all bases.
This reduces the 128 transfer patterns to 25 = 32, which are
graphed in Figure 4. Three blocks of transfer stimuli were
presented, so a participant was said to classify a transfer
stimulus into a given category if he or she responded with
that category to the given stimulus on at least two of the
three presentations.The two most common generalizations
shown were AABBB and BBABA, which correspond to
rules on Dimensions 1 and 3.

Nosofsky et al. (1994) fit a five-parameter version of
RULEX to these data.One of these parameters was the strict
criterion for single-dimension rules, which varied uni-
formly between .65 and .85, and we similarly allowed this
criterion to vary in ACT-R. We set the difference between
the binary values to be worth an Mi value of 2.25 (see Ac-
tivation, Equation 2). The other ACT-R parameters are
shown in Table 2. Note that we set the counter for the ran-
dom walk to 1, thus classifying the stimulus on the first re-
trieved item, which effectively eliminates the randomwalk.
Since there is no latency data reported in this experiment,
there is nothing to be gained by the random walk process,
and it can considerably lengthen the simulations.7 The
ACT-R simulation was run through the same 16 training
blocks as the participants and given the same transfer tri-
als. Our results are averagesof 1,000simulatedparticipants.

The results of RULEX and the ACT-R model are also
presented in Figure 4. These results show that the ACT-R
hybrid model reproduces many of the major aspects of the
participantdata. The AABBB and BBABA generalization
patterns are those most frequently generated by this
model, which is in accord with the data. The first gener-
alization pattern represents a rule based on Dimension 1,
whereas the second generalization pattern represents a
rule based on Dimension3. The overall correlationwith the
data is .85 for ACT-R and .92 for RULEX. As in the case
of Data Set 1, this establishes that the model can get in the
range of the data without any special effort at tuning.

In any given run of the model, either the rule-based or
the exemplar-based system can learn the category struc-
ture of the experiment.Over trials, the model tends to shift
from trying rules to using examples. Figure 5 plots the pro-
portion of example use as a function of trials (rule use
never succeeds for Data Set 1, and so there is not a compa-
rable plot). There are two reasons for the increased use of
exemplars. First, should a high criterion be selected for
rule success, no rule will exceed the criterion, and ACT-R
will switch to examples.8 Second, as the amount of expe-
rience increases, the examples become more and more
strongly encoded, and retrieval becomes a faster way of
classifyingexamples without sacrificing accuracy. As this
is discovered, the conflict resolution (see Equation 1)
changes its preference from rules to examples. Basically,
ACT-R has realized a variation on Logan’s (1988) exem-
plar model. The system starts working with inferred rules
and switches to examples. As Figure 5 illustrates, this same
tendency occurs in the third data set. The fact that nearly
50% of the classifications are example based by the end
of the experiment explainswhy more of the classifications
in Figure 4 are not of the form AABBB or BBABA. The
dominance of these two transfer patterns is a consequence
of the RULEX algorithm implemented in ACT-R, and not
of the architecture.The RULEX algorithm by itself would
produce over 30% choice of each of these patterns, rather
than the approximately15% displayed in Figure 4. The 30%
is reduced to 15% because, in many of the runs, ACT-R
has switched to exemplars. In the originalRULEX model,
the reduction in the frequency of these two generalization
patterns occurs because of random slips and because
sometimes an exception blocks a generalization. It is a
prediction of the ACT-R architecture that the rule-based
generalization will become more muted as participants
practice the task more and switch more to example-based
classification.This is not a predictionof theoriginalRULEX
model. Palmeri and Johansen (1999) report a decreased
tendency to make rule-based classifications in longerver-
sions of this experiment. J. D. Smith and Minda (1998) re-
port a similar effect.

DATA SET 3
Erickson and Kruschke (1998) Experiment 2

Erickson and Kruschke (1998) described an experiment
in conjunction with a connectionist hybrid model for cat-
egory learning. They emphasized the effect of interaction

Table 3
Stimuli from Nosofsky, Palmeri, and McKinley (1994),

Experiment 1

Category A Category B Transfer

A1: 1112 B1: 1122 T1: 1221
A2: 1212 B2: 2112 T2: 1222
A3: 1211 B3: 2221 T3: 1111
A4: 1121 B4: 2222 T4: 2212
A5: 2111 T5: 2121

T6: 2211
T7: 2122
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between exemplar-based and rule-based modules of their
hybrid categorizationmodel. This interactionwas studied
by varying the frequency with which various stimuli were
presented. Participants were presented with rectangles
that varied in height and the location of the vertical line
segment that the rectangles contained. These two dimen-
sions formed a stimulus space that is illustrated in Fig-
ure 6. The height of the rectangle was the primary dimen-
sion; a rule that divided the stimulus space on the basis of

rectangle height correctly classified all but two of the stim-
ulus patterns. These patterns were exceptions, and each
belonged to its own category (thus, there were four cate-
gories in all). Each dimension could take a discrete value
from 0 to 9, and thepatternswere presentedon a display,with
axes to indicate the numeric value of both dimensions.9
All but four stimuli were presented once per block of train-
ing. One exception-classified stimulus (E2) and one rule-
classified stimulus (R2) were presented twiceperblock.One

Figure 4. Comparison of generalization patterns shown in Nosofsky, Palmeri, and McKinley
(1994) and by the ACT-R hybrid model. The categories are the 32 categories obtained by exclud-
ing responses to Transfer Stimuli 3 and 7 in Table 2.
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exception-classifiedstimulus (E4) and one rule-classified
stimulus (R4) were presented four times per block. In trans-
fer blocks, they measured the percentageof rule-appropriate
responses to the eight patterns adjacent in the stimulus
layout to each of these higher frequency stimuli.

Participants alternated between 16 blocks of training in
which they were given feedback on their classificationsand
16 transfer blocks in which no feedback was given. Part A
of Figure 7 displays the data from this experiment. With
respect to the training data, there is an effect of frequency
on both exception-classified stimuli and rule-classified
stimuli.Transfer stimuli are consideredcorrect if participants
give rule-appropriate responses even if the stimuli sur-
round an exception. The participants generated a higher
percentage of rule-appropriate responses to stimuli sur-
rounding R4 than to those stimuli surrounding R2. Further-
more, the participants generated fewer rule-appropriate re-
sponsesto stimulisurroundingE4 thantostimuli surrounding
E2. Erickson and Kruschke (1998) used these data to
argue againsta pure rule-basedmodel, because theyclaimed
that this would not predict a frequency effect for rule-
classified stimuli.They also used these data to argue against
a pure exemplar model, because they claimed it would not
predict that transfer stimuli in the vicinity of the excep-
tion stimuli would be classified a majority of the time ac-
cording to the rule. The model that they proposed with
their data, ATRIUM, was a connectionist model that, on
each presentationof a stimulus, made a categorizationde-
cision by using a rule-based subsystem, made another de-
cisionby usingan exemplar-basedsubsystem,and combined
these two judgments to reach a weighted final decision.

The ACT-R model that we developed for this task could
use either exemplars or a rule that separated the stimuli by
a value of 4.5 on the height dimension.This rule is like the
linear decision boundary rules proposed by Nosofsky and
Palmeri (1998) in their extension of RULEX to continu-
ous dimensions. Because the ACT-R hybrid model only
tries one method (rule or exemplar) on a trial, rather than
merging the results of two methods, it was not initially ap-
parent to us that it could predict an effect of frequency of
presentation on probability of rule-appropriate decisions.
The decision to use a rule-based or exemplar-based ap-
proach is determined by the overall success of these ap-
proaches, rather than by the success with respect to a par-
ticularstimulus.When we ran the ACT-R model on this task,
we found, to our surprise, that it did a good job in predict-
ing qualitative trends in the data, as is indicated in Part B
of Figure 7. With respect to correlations (Table 2), it does
a slightly better job of predicting certain aspects of the
data than does ATRIUM, whose predictionsare illustrated
in Part C of Figure 7.10 The ACT-R model tends to slightly
overpredict performance—a problem we could have cor-
rected by addinga slip parameter, but the complicationdid
not seem worth it. (Interestingly, ATRIUM tends to slightly
underpredict accuracy.) The ACT-R parameters that were
set for this model were the same as those for the previous
model (Data Set 2), except that we changed the retrieval
threshold and had to scale the similarities separately for
this experiment. We scaled the differences among stimuli
so that each unit difference (on either axis) in Figure 6 was
worth an Mi of 1.5 (see Activation, Equation 2). Thus, for
instance, if the stimulus had a height of 4, the target height

Figure 5. Percentage of classification by examples (in contrast to rules) as a function of trials for
Data Set 2 (Nosofsky, Palmeri, & McKinley, 1994) and Data Set 3 (Erickson & Kruschke, 1998).
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was 7, and the other dimension matched, the mismatch
would be 3 * 1.5 + 0 ´ 1.5 = 4.5.

Figure 5 displays the growth in exemplar use over trials.
The ACT-R predictions depend on the fact that it is using
a mixtureof exemplars and rules. The reason it tends to clas-
sify transfer stimuli according to a rule, even when they
are close to an exception, is that a majority of the trials are
rule based even at the end of the experiment. ACT-R tends
to get the exceptionscorrect because they are stored as ex-
ceptions in the RULEX portion of the model. Note that
these exceptions are represented twice—once as excep-
tions to the rules and once as exemplars. The frequency ef-
fects largely come from the trials in which exemplars are
used.

Erickson and Kruschke (1998) thought that their data
provided evidence for something they called representa-
tional attention. This was the ability to focus on the ex-
emplar module for exceptions and the rule module for the
other stimuli. This was the way they were able to achieve
high accuracy on exceptions and high accuracy on the
other stimuli as well. In contrast to their ATRIUM model,
our ACT-R model was able to achieve this high accuracy
even though it chooses to use the rule module or exception
module independent of the stimulus. It can maintain high
accuracy because its RULEX component checks for ex-
ceptions. Erickson and Kruschke pointed out that RULEX
by itself would not be able to produce the frequency ef-
fects in the data. This is what is produced by our exemplar

component. Thus, our hybrid model needs both the ex-
ceptions stored in RULEX, to achieve accurate classifica-
tion of the studied exceptions, and the exemplars, to pro-
duce a frequency effect in transfer.

GENERAL DISCUSSION

In this paper, we have taken two algorithms for classi-
fication, the random walk in EBRW and the rule search in
RULEX, and implemented them with relatively few mod-
ifications in the ACT-R architecture. The fact that these
algorithms could be implemented in ACT-R is not a triv-
ial result. For instance, it would be hard to implement the
elaborate sequentialdecision structure of RULEX in most
connectionist architectures. Furthermore, the fact that we
could implement the algorithms does not necessarily
imply that they would have behaved in a way that matched
up with the data. If we had implemented these algorithms
in earlier versions of the ACT-R architecture (Anderson,
1976, 1983, 1993) or in other production system architec-
tures (e.g., Just & Carpenter, 1992;Kieras & Meyer, 1997;
Newell, 1991), they would have behaved differently. The
successful performance of these algorithms in ACT-R re-
quired certain properties of the declarativeand procedural
components of the ACT-R architecture.

The declarativecomponentof ACT-R (in the guise of the
Activation Equation 2, the Chunk Choice Equation 3, the
Retrieval Probability Equation 4, and the Retrieval Time

Figure 6. The category structure used by Erickson and Kruschke (1998). Each 1 indicates a stimulus that was
presented once per training block. The cells labeled R2 and R4 indicate stimuli that could be correctly classi-
fied by the rule and were presented two and four times, respectively, per training block. The cells labeled E2 and
E4 indicate stimuli that were not correctly classified by the rule and were presented two and four times, re-
spectively, per training block. The shaded area indicates the transfer stimuli for which percentage of rule-
appropriate responses were measured.



644 ANDERSON AND BETZ

Equation 5) was able to produce the frequency effects in
Data Sets 1 and 3. The partialmatchingprocess was respon-
sible for the similarity profiles in Data Set 1 and the trans-
fer performance in Data Set 3. The success of ACT-R’s de-
clarative component offers a significant generalization in
three ways.First, it shows thatACT-R is anotherway of char-
acterizing memory within the categorization algorithms.
Second, it shows that the same memory characterization
can work within both the EBRW and the RULEX algo-
rithms. Third, to the extent that ACT-R has been applied to
domains other than categorization, it shows that the same
memory processes underlie categorization as other tasks.

The other contribution of this paper was to show how
the two categorization algorithms can coexist together.
That is to say, they can work in a single cognitive archi-
tecture in which they are constrained to share the same pa-
rameters (such as activation noise and decay). Moreover,
they can coexist in an architecture that supports a wide va-
riety of other cognitive processes. Here, the credit goes to
ACT-R’s procedural component. The procedural compo-
nent (in the guise of the Conflict Resolution Equation 1)
was responsible for the mix of exemplar- and rule-based
strategies. Exemplar use dominated from the beginningfor
Data Set 1, because it was not possible to formulate rules.
In contrast, for Data Sets 2 and 3, rule use dominated early
and slowly gave way to exemplar use. The exemplar use
played a role in the account of the second data set, and as
Palmeri and Johansen (1999) have shown, it can be more
significantwith more practice. The mixtureof rule and ex-
emplar judgmentswas absolutely critical to our success in
accounting for Data Set 3. The transition from rule-based
to exemplar-based classification is rational and is cap-
tured by the conflict resolution process in ACT-R. Rule-
based classification is more economical in terms of mem-
ory structures encoding the exemplars but is less efficient
in terms of processing time. As the memory structures en-
coding the exemplars become strengthened, ACT-R tran-
sitions to exemplar-based classification.

It is worth emphasizing that both the exemplars and the
rules are represented as declarative chunks in the current
ACT-R model. Production rules basically “interpret” these
chunks. This contrasts with a much earlier ACT proposal
(Anderson, Kline, & Beasley, 1979) that represented both
instances and abstractions as production rules. This pro-
duction rule implementationof categorizationhas recently
been extensively modified and elaborated by Vandieren-
donck (1995). We choose to implement categoricalknowl-
edge declarativelybecause we believeparticipantscan de-
scribe their knowledge and only declarative knowledge
can be described in ACT-R.

The suspicion is sometimes expressed that an architec-
ture like ACT-R can fit any pattern of data. However, this
is not true in general and is not true in this case. In com-
parison with other models, we are constrained not only to
fit the data at hand, but to do it in a way that is consistent
with our models for other domains. ACT-R is a system

Figure 7. Proportion “correct” (rule-appropriate responses are
scored correct for transfer stimuli) as a function of frequency.
(A) Data from Erickson and Kruschke (1998); (B) ACT-R pre-
dictions; (C) ATRIUM predictions.
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that actually performs the task in real time and, moreover,
has strong commitments to the time that each step of cog-
nition takes. These commitments are in the form of parame-
ters, and bounds have been established for these parame-
ters in fitting other data sets in other domains. This makes
the first data set from Nosofsky and Palmeri (1997b), with
its timing information,perhaps the most demanding.As we
noted, it was not a trivial matter that ACT-R was able to
implement the EBRW algorithm. If the human data had
involved steps in the random walk that were only half as
long, ACT-R would not have been able to do the task in
human time.

The strategicdecision to implementEBRW and RULEX
in ACT-R makes this effort more constrained than if we
had fashioned our own exemplar- and rule-based model.
Since the implementations of these models succeeded (a
nontrivial result), our exemplar module or our rule-based
module are separately no more able to fit any pattern of
data than are the original models. However, one might
argue that the combination of two modules is more flexi-
ble than either by itself. This is not true in this case, because
of the constraints that the architecturebrings. For instance,
we are committed to the prediction of increased exemplar
use in tasks in which these two strategies mix—a predic-
tion that pure models do not make. Also, our hybrid model
commits us to predicting the interaction observed in the
Erickson and Kruschke (1998) data (Figure 7). All para-
meter adjustment could do would be to change the size of
the main effects and interactions.Thus, the ACT-R model
would have been disconfirmed had the results of these ex-
perimentsbeen in the oppositedirection.These constraints
on the mixture of the strategies come from the basic de-
clarative and procedural mechanisms in ACT-R.

Table 2 lists the parameters used to fit the individualdata
sets. In addition to these, we set two global parameters es-
pecially for these experiments. These are the noise para-
meters for utility (tE = 2.2) and activation (ta = 0.78) and
they are in the range used for other tasks. Although ACT-R
has other parameters, these were set at default values es-
tablishedin past research.The parameters in Table 2 were set
to match the performance level in the experiments.Except
for the 1st participant in Nosofsky and Palmeri (1997b),
who displayed slower times, the retrieval time parameter
was kept constant at 50 msec. Similarly, there was no se-
rious effort to estimate the counter threshold parameter or
the intercept parameter. It was the activation threshold pa-
rameter, t, that varied substantially across data sets, pro-
ducing the different levels of performance. Anderson et al.
(1998) noted that this parameter also varied substantially
in their fit to different list-learning experiments. It does ap-
pear to be one that captures the performance differences
across experiments.

With respect to the latency structure of the data, the cur-
rent ACT-R model assumes that all the dimensions of a
stimulus are encoded at once, as do EBRW and RULEX.
However, Lamberts (1998) has argued the various dimen-
sions are encoded separately, and Lamberts and Freeman

(1998) show, with stimuli like those from Data Set 2, that
this is an important consideration in predicting latency.
Clearly, this is a direction to proceed in elaborating the
model presented here.

Nosofsky and Johansen (2000) have recently made the
case that an exemplar model can account for all data that
have been used to argue for rule-based processing. This
includes the last two data sets11 that we modeled in this
paper. They do not claim that the exemplar model pro-
vides a superior account but, rather, question whether any
existingdata sets conclusivelyestablish the need for some-
thingother thanexemplars.Althoughone couldstrive to find
the decisive experiment that decides the issue once and for
all, perhaps a more promising approach is to try to see
how categorization behavior fits in with a more complete
characterizationof humancognition.Constraintsfrom other
domains can point the way to the correct model of human
categorization. This paper is a first step toward that goal.

EBRW is just one of many models for doing example-
based classification, and RULEX is just one of many
models for using abstractions to make category judg-
ments. To what degree do these results provide support for
the EBRW and RULEX algorithms specifically? With re-
spect to EBRW, its essential feature is the random walk
that allows similarity to influence retrieval time. We sus-
pect that the number of steps in the random walk in EBRW
are too many. Already in our fit to Data Sets 2 and 3 (where
we were not constrained by an existing model), we set the
decision bound to one step. For the first data set, where we
had a decision bound of four steps, we noted that ACT-R,
given its minimal cycle time, was barely able to complete
the processinginhumantime.NosofskyandPalmeri (1997a)
report a simpler experiment in which they estimated that
participantshad decisionboundsof six steps and made their
decisions in under 500 msec. ACT-R could not reproduce
this result.

With respect to RULEX, it seems that an essential fea-
ture of the algorithm is its ability to have exceptions over-
ride a general rule. As we discussed earlier, it would have
beendifficult to simulate the Ericksonand Kruschke (1998)
data without this feature. It also seems that the Nosofsky
et al. (1994) data (as well as the earlier concept-learning
literature) indicate that people will try to classify stimuli
according to a single dimension. Although we think that
RULEX captures some essential features, we were stuck by
the complexityof implementingthe rule-search algorithmin
terms of doingan exhaustivesearch through rules and keep-
ing track of lax and strict criteria. Perhaps some simpler
system could work as well. For instance, the EPAM model
described by Gobet, Richman, Staszewski, and Simon
(1997) seems to have all the essentialpropertiesof RULEX.

Another question is whether rules are the only form of
abstraction or whether there are other ways of abstracting
category information. In particular, one can imagine that
participants have prototypes, perhaps with information
about their variance, as well as about their central ten-
dency. Our earlier rational model of categorization (An-
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derson, 1991) and the earlier Anderson et al. (1979) model
both proposed that participants stored multiple prototype-
like representations. It is of interest that J. D. Smith and
Minda (1998) propose that participants mix a prototype
strategy with an exemplar strategy, whereas Ashby et al.
(1998) propose that participants mix a prototype with a
rule-based strategy. This prototype system may be imple-
mented in the implicit, striatal system that Ashby et al.
argue for and Poldrack, Prabhakaran, Seger, and Gabrieli
(1999) find fMRI evidence for. Perhaps the right conclu-
sion is that participants can use all three of the strategies:
prototypes, exemplars, and rules.

There has been recent discussion about the ability of
cognitiveneurosciencedata to select amongalternativepro-
posals for categorization.For instance,Ashby et al. (1998)
argue that such data can be decisive. They argue that the
fact that amnesiac populations appear to categorize suc-
cessfully (Knowlton & Squire, 1993; Squire & Knowlton,
1995) can be used to reject exemplar models, since these
patients cannot remember the examples but can categorize
them. On the other hand, Nosofksy and Zaki (1998) and
Palmeri and Flanery (1999) have shown that these results
can be explainedwithin an exemplar framework. It seems
unlikely that such data really rule out any categorization
strategy altogether. It seems more likely that neuroimag-
ing data, such as those of E. E. Smith et al. (1998), will
help identify which strategies particular participants are
using in particular experiments.

In summary, it is probably too strong to say that this ex-
ercise has uniquely supported EBRW or RULEX; rather,
it indicates that these theories capture some important as-
pects of categorizationbehavior.Likewise, it would be too
strong to conclude that this research has uniquely sup-
ported the ACT-R architecture.Rather, it has relied on two
critical featuresof that architecture,which are the activation-
based declarative memory and a procedural system in
which different paths are chosen according to their relative
utility. Perhaps the safest conclusion to make is that this
kind of architecture can implement the kinds of strategies
that participants use in categorization.This is significant,
because this is the kind of architecture that has success-
fully modeled participant behavior in other domains.
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NOTES

1. There is considerable discussion about the exact form of the
speed-up and whether it conforms to a power function or some other
function, such as an exponential function (e.g., Heathcote, Brown, &
Mewhort, 2000). This is not an issue in the current paper.

2. These three strategies are very similar to the three in J. D. Smith
and Minda (1998),except that J. D. Smith and Minda use a prototypeab-
straction strategy, rather than a rule strategy. This model also has some
similarities with Reder and Schunn (1996) and Rickard (1997) in that it
chooses among strategies, including retrieval and a rule-based procedure.

3. There are other constant terms to this equation (see Anderson &
Lebiere, 1998,especially p. 124), but they effectively cancel out in the pres-
ent applications.

4. Activation is like log familiarity in SAM (Gillund & Shiffrin,
1984; Raaijimakers & Shiffrin, 1981), and Equation 3 is the formal
equivalent of the sampling probability in that equation.

5. In ACT-R, retrieving a chunk also increases the activation of that
chunk. That increased activation means that the same chunk will have
higher probability of recall in future steps of the random walk. In the
early stages of an experiment, all chunks have relatively equal activa-
tions, but minor differences can be rapidly amplified through this posi-
tive feedback loop, leading to runaway strengthenings.To eliminate such
runaway strengthenings in the ACT-R model, the activation of stored ex-
emplars is held to a fixed rate of growth. Thus, in ACT-R, as in EBRW,
there is one strengthening (or exemplar formed) each time a stimulus is
presented, and the chunk representing the correct stimulus–category
pairing is strengthened.

6. Since the results come from Monte Carlo simulations, there are not
analytic equations that enable most parameter estimation procedures.
Given the complexity of the simulations and the number of runs required
to obtain stable estimates, it is not feasible to do an exhaustive search of
the parameter space.

7. Since ACT-R’s retrieval of instances is already stochastic, the ran-
dom walk is not required to predict probability of choice.

8. Note that unlike the original RULEX, the ACT-R implementation
tries only single-dimension rules and does not search through various
two-dimensional classification rules.

9. Nosofsky and Johansen (2000) wondered about the explicit pre-
sentation of numeric values. They show, in a follow-up study, that par-
ticipants would behave much like the exemplar model if this numeric
value were removed. This is what our model would predict if the effect
of removing the numeric values was to eliminate the ability to formulate
explicit rules—see the discussion at the end of Data Set 1.

10. It should be stressed, however, that they fit a great deal more data
than what is given in Figure 7.

11. Actually, they modeled the first experiment (rather than the sec-
ond) from Erickson and Kruschke (1998). More recently, Erickson and
Kruschke (in press) have produced results that cannot be so explained.

(Manuscript received April 11, 2000;
revision accepted for publication January 22, 2001.)
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