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Meta-analysisof psychologicalstudieshas often been re-
stricted to presenting estimates of summary statistics (i.e.,
effect sizes, often using standardized mean differences,
odds ratios, or correlationcoefficients)or estimating (fixed)
moderator effects on the basis of fixed-effects linear mod-
els. Fixed-effects analysis models the systematic between-
study differences and assumes subject-level sampling error
in the studies included in a meta-analytical research.

A random-effects framework, on the other hand, concep-
tualizes the current set of studies under consideration as
a random sample picked from a larger populationof stud-
ies. That is, each study-specific effect is sampled from the
larger populationof effects. Thus, each study has its own
populationeffect, and an inference is made about the larger
populationof effects. There are two sources of variability
in the random-effects framework: one that is due to the
variabilityof the effect parameters, and another that is due
to the sampling variabilityof experimental units (i.e., sub-
jects) in studies. In other words, random-effects analysis
takes into account the true variance (or the remaining un-
measured random effect between studies), in addition to
the modeled between-study differences and the sampling
error assumed in fixed-effects models.

Besides the theory-driven decisionsmeta-analystsmake
(Hedges & Vevea, 1998), practical reasons—the lack of
specialized computer programs, such as HLM (Rauden-
bush, Bryk, & Congdon,2000) or MLwiN (Rasbash et al.,
2000), or the time and effort to become familiar with a
new interface—discouragemany from conductingrandom-
effects analyses. (See Normand, 1995, for a comparative
review of specialized meta-analytic software packages.)

We believe that there are additional advantages to using
general purpose statistical software to perform random-
effects analysis. Meta-analysis involves an array of data
manipulation procedures, such as creating, combining,
or summarizing data sets, as well as preparing reports of
analytic results, and the advantage of having various data
management capabilities in a single statistical package
cannot be overstated. Furthermore, users of specialized
multilevel programs may dismiss the fact that many meta-
analytical procedures belong to a single class of statistical
models, called the mixed-effects linearmodel (Ware, 1985).

Fitting linear mixed-effects models by using the sta-
tistical software S-plus (Pinheiro & Bates, 2000) is an-
other option. However, we focus on using SAS for the
purposes of this paper, since SAS syntax is relatively sim-
ple and the software is widely available and more famil-
iar among psychologists. Lipsey and Wilson (2001) offer
an SPSS macro to fit fixed- or random-effects models for
meta-analysis, but not linear mixed-effects models.

SAS PROC MIXED, a built-in procedure of SAS that was
designed to conduct mixed-effects analysis, provides re-
searchers with an attractive alternative to conducting
random-effects meta-analysis by using specialized soft-
ware. The purpose of this paper is to present random-
effects meta-analysis as a special case of mixed-effects
linearmodels and to demonstrate the use of SAS PROC MIXED

to fit such meta-analytic models. Because SAS is one of
the commonly used standard statistical packages among
psychological researchers, our approach offers not only
conceptual generality, but also practical efficiency.

In their discussionsof random-effects models for meta-
analysis, Hedges and Olkin (1985) and Hedges and Vevea
(1998) referred to SAS procedures for carrying out the
computations. Unfortunately, however, these authors did
not provide any SAS syntax that would have facilitated
readers’ conducting such procedures. A comprehensive
guide to performing meta-analysis with SAS software is
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provided by Wang and Bushman (1999). The present tu-
torial is intended to complement the former documenta-
tion by offering three examples of meta-analysis from
the field of psychology, along with explanations and in-
terpretations focusing primarily on the MIXED procedure.

In the next two sections,we formulate a random-effects
model for normally distributed effect sizes and show that
it is a special case of mixed-effects linear models. We also
argue that random effects should be estimated in some
meta-analysis research. The succeeding three sections
contain examples illustrating our approach. The first ex-
ample concerns studies of gender difference in field ar-
ticulation ability (Hyde, 1981), which use mean differ-
ences as effect sizes. The second example illustrates how
a mixed-effects model involving a study-level covariate
reduces to a f ixed-effects linear model, using a meta-
analysis of studies on the effectiveness of two particular
tests that measure cognitive impairment in elderly pa-
tients (Hasselblad & Hedges, 1995). Finally, a meta-
analysis of studies on addiction intervention programs
presents the analysis of a series of 2 3 2 tables, using odds
ratio (on a logarithmic scale) as the effect size measure
(Haddock, Rindskopf, & Shadish, 1998).

MIXED-EFFECTS LINEAR MODELS

Analysis of variance (ANOVA) and linear regression
models are two examples of the general linear models fa-
miliar to psychologists. As will be illustrated below, the
mixed-effects linear model represents an extension of
such general linear regression models and the random-
effects ANOVA models.

The general form of mixed-effects linear models is

Y 5 X b + Z b 1 e, (1)

where Y is the (k 3 1) vector of summary statistics (ef-
fect sizes) from a number of k-related but independent
studies, X (k 3 p) is the design matrix describing study
characteristics (covariates) that influence fixed effects,
b ( p 3 1) is the vector of f ixed-effects parameters,
Z (k 3 q) is another design matrix describing the covari-
ates for the random effects, b (q 3 1) is the vector of ran-
dom effects or the residuals on the between-study level,
and e (k 3 k) is the matrix of residuals on the within-
study level.

The effect sizes are assumed to be normally distrib-
uted.1 The random effect b has a multivariate normal dis-
tribution with a zero mean vector and a covariance ma-
trix D (k 3 k). The chance error e is a multivariate normal
with zero means and a covariance matrix R (k 3 k). The
random effect b and the chance error e are assumed to be
independent of each other. The within-study residuals
are assumed to be normally distributed. Moreover, they
are usually assumed to be distributed in an identical man-
ner within each group. However, for a meta-analysis in-
volving large sample sizes, the within-study variances
can be considered known, and the covariance matrices R
are specified as diagonal matrices with known sample
variances of the study effect sizes on their diagonals.

In the simplest case, in which k number of primary stud-
ies in a meta-analysis have the same characteristics and
the residuals on the between-study level are the only ran-
dom effects, we obtain a random-effects one-way ANOVA
model with fixed within-study variances. In terms of the
mixed-effects formulation, this model can be written as

Y 5 μ 1 b 1 e, (2)

where Y is the k-vector of effect sizes observed from the
studies and μ (k 3 1) is the overall average population
effect.

The specification of study-specific chance error e is
the same as above, and the random effect b has a normal
distributionwith zero means and a single variance param-
eter t for the (k 3 k) variance–covariance matrix. Cur-
rently, a common method for estimating variance com-
ponents (i.e., t) in general linear models is to use the
so-called restricted maximum likelihood (REML). In sim-
ple terms, the REML estimates of t take into account the
loss of degrees of freedom in the estimation of fixed ef-
fects. The reader is referred to Brown and Kempton (1994)
for an accessible account of REML estimation and its ap-
plications. By default, SAS PROC MIXED estimates the co-
variance parameters with the REML method.

WHY ESTIMATE RANDOM EFFECTS?

The key result of the previous random-effects model
is that, given the observed effect sizes, the estimated over-
all average treatment effect (μ), and the between-study
variance (t), an estimate of the (true) study-specific ef-
fect size for the ith study is normally distributed, with a
mean of

ai μ + (1 2 ai) yi, (3)

where ai 5 si / vi and vi 5 (si + t), si is the known within-
study variance for the ith study, and yi is the observed ef-
fect size for the ith study. Thus, an estimate of the true
study-specific effect size is a weighted average of the es-
timated overall effect size μ (averaged over all the studies
combined) and the observed effect size of a particular
study. The weight is determined by the relative sizes of
the between-study and the within-study variances. It is
clear that the estimated overall average effect size μ is a
good summary measure for all the studies combined only
if the between-study variance t is much smaller than the
within-study variances.

It can be shown that when the between-study variance t
is known, the maximum likelihood estimate of the over-
all average effect size μ is

In other words, μ is the weighted average of effect sizes
with weights equal to the inverse of the sum of the variance
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components. The fixed-effects approach widely used in
psychological research assumes that the between-study
variance t is zero and checks the assumption by the ho-
mogeneity test (Hedges & Olkin, 1985). In theory, how-
ever, the between-study variance is rarely zero and should
be accounted for in the overall treatment effect size.

EXAMPLE 1
Gender Differences in Field Articulation Ability

The Data
This example is taken from Hedges and Vevea (1998),

who used Hyde’s (1981) meta-analytic studies on cogni-
tive gender differences to illustrate methods for meta-
analysis. This particular meta-analysis included the re-
sults of 14 independent studies on gender differences in
field articulation ability and used standardized differ-
ence of means as the effect size.

The sample sizes of the 14 studies ranged from 30 to
163, with a median sample size of 45. The variances of
the differences of means (i.e., the effect sizes) can be es-
timated from the observed data, and the within-study vari-
ances are considered to be known for each study. This es-
timation method is reasonable because the sample sizes
of the studies are quite large. A simple random-effects
model (Equation 2) is used to analyze this data set.2 The
focus here is to assess the overall average gender effect
from the 14 individual studies and to gauge the amount
of variability among these studies. In other words, we wish
to estimate the parameters μ and t of b (the random ef-
fect) in Equation 2. The effect sizes of the 14 studies are
the observed responses Y, and the variances of the effect
sizes are known variances in the diagonal of the variance–
covariance matrix R.

SAS Syntax
Listing 1 displays the SAS statements for the analysisof

the gender difference data (Hyde, 1981). We assume that
readers are familiar with the general implementation and
execution of SAS programs, but those seeking for more
details about the program are referred to the SAS/STAT

User’s Guide, Version 8 (SAS Institute, 1999). Details
about fitting mixed-effects models are offered in SAS
System for Mixed Models (Littell, Milliken, Stroup, &
Wolfinger, 1996).

Under the DATA and INFILE statements, we name the data
set sexdif, which is read in from the text file, sexdif.asc.
As we see under the INPUT command, this data set con-
sists of two columns, study and diff. The first column is
the study identification number (from 1 to 14), and the
second column is the observed difference in means (effect
sizes) for each study.

The CLASS statement under PROC MIXED specifies cate-
gorical variable(s) (study in our case) not containing quan-
titative information. The MODEL, RANDOM, and REPEATED

statements together specify the statistical model we are fit-
tingonto the data set.The MODEL statement identifiesourde-
pendent variable and the fixed effects. In our model, the ef-
fect sizes (diff ) are modeled by the fixed-effects of the
intercept,which is impliedby default. The RANDOM and RE-
PEATED statements together estimate the random effects
(study) and the between-study variance. We request SAS to
include in the output the estimates, standard errors, t statis-
tics, and p values for significance testing for each of the
fixed (the average overall treatment) and random effects,
using the SOLUTION options.The P option provides us with a
table of predicted study-specific effect sizes and residuals.

We supply the initial estimates of the parameters under
the PARMS statement.3 However, there is no need to estimate
the within-study variances, since they are known. Hence,
the EQCONS optionholds those parameters constant.On the
other hand, we give the between-study variance parameter
an initial value of .050, which is roughly the average of all
the within-studyvariances. (By supplyinga rough approx-
imation as the starting value, we can facilitate the estima-
tion process for SAS.) There is evidence that variance be-
tween the studies exists, or in other words, we find
heterogeneityamong the studies, and therefore the between-
study variance cannot be ignored in this example. Such a
parameter is estimated by using the default REML method.

SAS Output
Listing2 displaysoutput from the call to SAS PROC MIXED.

The Solution for Fixed Effects provides the estimated over-
all averagegenderdifference in field articulationability and
its standard error, based on the 14 studies. We see that the
average effect size is approximately .5492, with a standard
error of .0967. On the basis of these estimates, we can cal-
culate the 95% confidence interval of the average effect
size, which is between .3597 and .7387. Listed under the
Covariance Parameter Estimates (REML) is the estimated
residual on the between-study level, or the random effect.

EXAMPLE 2
Cognitive Tests for Elderly

The Data
Hasselblad and Hedges (1995) introduced a meta-

analysis of four studies on the effectiveness of two cog-
nitive tests designed to detect mild cognitive impairment

Listing 1
SAS Codes for Example 1 (Hedges & Vevea, 1998; Hyde, 1981)

TITLE ‘Gender Difference Studies’ ;

DATA sexdif;
INFILE ’sexdif.asc’;
INPUT study diff;

PROC MIXED DATA=sexdif;
CLASS study;
MODEL diff = / P SOLUTION;
RANDOM study / SOLUTION;
REPEATED / GROUP = study;

PARMS (.050)
(.071)(.033)(.137)(.135)(.140)
(.095)(.106)(.121)(.053)(.025)
(.044)(.092)(.052)(.095) / EQCONS=2 to 15;

RUN;
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in the elderly. The two cognitive tests were the Trailmak-
ing Test and the Misplaced-Objects Task (MOT), and the
goal of the analysis was to compare the average effective-
ness of the two screening tests.

SAS Syntax
The SAS statements used to conduct this analysis are

illustrated in Listing 3. The two types of cognitive tests
(Trail and MOT) in this meta-analysis are included in the
model as covariates (fixed effects) at the study level.There-
fore, the variable (cogtest) is listed under the CLASS (be-
cause it is a categorical variable) and MODEL statements.

SAS Output
Listing 4 shows the SAS output to our previous set of

statements. The Covariance Parameter Estimates indi-
cate that the between-study variance estimate is equal to
zero, which suggest that the random-effects model is iden-
tical to the fixed-effects model for this particular analy-
sis. This does not necessarily imply that there is no vari-
ance between the four studies. Rather, the estimated value
of the random effect was “set” to zero, because the resid-
uals on the between-study level were very small or neg-
ligible, relative to the residuals on the within-study level.

As is displayed under the Solution for Fixed Effects, the
overall estimated average effect size for the Trailmaking
tests is 1.87, with a standard error of approximately 0.21.
The average effect size for the MOT is 1.32 (1.87 2 0.55),
and the standard error for the fixed effect of the MOT is
about 0.27. An approximate 95% confidence interval for
the difference in effectiveness of the two screening tests
is given by

(1.87 2 1.32) ± 1.96 * 0.27 5 [0.02, 1.08].

We see that the mean effect size for the Trailmaking tests
is significantly greater than that for the MOT.

EXAMPLE 3
Psychosocial Treatments for Addiction

The Data
Haddock et al. (1998) reported results from 24 studies

on the effectiveness of psychosocial treatments for indi-

viduals who were addicted to alcohol (12 studies), to
illegal drugs (5 studies), or to smoking cigarettes (7 stud-
ies). The raw data for each study are the number of suc-
cesses over the total number of clients in each of the treat-
ment and control groups. These authors used odds ratio
(on the logarithmic scale) as the effect size measure.

Let rc be the number of successes in the control group
and rt be the number of successes in the treatment group
of a particular study; let nc and nt be the respective sam-
ple sizes of the two groups in the study. Then, the log odds
ratio (i.e., the effect size) for this study is estimated by

log ({rt (nc 2 rc)}/{rc (nt 2 rt)}).

When the sample size of a study is large, the distribution
of log odds ratio approximates the normal distribution
with a mean of

log ({pt(1 2 pc)} / {pc(1 2 pt)});

where pc is the probability of success in a control group
and pt is the probability of success in a treatment group
of the same study. The (asymptotic) variance of the log
odds ratio (see Agresti, 1996) is

+ + + .

Haddock et al. (1998) specified a random-effects model
on the log odds ratio for their meta-analysis:

LORi 5 b0 + b1 Alcoholi + b2 Smokei + bi + ei , (4)

where LORi is the observed log odds ratio for the ith
study, Alcoholi and Smokei are the indicatorvariables for
the ith study (e.g., Alcoholi is 1 if the ith study is an al-
cohol study, otherwise its value is 0), b0 is the average
treatment effect size for illegal drug addiction, b1 is the
average treatment effect size for alcohol above that of the
drug studies, b2 is the average treatment effect size for
smoking above that of the drug studies, bi is the random

1
}
nc 2 rc

1
}
rc

1
}
nt 2 rt

1
}
rt

Listing 2
SAS Output of Example 1

Gender Difference Studies

Covariance Parameter Estimates (REML)
Cov Parm Group Estimate Alpha Lower Upper

STUDY 0.05638090 0.05 0.0202 0.4668
DIAG STUDY 1 0.07100000 . . .
DIAG STUDY 2 0.03300000 . . .
DIAG STUDY 3 0.13700000 . . .
. . . . . .
. . . . . .
DIAG STUDY 14 0.09500000 . . .

Solution for Fixed Effects
Effect Estimate Std Error DF t Pr > | t |

INTERCEPT 0.54921090 0.09672197 13 5.68 0.0001

Listing 3
SAS Codes for Example 2 (Hasselblad & Hedges, 1995)

TITLE ’Elderly Studies’;

DATA elderly;
INPUT study effsize cogtest $;

CARDS;
1 1.75 Trail
2 1.94 Trail
3 1.34 MOT
4 1.30 MOT

;

PROC MIXED DATA=elderly;
CLASS study cogtest;
MODEL effsize = cogtest / P SOLUTION;
RANDOM study / SOLUTION;
REPEATED / GROUP = study;

PARMS (.08)
(0.1209) (0.07) (.048) (0.0757)
/ EQCONS=2 to 5;

RUN;
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effect or the residuals on the between-study level, and ei
is the residual on the within-study level. In terms of mixed-
effect linear models, we write

LOR 5 X b + b + e, (5)

where LOR is a 24 3 1 vector of log odds ratios, X is a
24 3 3 design matrix with 1s on the first column fol-
lowed by two columns of values for the indicator vari-
ables, b is a 3 3 1 vector of fixed-effects parameters, b
is a multivariate normal with a mean vector 0 (24 3 1)
and a variance–covariance matrix that equals t times a
24 3 24 identity matrix, and e is also a multivariate nor-
mal with a mean vector 0 (24 3 1) and a variance–co-
variance matrix of a 24 3 24 diagonal matrix with the
known variances of the log odds ratios on the diagonals.

SAS Syntax
The SAS program file for fitting the model specified

in Equation 5 is shown under Listing 5. These SAS codes
basically follow the same syntax pattern as that in the
f irst example, but two additions are noted. First, we
added the COVTEST option under the MIXED procedure to
request the printing of standard errors and test statistics
for the variance and covariance parameters. However,
these test results should be used with great care (see Ver-
beke & Molenberghs, 1997). Also, we now have the co-
variates at the study level. Since we have three types of
studies—illegal drugs, alcohol, and smoking—studies
concerning illegal drugs were arbitrarily chosen as the
baseline (as expressed in Equation 4), and therefore the
model included dummy codings of the other two vari-
ables, alcoh and smoke. These two variables were listed
under the MODEL statement in the MIXED procedure to es-
timate the average treatment effect size of the drug stud-
ies (b0 in Equation 4) and the average treatment effect
sizes of alcohol (b1) and smoking studies (b2) above
that of the drug studies.

SAS Output
Output from PROC MIXED is shown in Listing 6. Under

the Solution for Fixed Effects, we see that the average
effect sizes for illegal drug, alcohol, and smoking cessa-

tion studies are approximately 1.2845, 0.0332 (1.2845 2
1.2513), and 0.3979 (1.2845 2 0.8867), respectively. It
was found that psychosocial treatments appeared to be
most effective for individualsaddicted to illegal drugs and
least effective for those individuals addicted to alcohol.

The estimated value of interstudy variance is 0.136,
and its standard error estimate is 0.0968. If this estimate
is significantly different from zero (unlike the present
case), it indicates that the overall average effect size must
be interpreted as the mean effect, rather than as the effect,
disregarding the size of the within-study variances.

SUMMARY

Our three examples illustrated how to conduct a meta-
analysis by using linear mixed-effects models in SAS.
The first example contained 14 studies, across which we
found heterogeneity. By fitting a random-effects model
to the data, we were able to estimate the overall effect size,
taking into consideration the between-study variance.

Listing 4
SAS Output of Example 2

Elderly Studies

Covariance Parameter Estimates (REML)
Cov Parm Group Estimate

STUDY 0.00000000
DIAG STUDY 1 0.12090000
DIAG STUDY 2 0.07000000
DIAG STUDY 3 0.04800000
DIAG STUDY 4 0.07570000

Solution for Fixed Effects
Effect COGTEST Estimate Std Error DF t Pr > | t |

INTERCEPT 1.87033002 0.21055192 2 8.88 0.0124
COGTEST MOT 20.54585144 0.27148923 0 22.01 .
COGTEST Trail 0.00000000 . . . .

Listing 5
SAS Codes for Example 3

(Haddock, Rindskopf, & Shadish, 1998)

TITLE ’Addiction Studies’;

DATA addict;
INFILE ’addict.asc’;
INPUT study lor alcoh smoke;

PROC MIXED COVTEST DATA=addict;
CLASS study;
MODEL lor = alcoh smoke / P SOLUTION;
RANDOM study / SOLUTION;
REPEATED / GROUP = study;

PARMS (.50)
(1.83)(.52)(1.03)(.86)(.55)
(.19)(.39)(2.03)(.63)(.37)
(.33)(.08)(.44)(.41)(.2)
(.62)(.55)(.13)(.08)(.23)
(.17)(.25)(.12)(.04) / EQCONS=2 to 25;

RUN;

Listing 6
SAS Output of Example 3

Addiction Studies

Covariance Parameter Estimates (REML)
Cov Parm Group Estimate Std Error Z Pr > | Z |
STUDY 0.13591875 0.9675427 1.40 0.1601
DIAG . STUDY 1 1.83000000 . . .
DIAG STUDY 2 0.52000000 . . .
DIAG STUDY 3 1.03000000 . . .

. . . . . . .

. . . . . . .
DIAG STUDY 24 0.04000000 . . .

Solution for Fixed Effects
Effect Estimate Std Error DF t Pr > | t |
INTERCEPT 1.28453744 0.32745844 21 3.92 0.0008
ALCOH 21.25130325 0.39395937 0 23.18 .
SMOKE 20.88667695 0.38059938 0 22.33 .



META-ANALYSIS USING SAS PROC MIXED 107

The second example illustrated how the mixed-effects
linear model reduces itself to a fixed-effects model when
the between-study variation is very small relative to the
within-study variances. In some meta-analytic cases, it is
not appropriate to report a single effect size to character-
ize all of the studies included in the analysis. Our last ex-
ample showed how one could report different effect sizes
for different study characteristics included in one meta-
analysis by introducing covariates into the mixed-effects
model. The three examples together speak to the advan-
tages of modeling mixed-effects linear models to the data
when conducting a meta-analysis.
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NOTES

1. However, in reality, this assumption is unlikely to be met, owing to
the censoring effects of null findings. The issue of publication bias is
complicated and beyond the scope of this paper. Refer to Begg (1994)
for a more complete discussion on this topic.

2. It should be pointed out that simple noniterative formulas are avail-
able that can easily be used to perform a meta-analysis, using a simple
spreadsheet (such as Excel) or a hand calculator (see, e.g., DerSimon-
ian & Laird, 1986; Hedges & Olkin, 1985).

3. Using the gdata statement is another option, as was suggested by
Wang and Bushman (1999).
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