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That the eye generally does not take the shortest route
when moving to fixate a target, but is subject to idiosyn-
cratic distortions in the trajectory, has been recognized for
a long time (see, e.g., Yarbus, 1967). Initial attempts to
characterize the curvature found in saccade trajectories fo-
cused on how the direction of deviation depended on the
location of the saccade target and on what type of saccade
was made (Smit & Van Gisbergen, 1990;Viviani,Berthoz,
& Tracey, 1977). More recent studies have demonstrated
that the extent and direction of saccadic curvature is mod-
ulated by the instruction to attend to a location other than
the saccade target (Sheliga, Riggio, Craighero, & Rizzo-
latti, 1995; Sheliga, Riggio,& Rizzolatti,1994, 1995;Tip-
per, Howard, & Paul, 2001). Curvature also occurs when
an irrelevant distractor is presented in close proximity
to the saccade target (Doyle & Walker, 2001). In all of
these experiments, saccades curved away from the attended
(distractor) location.It has been argued that these distractor-
dependent trajectory modulations are a result of compet-
ing saccade programs for the target and distractor loca-
tions. Together, these studies have resulted in an increas-
ing interest in using (saccade) curvature as a sensitive
measure of distractor interference in saccade targeting.
However, different studies have used different methods to
quantify curvature, hindering quantitative across-study
comparisons.

The different metrics employed in previous research are
illustrated in Figure 1, which shows the trajectories of two
saccades observed in one of our experiments. The left
panel shows a saccade with a single curve. The right panel
shows a double-curved saccade that clarifies the potential
problems faced by the different curvature metrics (strictly
speaking, both trajectories contain just a single curve, but
have either one maximum or one minimum, or both a max-
imum and a minimum; for convenience, we denote these
saccades as single-curved or double-curved saccades).

Initial Direction
The first metric to be used was the angular difference

between the initial directionand the overall direction (Find-
lay & Harris, 1984; Van Gisbergen, Van Opstal, & Roe-
broek, 1987). The angle between the initial direction com-
puted at a fixed point in the saccade (e.g., after 20 msec in
Van Gisbergen et al., 1987) and the overall direction de-
termined at the endpoint of the saccade yields a measure
of curvature (marked as an arc in Figure 1).

Initial Average
Sheliga, Riggio, Craighero, and Rizzolatti (1995) and

Sheliga, Riggio, and Rizzolatti (1995) employed the initial
average deviation measure (illustrated with black squares
in Figure 1). This method is conceptuallyrelated to the ini-
tial direction metric. They calculated the deviationof each
sample in the initial 10 msec of the saccade1 by simply
subtracting the eye position on the dimension orthogonal
to the saccade direction (e.g., horizontal for vertical sac-
cades) from the value on that dimension at the start of the
saccade (e.g., horizontal starting position). These devia-
tions were then averaged.

Both the initial direction and the initial average metrics
are theoretically appealing, in that they measure the influ-
ence of a competing saccade program at the start of the
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Saccade curvature is becoming a popular measure for detecting the presence of competing saccadic
motor programs. Several different methods of quantifying saccade curvature have been employed. In
the present study, we compared these metrics with each other and with novel measures based on curve
fitting. Initial deviation metrics were only moderately associated with the more widely used metric of
maximum curvature. The latter was strongly related to a recently developed area-based measure and
to the novel methods based on second- and third-order polynomial fits. The curve-fitting methods
showed that although most saccades curved in only one direction, there was a population of trajecto-
ries with both a maximum and a minimum (i.e., double-curved saccades).We argue that a curvature met-
ric based on a quadratic polynomial fit deals effectivelywith both types of trajectories and, because it
is based on all the samples of a saccade, is less susceptible to sampling noise.
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saccade. However, the problem with both methods is that
they determine the initial direction after a fixed interval.
As a result, saccades with identical trajectories but differ-
entvelocitiesof executionwill beassigneddifferent amounts
of curvature (Smit & Van Gisbergen, 1990).

Maximum Curvature
Smit and Van Gisbergen (1990) proposed a maximum

curvature measure (illustrated with thick vertical lines in
Figure 1), which has been used in the majority of curva-
ture studies since its publication (e.g., Doyle & Walker,
2001, 2002; McPeek & Keller, 2001). For each sample,
the perpendiculardistance from a straight line between the
starting point and the endpoint of the saccade is calcu-
lated. Signed curvature is defined as the largest absolute
perpendiculardeviation (e.g., in Figure 1 and in our analy-
ses, a negative value represents a counterclockwise devi-
ation). This metric is less theoretically driven than the
measures based on the initial deviation, but it deals effec-
tively with the problem of identicalmovement trajectories
executed at different velocities.

One problem with this method is that it assumes that
the point of maximum curvature of a saccade is the best
representation of the nature and extent of curvature for
that saccade. Although this may not be too serious in the
case of a saccade that curves in only one direction (Fig-
ure 1, left panel), it is hard to see how a single sample
could represent the curvature of a trajectory with both a
maximum and a minimum (Figure 1, right panel). In ad-
dition, with double-curved saccades, it may be that the

point of maximum deviation is located in the second curve
of the trajectory. If one assumes (as with the initial devia-
tion metrics) that the influence of a competing eye move-
ment program is to initially drive the eye away from the
target, it is the first curve that is of most interest. To the ex-
tent to which these double-curved saccades occur in the
saccades under study, the maximum curvature method
might miss some of the theoreticallyinterestingdeviations.

Area Curvature
To remedy such potential problems, Doyle and Walker

(personal communication, September 17, 2001) have re-
cently developed a measure based on the entire trajectory
of the eye movement (shaded area of Figure 1). For each
sample n, the distance covered along the straight path be-
tween onset and endpointsince the previous sample (n21)
is multiplied by the perpendicular (signed) deviation of
sample n. The sum of these segments is taken as the
amount of curvature in the saccade. Because the devia-
tions are signed, a double-curved saccade such as that
shown in the right panel of Figure 1 would have a curva-
ture close to zero. (With a less symmetrical double-curved
saccade, this metric would be biased in the direction of the
more pronounced curve.) This method seems to be an ef-
fective way of determining the dominant direction and
magnitude of the curvature. However, as Figure 1 also
demonstrates, by simply multiplying the distance along
the abscissa by its associated deviation, each segment
alone will either under- or overestimate the area under the
curve for the corresponding part of the trajectory. If sac-

Figure 1. Illustration of the different metrics found in the literature. These metrics are imposed on a single-curved (left) and a double-
curved (right) saccade taken from the data set that was analyzed in this study. The saccades are translated so that the straight line be-
tween start and landing positions corresponds to the abscissa. The numbers on the axes represent degrees. See text for details of how
the metrics are calculated.
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cades are not symmetrically curved, this introduces a sys-
tematicbias, because the errors do not cancel each other out.

One potential problem shared by all the curvature met-
rics discussed above (except the area curvature method) is
that the calculationsare based on only a subset of the sam-
pled positions in each saccade. This may be particularly
problematic when the metric is based on a single point in
the trajectory (such as the initial direction and maximum
curvaturemeasures). Becauseeye trackers (especiallyuser-
friendly, cost-effective ones) are limited in their spatial
and temporal resolution, these metrics can be subject to
substantial measurement error. For instance, using the
SMI EyeLink system (SensoMotoric Instruments GmbH,
Teltow, Germany), we sampled eye position every 4 msec
and typically achieved a spatial accuracy of about 0.3º (the
upper limit that we allowed for is 0.5º, after Doyle &
Walker, 2001). In order to achieve a more reliable curva-
ture measure, we have developeda curve-fittingapproach.
Because all the data in a given saccade contribute to the
shape of the curve, these methods are less susceptible to
noise.

In this article, we report a systematic comparison of the
different curvature metrics. We took a set of eye-movement
records from one of our experiments, calculated the dif-
ferent measures, and exploredhow well they corresponded
with each other. Driven by informal observationsof double-
and even triple-curved saccades, we further aimed in this
study to investigate whether such saccades constituted a
distinct subset in the data set. The curve-fitting methods
allowed us to test this directly.

METHOD2

Data
The set of eye movement records was taken from one of our cur-

vature experiments, the results of which will be reported elsewhere.
Briefly, the aim of the experiment was to see whether the amount of
curvature away from irrelevant distractors was modulated by the tar-
get similarity of those distractors (cf. Ludwig & Gilchrist, 2002).
The two possible target locations, 6º left and right of the central fix-
ation point, were indicated by gray squares (“placeholders” ). After
500 msec, one of the placeholders turned red and the other turned
green. Twelve participants were asked to saccade to the red target.
Only the saccades that landed within a 2º region around the target
were subjected to the curvature analysis. On the majority of trials,
abrupt-onset distractors appeared either above or below fixation, but
only the no-distractor baseline trials were included in the analyses
reported here (571 trials pooled over the 12 observers).

Curve Fitting and Monte Carlo Simulation
Every saccade was translated so that the axis through its starting

and landing positions coincided with the abscissa (see Figure 1).
Four polynomials were fitted to each saccade: (1) a simple linear func-
tion, (2) a quadratic polynomial, (3) a cubic polynomial, and (4) a
quartic polynomial. For each polynomial, the R2 goodness of fit was
calculated for each saccade, and the distribution of these R2 values
was plotted.

There are two possible explanations for the increase in R2 associ-
ated with the increase in complexity of the polynomials fitted. The
first is that the more complex polynomials genuinely reflect the tra-
jectory of the saccades. For example, an improvement of fit as a re-
sult of the introduction of a quadratic component over and above the

linear one could mean that saccades are generally not linear. Alter-
natively, it may be that the increased degrees of freedom simply
allow the fitted function to accommodate deviations that are the re-
sult of noise. One way to differentiate between these two possibili-
ties is to investigate the spatial distribution of the residuals follow-
ing curve fitting. If the remaining variability in the trajectory is a
result of noise, there should be no systematic relationship between
the residuals (observed – predicted deviations) and their locations
within the trajectory.

To test the relation between residuals and their locations in the
trajectory, we carried out the following simulation. After fitting a
polynomial of order n to the raw samples of the saccade, we calcu-
lated the residual for each sample. These residuals were then ran-
domly assigned to the predicted deviations of the nth polynomial,
and the n11 polynomial was fitted (on the reshuffled trajectory).
The assumption was that if the remaining variance unaccounted for
represents simply noise instead of a systematic component, ran-
domly assigning this noise to different points in the trajectory should
not make a difference in the improvement of fit obtained with the
higher order (n11) function. After analyzing the entire data set in
this manner, we calculated the median R2 values for the quadratic,
cubic, and quartic fits. This procedure was run 5,000 times to extract
distributions of median R2 values. These distributions were used to
test directly whether the improvements of R2 with increasing degrees
of freedom were due to accommodating sampling noise or system-
atic trajectory components.

Calculation and Comparison of the Metrics
Again, as a first step, each saccade was translated so that the

straight line between start and endpoint coincided with the horizon-
tal axis, and the values on the ordinate indicate the perpendicular de-
viations from the straight line (as in Figure 1). We then calculated the
initial direction (8 msec into the saccade, i.e., at the third sample),
the initial average (mean of perpendicular deviations at the second
and third samples), the maximum curvature, and the area curvature
metric for each saccade in the data set. In addition, we derived cur-
vature mathematically from the second- and third-order polynomial
fits (quadratic and cubic curvature metrics).

First, the horizontal axis was rescaled so that each saccade started
at x 5 21 and ended at x 5 1. This rescaling leaves the shape of the
saccade and the function unaffected, but makes the units of the co-
efficients of the second-order polynomial meaningful. The quadratic
coefficient is a global property of the function and directly indicates
the amount of curvature. This amount equals the difference between
the predicted deviation at a particular point and the average of the
predicted deviations one unit to the left and right of that point (Dar-
lington, 1990). Because of the rescaling of the horizontal axis, cur-
vature is now defined relative to the predicted deviations at the start
and endpoint of the saccade. We will show later that these predicted
deviations are generally very close to zero. As a result, the quadratic
coefficient of the second-order fit approximates the deviation from
a straight line between start and endpoint. Furthermore, because this
deviation is in pixels, and given the fixed relation between number
of pixels and degrees of visual angle, curvature can be expressed in
terms of degrees. Thus, the quadratic coefficient can be used as a di-
rect estimate of the amount of curvature in units that are meaningful.

With regard to the third-order fit, the meanings of the coefficients
themselves are less immediately obvious, and we adopted a differ-
ent approach. Again, the fitted function is essentially treated as the
saccade itself, and two points of maximum curvature (i.e., the max-
imum and minimum of the function) can be calculated mathemati-
cally. The perpendicular deviation at these points relative to the
straight line between the predicted start and endpoint of the saccade
was determined. With two points of maximum curvature, one could
now simply choose the larger of the two (making this metric similar
to the maximum curvature metric, but basing it on the entire trajec-
tory) or focus on either the first or the second deviation, whichever
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is of theoretical interest. Here, we opted for the former method. Be-
cause the function is not restricted to the data points that were used
to determine its shape, it may well be that either the maximum or the
minimum lies outside the range of the observed movement. This will
be the case with clearly single-curved saccades. In these cases, the
first deviation is set to the curvature observed at the maximum or the
minimum within the range of the movement, and the second devia-
tion is simply set to zero.3

Maximum curvature, area curvature, and cubic curvature were all
expressed in terms of percentage points of the amplitude (i.e., the
number of pixels of the straight line between the start and the end of
the saccade). Finally, correlation coefficients between the six mea-
sures were calculated for each individual observer. Table 1 lists the
average correlations and their ranges.

RESULTS AND DISCUSSION

The R2-distributionsobtained followingpolynomialfit-
ting to the saccades are shown in Figure 2. It can be seen
that the linear fit does not represent the trajectories very
well. The largest increase in R2 is obtained by introducing
an extra component that accounts for a single curve in the
trajectory. However, it is clear that there is a populationof
saccades that is still not well accounted for by the qua-
dratic function, and this populationseems to have been de-

creased by fitting the third-order function. This popula-
tion may well be a subset of double-curvedsaccades (as is
illustrated in Figure 1, right panel).

The simulation resulted in normal distributions of me-
dian R2 values that indicate the goodness of fit that would
be expected if fitting a higher order function simply ac-
counted for sampling noise. The means (and standard de-
viations) of these distributions for the quadratic, cubic,
and quartic fits were .230 (6.011), .796 (6.008), and .912
(6.004), respectively. Testing the observed mediansagainst
these values showed that for the quadratic (z 5 38.08,p ,
.0001) and cubic (z 5 4.65, p , .0001) functions, the im-
provements in goodnessof fit were not due only to the ac-
commodationof noise. The observed R2 for the quartic fit
is actually somewhat smaller than that obtained with the
simulation, suggesting that the improvement from the
third- to the fourth-order fit was not indicativeof any sys-
tematic component in the saccade trajectories. These re-
sults support the existenceof a small populationof double-
curved saccades. We will return to this issue below.

Earlier, we argued that the quadratic coefficient may be
directly interpreted as the deviation (in pixels or degrees)
from a straight line between the predicted start and the

Figure 2. Distributions of R2 goodness-of-fit statistics for the linear fit and the
second-, third-, and fourth-order polynomials. Given the strongly skewed shape of the
distributions, the medians are given as a measure of central tendency.

Table 1
Means and Ranges of the Correlations Between the Curvature Metrics

Initial Initial Maximum Area Quadratic Cubic
Metric Direction Average Curvature Curvature Curvature Curvature

Initial direction 1 .91 .73 .77 .72 .72
(.82–.96) (.48–.90) (.66–.91) (.56–.84) (.51–.86)

Initial average 1 .73 .76 .70 .71
(.49–.89) (.60–.89) (.52–.83) (.43–.83)

Maximum curvature 1 .94 .94 .94
(.86–.98) (.85–.97) (.84–.98)

Area curvature 1 .98 .95
(.96–.99) (.93–.98)

Quadratic curvature 1 .98
(.95–.99)

Cubic curvature 1
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predicted endpoint of the saccade. This approximation
holds to the extent that the mean of the predicted devia-
tions at the start and the end of the movement are zero. On
a trial-by-trial basis, departures from zero can be fre-
quently seen. However, the mean predicted deviation
(M 5 0.02 averaged over observers) did not differ signif-
icantly from zero [t(11) 5 0.62].

Table 1 presents a list of the average correlations (and
their ranges) between the different metrics as computed
for this data set. Both measures based on the initial devi-
ation (initial direction and average) corresponded closely
with each other (M 5 .91). The associationsbetween these
two measures and the remaining four were only moderate
(Ms 5 .70–.77). This pattern of correlations suggests that
the initial deviation metrics measure something qualita-
tively different than the other metrics do, because they do
not utilize all the information that is contained within the
saccade trajectory.

The correlation between the area-based measure and
curvature based on the quadratic fit was particularly strong
(M 5 .98). Even though the goodnessof fit for the second-
order function was far from perfect, it seems to extract the
same information as does the area-based measure. As was
outlined earlier, a symmetrically double-curved saccade
would be assigned almost zero curvature according to the
area-based measure. Fitting a function with only one max-
imum or minimum on such a trajectory yields an almost
straight line, and its quadratic coefficient will be very
small. It seems that both metrics effectively calculate the
dominant direction and amount of curvature in a saccade,
taking the entire trajectory into account.

Figure 3 illustrates the association of quadratic curva-
ture with the maximum, area, and cubic curvature mea-
sures. Note the clusters of points along the horizontal
meridian in the left and right panels. These are the move-
ments that have been assigned close to zero curvature with
the quadratic fit, but that are curved according to the max-
imum and cubic metrics (sometimes to a considerable ex-
tent). Indeed, these metrics seem always to produce some

curvature, creating a discontinuity at the zero point (giv-
ing the impression of two distinct clusters). The disconti-
nuity is notably absent in the scatterplot of area against
quadratic curvature.

The population of saccades with quadratic curvature
close to zero consists of trajectories that are genuinely
straight and those that contain a double curve. The third-
order fit allowed for a more direct assessment of the oc-
currence of the latter type of trajectories. Although the

Figure 3. Associations of quadratic curvature with maximum curvature, area curvature, and cubic curvature. Note that some
saccades that have been assigned close to zero curvature with the quadratic fit are curved according to the maximum and cubic
curvature measures.

Figure 4. Cubic curvature. The absolute deviation at the first
maximum or minimum in the trajectory is plotted against the ab-
solute deviation observed at the second (if the second deviation is
present within the range of the movement). The numbers on the
axes are percentage points of the saccade amplitude (generally
around 6º). The individual saccade trajectories corresponding to
three data points are illustrated in the insets.
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cubic function has both a maximum and a minimum, for
a single-curved saccade one of these (the second in our
analysis) lies outside the range of the observed movement,
and its associated deviation was set to zero. If the move-
ment has a significant double curve, both the maximum
and the minimum of the functionwill fall within the range
of observed trajectory, and two deviations are computed.
Figure 4 depicts the absolute deviation derived at the first
maximum or minimum (cubic curvature #1) against that
derived at the second (cubic curvature #2). It is clear that
the majority of the saccade trajectories contain a single
curve (points along the horizontal and vertical zero-axes).
The points along the vertical zero-axis have a negligible
first curve, and then a stronger curve in the opposite di-
rection. The cluster of points with obvious positive values
on both axes represents a population of saccades that are
curved in both directions.

One potential problem for the curve-fitting methodol-
ogy (and for the area curvature metric, for that matter)
consists of saccade trajectories that show a small—often
just a fraction of a pixel in the cases we have examined—
reversal or a pause along the straight-line axis (i.e., the ab-
scissa in our analysis and figures). For instance, we have
noticedthe occurrenceof sampleswithin a saccade in which
xi , xi21 (i.e., reversal along the straight line) or xi 5 xi21
(i.e., two samples with the same x-coordinates but differ-
ent y-coordinates). These phenomena are particularly
prevalent at the end of the movement (when velocitydrops
off sharply), but they also occur midway through the tra-
jectory. The problem is that the curve fitting is based on
the spatial, but not the temporal, order of the samples.
Thus, for a trajectory with a small reversal along the x-
axis, the algorithm would try to fit a function on the sam-
ples (xi,yi) and (xi21,yi21), in that order, which does not re-
flect the actual order of these data points.

One solution is to consider the two samples in question
as a single data point (by averaging xi and xi21, and yi and
yi21), before fitting the curve. We have carried out this
analysis for the second-order fit and compared the resul-
tant measure of quadratic curvature with those obtained
using the uncorrected trajectories. Over the 12 observers,
the mean uncorrected and corrected quadratic curvature
values were 20.2351 and 20.2357, respectively [t(11) 5
0.39, n.s.]. In addition, the individualcorrelationsbetween
the two measures ranged from .997 to 1. It is important to
be aware of the potentially disruptive effect of the rever-
sals and pauses along the straight-line path. However, on
the basis of our analysis, we believe the quadratic curva-
ture metric is robust enough to allow these phenomena to
be ignored for practical purposes.4

CONCLUSIONS

The aims of this study were to (1) systematicallycompare
the curvaturemetrics used in previous research, (2) develop
new measures based on curve fitting, and (3) characterize
the shape of saccade trajectories in a large population of
eye movements. It appears that the vast majority of eye

movements are curved in only one direction, an assump-
tion that is particularly crucial for the maximum curvature
measure. However, there is a separate population of eye
movements that contain a double curve. Our approach al-
lows for an investigation into the functional significance
of these trajectories. (There is evidence that initial devia-
tions in the trajectories are sometimes overcompensated;
see Quaia, Pare, Wurtz, & Optican, 2000).

The analyses presented here demonstrate that both the
area-based measure and the quadratic curvature metric are
effective ways of dealing with both single- and double-
curved trajectories. These measures take into account the
entire movement and determine the dominant direction
and amount of curvature. Given that the quadratic mea-
sure makes no assumption about the symmetry of curves
within trajectories and that it results in a meaningful and
readily interpretable parameter (pixels or degrees of devi-
ation from the straight line between saccade start and end-
point), our preference lies with this metric.

More accurate eye tracking systems (e.g., the scleral
search coil) may provide more accurate estimates of max-
imum curvature and other measures that have been re-
viewed here. The curve-fitting method can easily be ap-
plied to data generated by systems other than the one we
have used (with the exception of dual Purkinje image eye
trackers that are less suitable for estimating eye position
during the saccade; see Deubel & Bridgeman, 1995). Re-
gardless of the equipment used, we believe it is desirable
to measure curvature taking the entire movement trajec-
tory into account.Finally,we would like to emphasize that
this approach can be extended to other types of movement
that can be represented in two dimensions, such as hand-
pointing movements.
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NOTES

1. In Van Gisbergen et al. (1987), observers made 40º saccades,
whereas 8º saccades were required in the studies by Sheliga, Riggio,
Craighero, and Rizzolatti (1995)and Sheliga et al. (1994, 1995). The du-
ration of the saccade varies with saccade amplitude. As a result of this
relation, the intervals at which the initial direction was sampled differed

in these studies (20 msec in Van Gisbergen et al., 10 msec in Sheliga’s
experiments). Our data set consisted of saccades to 6º targets, and we have
based ourcalculationsof these metrics on the first 8 msec of the movement.

2. The MATLAB functions that were written to carry out the curve fit-
ting,Monte Carlo simulation, and the calculation of the different metrics
are available from http://eis.bris.ac.uk/~pscjhl/downloads.html. An ex-
ample data set can also be downloaded for illustration of the format of
the input of the programs.

3. A similar approach could be taken to calculate curvature based on
the second-order fit. Here, one would compute the maximum or mini-
mum of the function and determine its perpendicular deviation with re-
spect to the straight line between predicted start and landing positions.
Indeed, using such a measure, we found that the results are very similar
to those obtained with the quadratic coefficient. The quadratic coeffi-
cient is intuitive and computationally more tractable. In addition, the
quadratic coeff icient is a more continuous measure, because it does not
involve having to actively set the curvature of some saccades (for in-
stance, double-curvedor genuinely straight trajectories) to zero. The lat-
ter procedure is obviously problematic when the number of these sac-
cades differs between experimental conditions.

4. We thank Robin Walker and his colleagues for bringing this issue
to our attention.
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