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Every day we are faced with situations in which we must
choose a course of action on the basis of uncertain (or
imperfect) predictors. For example, we might decide to
bring or not bring a heavy jacket to work on the basis of
a quick feel of the early morning temperature. This is a
categorization problem because there are many possible
early morning temperatures that one might observe, but
only two courses of action. If we decide to bring a heavy
jacket and it is cold that day, or if we decide not to bring
a heavy jacket and it is warm, we have made a correct de-
cision. If we decide to bring a heavy jacket and it is warm
that day, or if we decide not to bring a heavy jacket and
it is cold, we have made an incorrect decision.Performance
in these types of categorization tasks is dependent on at
least three factors: the predictability of the stimulus in-
formation for correct categorization,the prior probabilities
(or base rates) of the categories, and the costs and benefits
(or payoffs) associated with each categorizationdecision.

Information sources differ in their predictability for
correct categorization. For example, in Central Texas the
early morning temperature is only moderately predictive
of the weather later that day, whereas in Southern Cali-
fornia the early morning temperature is a much better
predictor. Throughout this article, we use the term cate-
gory discriminability to refer to the expected diagnosticity
of the information source. Categories with high discrim-
inability lead to more accurate performance, whereas cate-
gories with low discriminability lead to less accurate per-

formance. The category base rates also affect perfor-
mance. For example, if a cold front has set in, cold days
will be more likely than warm days. Base rates can bias
observers’ decisions by shifting their decision criteria
along the stimulus dimension. For example, during a cold
front, one might be more likely to bring a heavy jacket
even if it is moderately warm in the morning. Finally, the
payoffs associated with each categorization decision will
affect performance. We generally benefit when we make
the “correct” decision, but the benefit for the two types
of correct decisions might differ. For example, we might
benefit more when we bring a heavy jacket on a cold day,
by staving off the flu, than if we do not bring a heavy
jacket on a warm day. The greater benefit of staving off
the flu might bias one’s decision in such a way that one
is more likely to bring a heavy jacket even if it is warm
in the early morning. (The costs of the two types of in-
correct decisions might also differ, but the present study
focuses only on the effects of unequal benefits.)

The perceptual and cognitive processes involved in
solving categorization problems of this sort have been
studied extensively (Ashby, 1992a;Busemeyer & Myung,
1992; Green & Swets, 1966; Healy & Kubovy, 1981;
Koehler, 1996; Macmillan & Creelman, 1991; Maddox,
1995; Maddox & Ashby, 1993; Maddox & Bohil, 1998a,
1998b, 2000; Stevenson, Busemeyer, & Naylor, 1991;
von Winterfeldt & Edwards, 1982). A fruitful approach
has been to compare human performance with that of the
optimal classifier—a hypothetical device whose catego-
rization decisions maximize long-run reward. This ap-
proach is useful because the effects of category discrim-
inability, base rates, and payoffs are identifiable in the
optimal classifier’s performance and thus can be investi-
gated systematically. Several studies (to be reviewed
shortly) have examined base-rate and payoff sensitivity
in perceptual categorization tasks, althoughmost of these
have examined either base-rate or payoff manipulations
(Busemeyer & Myung, 1992; Lee & Janke, 1964, 1965;
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Maddox, 1995; Maddox & Bohil, 1998b) and have not
manipulated both within the same experimental frame-
work (however, see Green & Swets, 1966; Healy & Ku-
bovy, 1981; Maddox & Bohil, 1998a). To our knowl-
edge, no studies have examined the effects of category
discriminability on base-rate and payoff sensitivity in
perceptual categorization (however, see Kubovy & Healy,
1980).

THE OPTIMAL CLASSIFIER

Consider an experiment involving two categories, A
and B, whose exemplars vary continuously along a di-
mension, x. When presented with a stimulus, the optimal
classifier perfectly encodes the dimensional value. In
other words, for a fixed physical input the optimal clas-
sifier will show no variability in the perceptual repre-
sentation (although there may be random variation in the
physical input to the perceptual system from a f ixed
stimulus; Geisler, 1989). The optimal classifier has com-
plete knowledge of the distribution characteristics (i.e.,
the form and parameters) of each category. It uses this
information to generate the optimal decision function,

lo(x) 5 f(x |B) / f(x |A), (1)

where f(x | i) denotes the likelihoodof perceptual effect x,
given a stimulus presentationfrom Category i. If this like-
lihood ratio is greater than one, the perceptual effect is
more likely to have resulted from Category B.

The optimal classifier also has perfect knowledge of
category base rates and the benefits associated with each
response. The optimal classifier integrates this informa-
tion to derive the optimal decision criterion,

bo 5 [P(A) / P(B)] 3 [(VaA 2 VbA) / (VbB 2 VaB)], (2)

where P(A) and P(B) denote the category base rates, and
VaA and VbB denote the benefit associated with correct
responses (lowercase letters denote responses, uppercase
letters denote category membership), and VbA and VaB de-
note the costs of incorrect responding. In the present re-
search, all costs are zero, so these last two (cost) terms
can be dropped.

The optimal classifier (e.g., Green & Swets, 1966)uses
lo(x) and bo to formulate the optimal decision rule:

If lo(x) > bo, then respond “B,”

otherwise respond “A.” (3)

When the base rates and benefits are such that respond-
ing is unbiased, then bo 5 1. When the base rates, bene-
fits, or some combination of the two favors Category A,
bo > 1. Conversely, when the base rates, benefits, or
some combination of the two favors Category B, bo < 1.
The partition that separates the “A” and “B” response re-
gions [where lo(x) 5 bo] is called the optimal decision
bound (Ashby, 1992a; Maddox & Ashby, 1993).

BASE-RATE AND PAYOFF EFFECTS IN
PROBABILISTIC CATEGORIZATION

A seminal study of base-rate and payoff learning was
conducted by Healy and Kubovy (1981; see also Green
& Swets, 1966). In the study, two normally distributed
categories were constructed with category d ¢ 5 1. A sche-
matic illustration of two normally distributed categories
with d ¢ 5 1 is depicted in Figure 1 (for now, ignore the two
decision criteria, b and bo, and the shaded area denoted
“CCP”). The stimuli were five-digit numbers represent-
ing the heights of individuals from a hypothetical popu-
lation, and observers were instructed to categorize a pre-
sented stimulus as being the height of either a man or a
woman. A within-observers design was used, and each
observer completed a number of experimental condi-
tions in which category base rates, payoffs, or both were
manipulated. (Like the present study, only benefits were
manipulated while holding costs fixed at zero.) Three re-
sults stand out. First, across base rate alone, payoff alone,
and simultaneous base-rate/payoff manipulations, ob-
servers exhibited a pattern of responding known as con-
servative cutoff placement (CCP). Specifically, they used
decision criteria that fell somewhere between the opti-
mal decision criterion and the equal likelihood (b 5 1)
decision criterion. An example in which the optimal de-
cision criterion, bo, equals 3 is depicted in Figure 1. The
shaded region denotes the set of decision criteria that re-
sult in CCP. Second, the observers’ decision criteria were
consistentlycloser to the optimal decision criterion when
base rates, as opposed to payoffs, were manipulated,even
though the optimal decision criterion was identical in the
two cases. Finally, Stevenson et al. (1991) reanalyzed the
Healy and Kubovy (1981) data and found some support
for the notion that observers combine base-rate and pay-
off information independently, as is predicted by the op-
timal classifier (see Equation 2).

Several explanationsfor observers’ suboptimal respond-
ing have been offered (e.g., Healy & Kubovy, 1981; Ku-
bovy, 1977; Kubovy & Healy, 1980; Maloney & Thomas,
1991; Thomas & Legge, 1970). One hypothesis that is of

Figure 1. Decision criterion for the classifier that maximizes
long-run reward (bo 5 3) and the equal likelihood (b 5 1) deci-
sion criterion. The shaded area denotes the region for which con-
servative cutoff placement (CCP) results.
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particular interest states that the steepness of the objec-
tive reward function (ORF) influences the observer’s
ability to learn the optimal decision criterion (e.g., Buse-
meyer & Myung, 1992; Dusoir, 1980; Kubovy & Healy,
1977; Thomas, 1975). The ORF plots the predicted re-
ward for different values of the decision criterion, defined
in signal detection theory as follows: lnb /d ¢ (Busemeyer
& Myung, 1992; Stevenson et al., 1991; von Winterfeldt
& Edwards, 1982). More specifically, the reward for a
given criterion value is determined by VaAP(A)PcA +
VbBP(B)PcB, where PcA and PcB represent the proportion
correct from Categories A and B, respectively, for that
criterion value. A large body of theoreticalwork has shown
that the steepness (or change in reward as a function of
changes in the decision criterion) of the ORF is strongly
affected by the category discriminability, or d ¢ (Buse-
meyer & Myung, 1992; Stevenson et al., 1991; von Win-
terfeldt & Edwards, 1982). The ORF for two category
discriminabilities, d ¢ 5 1 and d ¢ 5 2.16, are displayed in
Figure 2. Notice that the function is relatively flat for
d ¢ 5 1 and is much steeper for d ¢ 5 2.16. In fact, the
function is steepest for d ¢ values near 2.16. If observers
adjust their decision criterion on the basis of the rewards
that they accrue in the task (e.g., Dusoir, 1980; Kubovy
& Healy, 1977; Thomas, 1975), it is likely that observers
will stop adjusting their criterion when they reach the
flat portion of the reward function. Because the ORF is
steeper for d ¢ 5 2.16 than for d ¢ 5 1, the observer’s de-
cision criterion and performance should be closer to op-
timal when d ¢ 5 2.16 than when d ¢ 5 1. To date, this
flat-maxima hypothesis has not been tested empirically.
A major goal of the present study was to test rigorously
the flat-maxima hypothesis.

The flat-maxima hypothesis provides a testable expla-
nation for the poor performance when d ¢ 5 1, but it does
not offer an explanation for the fact that base-rate per-
formance is generally superior to payoff performance.
Maddox and Bohil (1998a) offered a competitionbetween
reward and accuracy maximization (COBRA) hypothe-

sis that predicts this pattern of results. The idea is that
observers attempt to maximize long-run reward, as in-
structed, but also place some importance on the accuracy
of their responding. When payoffs are manipulated and
base rates are equal, both goals cannot be achieved si-
multaneously, because the decision rule that maximizes
accuracy is different from the decision rule that maxi-
mizes reward. Suppose the payoffs are such that bo 5 3.
In this case, accuracy is maximized when b 5 1, but re-
ward is maximized when bo 5 3 (see Figure 1). An ob-
server who places importance on both goals will likely
use an intermediate value of b. Suppose the base rates
are such that bo 5 3. In this case, accuracy and reward
are maximized when bo 5 3 (see Figure 1). Thus, the ob-
server’s decisioncriterion shouldbe closer to optimalwhen
base rates, as opposed to payoffs, are unequal.1

A final issue to be addressed is the independence as-
sumption of the optimal classifier. Specifically, the op-
timal classifier combines independently base-rate and
payoff information when constructing the optimal deci-
sion criterion. Stevenson et al. (1991) tested the indepen-
dence assumption in Healy and Kubovy’s (1981) catego-
rization data where d ¢ 5 1. Maddox and Bohil (1998a,
Experiment 2) tested the independence assumption in
data from a categorization problem where d ¢ 5 2.16. In
both cases, the independence assumption received sup-
port. Unfortunately, a number of procedural differences
exist between these studies that make a direct compari-
son difficult. The present study manipulated category d ¢
within the same experimental framework, which pro-
vided a stronger test of the independence assumption.

EXPERIMENT

The goals of the present research were many. First, we
examined the effects of category discriminability, d ¢, on
categorization performance when base rates, payoffs, or
both were manipulatedwithin a fixed experimental frame-
work. Second, we assessed whether any discriminability

Figure 2. Objective reward functions associated with d ¢ 5 1 and d ¢ 5 2.16.
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effects matched the pattern of results predicted by the
flat-maxima hypothesis. Third, we tested rigorously the
hypothesis that observers combine base-rate and payoff
information independently, as is predicted by the opti-
mal classifier. Fourth, we examined the time course of
learning by having observers complete several blocks of
trials in each experimental condition and by analyzing
the block-by-block data. To achieve these goals, we ex-
amined a number of summary statistics, including accu-
racy rates, point totals, and decision criterion values
derived from hit and false alarm rates. In addition, we
applied a series of decision bound models, each of which
instantiated a specific hypothesis regarding base-rate
and payoff learning and the potential effects of category
discriminability.

As in two recent studies (Maddox & Bohil, 1998a,
2000) a within-observers design was utilized. A within-
observers design is advantageous for at least two rea-
sons. First, it minimizes the effects of within-group vari-
ance. Second, it provides a richer set of data that allows
rigorous tests of a number of hypotheses that could not
be tested on data from between-observers designs (e.g.,
the independence assumption of the optimal classifier).
Five base-rate and payoff conditionswere combined fac-
torially with two category discriminabilities for a total of
10 experimental conditions. The 5 base-rate/payoff con-
ditionswere the same as those used by Maddox and Bohil
(1998a, Experiment 2). These included a 3:1 base-rate-
only condition, a 3:1 payoff-only condition, a 3:1 base-
rate/3:1 payoff condition, a 3:1 base-rate/1:3 payoff con-
dition, and a 1:3 base-rate/3:1 payoff condition. For
brevity, these conditions are referred to throughout the
remainder of the article as follows: 3:1B/1:1P (1:1P de-
notes the unbiased payoff values), 1:1B/3:1P (1:1B de-
notes unbiased base-rate ratio), 3:1B/3:1P, 3:1B/1:3P,
and 1:3B/3:1P, respectively. We refer to the latter three
conditionscollectivelyas combinationconditions, because
in these conditions, we manipulate simultaneously base-
rate and payoff ratios.

Method
Observers

Eight observers were solicited from the University of Texas com-
munity. The observers were paid on the basis of their day-to-day
performance in the task. All the observers claimed to have 20/20 vi-
sion or vision corrected to 20/20.

Stimuli and Stimulus Generation
The stimulus was a dot that varied in vertical (or horizontal) lo-

cation from trial to trial, presented within a 500 3 500 pixel square
that was centered on a 1,024 3 768 resolution computer screen. In
conditions in which the dot varied in vertical (horizontal) position
from trial to trial, the horizontal (vertical) position of the dot re-
mained fixed at the center of the screen. For each observer, one cat-
egory d ¢ condition always used a dot that varied in vertical posi-
tion, and the other d ¢ condition always used a dot that varied in
horizontal position. The d ¢s with horizontal/ vertical pairings were
counterbalanced across observers.

Each of the two categories, A and B, was def ined by a specific
univariate normal distribution. For the horizontally varying dot
stimuli in the d ¢ 5 1 condition, the Category A mean was set 21 pix-

els to the left of the center of the screen, and the Category B mean
was set 21 pixels to the right of the center of the screen. For both
categories, the standard deviation was set to 42 pixels. For the hor-
izontally varying dot stimuli in the d ¢ 5 2.16 condition, the Cate-
gory A mean was set 45 pixels to the left of center, and the Cate-
gory B mean was set 45 pixels to the right of center. Again, the
standard deviation was set to 42 pixels. For the vertically varying
dot stimuli, the parameter values were the same, except that the
means were displaced vertically, instead of horizontally, from the
center of the screen.

Prior to the experiment, three sets of 120 stimuli were sampled
from the d ¢ 5 1 category distributions, and three sets of 120 stim-
uli were sampled from the d ¢ 5 2.16 category distributions. One
set had equal numbers of A and B stimuli and were used in the base-
line and 1:1B/3:1P conditions. The second set contained three times
as many A as B stimuli, and the third set contained three times as
many B as A stimuli. These were used in the appropriate unequal
base-rate conditions. Each session in the experiment consisted of
five blocks of 120 trials. In each block of trials, every stimulus from
the appropriate 120-trial stimulus set was presented once. The pre-
sentation orders were randomized across blocks. The first four
blocks (480 trials) made up the training phase. Corrective feedback
was provided following each trial of the training phase (see details
below). The final block of 120 trials comprised the transfer phase,
during which none of the trials was followed by feedback.

In conditions in which the payoffs were equal, the payoff associ-
ated with a correct response was $0.02. In the biased payoff condi-
tions, the value of a correct high-payoff category response was $0.03,
and the value of a correct low-payoff category response was $0.01. In
all the conditions, the value of an incorrect response was $0.00.
Table 1 displays the optimal points, accuracy rates, and b values for
the optimal classif ier that maximizes long-run reward separately
for each condition.

Procedure
The observers were told that perfect performance was impossi-

ble. The observers were instructed to maximize the amount they
earned and not to worry about speed of responding. A typical trial
proceeded as follows. A stimulus was presented on the screen and
remained until a response was made. The observer’s task was to clas-
sify the presented stimulus as a member of Category A or Cate-
gory B by pressing the appropriate button. During the training phase,
the observer’s response was followed, after a 250-msec delay, by
750 msec of feedback. Three lines of feedback were presented. The
top line indicated the amount of money the observer earned for the
response. The next line indicated the potential earnings for a correct
response on each trial (i.e., following an incorrect response, this line
indicated the amount that could have been earned had the observer
chosen the correct response). The third line indicated the amount of
money that the observer had accumulated up to that point in the ses-
sion. The feedback was followed by a 125-msec intertrial interval,
during which the screen was blank. In the transfer phase, corrective
feedback was absent, and the observer was instructed to use the
same decision criterion that he or she had been using during the final
block of training. During these trials, the observer’s response was

Table 1
Optimal Points, Accuracy and b values

d ¢ 5 1 d ¢ 5 2.16

Points Accuracy Points Accuracy bo

Baseline 166 69.15 206 85.94 1
3:1B /1:1P 187 77.75 213 88.66 3
1:1B /3:1P 187 60.99 213 82.93 3
3:1B /3:1P 270 75.87 281 86.70 9
3:1B /1:3P 124 69.15 155 85.94 1
1:3B/3:1P 124 69.15 155 85.94 1
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followed by a 1,125-msec intertrial interval, during which the screen
was blank (i.e., the same length of time between stimulus presenta-
tions as in the training phase). The observers were given periodic
breaks throughout the daily sessions. At each break, the observer’s
accumulated earnings were displayed, along with the total earnings
possible (i.e., the optimal earnings) for that condition.

Half of the observers completed the d ¢ 5 1 conditions first, and
half completed the d ¢ 5 2.16 conditions first. During the first ses-
sion of each d ¢ condition, each observer completed five blocks in
the baseline condition in which base rates and payoffs were equal.
The baseline condition was completed first, to ensure that each ob-
server had accurate knowledge of the category structures before
being exposed to the base-rate and/or payoff manipulations. The
five experimental conditions were then completed, one session per
day, on subsequent days, starting with the 3:1B/1:1P or the 1:1B/3:1P
condition (counterbalanced between Days 2 and 3). The third ex-
perimental condition was always the 3:1B/3:1P condition, and the
fourth and fifth conditions were either 3:1B/1:3P or 1:3B/3:1P (again,
counterbalanced between days). Once an observer completed the
first d ¢ condition, they repeated the sequence (with different orders
of the 3:1B/1:1P and 1:1B/3:1P conditions, as well as the 3:1B/1:3P
and 1:3B/3:1P conditions) with the other d ¢ value and with the ori-
entation of the stimulus variation rotated 90º (i.e., from vertical to
horizontal, or vice versa).

Before each experimental session, the observer completed a min-
imum of 60 baseline trials. If the observer reached an accuracy-
based criterion of not more than 2% below optimal (i.e., 67% cor-
rect in d ¢ 5 1 or 84% correct in d ¢ 5 2.16), he or she was allowed
to begin the experimental condition. If the observer did not reach
criterion in 60 trials, he or she continued in the baseline condition
until the criterion was reached. Once criterion was reached, he or
she was allowed to begin that day’s experimental condition. Includ-
ing these baseline trials prior to each experimental condition helped
ensure that each observer had accurate knowledge of the category
structures before exposure to the base-rate and /or payoff manipula-
tion and minimized the possibility of carryover effects from one ex-
perimental condition to the next.

Results
This section is organized as follows. First, we evaluate

performance in the baseline conditions to determine
whether each observer had accurate knowledge of the cat-
egory structures before being exposed to the base-rate and
payoff manipulations.Second, we summarize the trends in
the data by performing analyses of variance (ANOVAs )
on a number of performance measures, such as accuracy
rates, point totals, and decision criterion estimates from
signal detection theory (Green & Swets, 1966).Finally, we
applied a series of nested decision bound models simulta-
neously to the data from all 10 experimental conditions
separately for each observer. These model-based analyses
allowed more rigorous tests of the flat-maxima and inde-
pendence hypotheses than are possible with ANOVAs.

Baseline Condition
The purpose of the baseline condition was to ensure

that the observers had a good understanding of the cate-
gory distributions prior to any manipulationof base rates
and payoffs. A number of analyses were conducted to de-
termine whether this goal was achieved. Points and ac-
curacy showed a general increase across the four training
blocks, gradually approaching the optimal values. Dur-
ing the transfer block, average accuracy rates were 67%

and 85% for the d ¢ 51 and d ¢ 5 2.16 conditions, respec-
tively. These are very close to the optimal values of 69%
and 86%, respectively.Average point totals were 162 and
205 points for d ¢ 5 1 and d ¢ 5 2.16, respectively. Again
these are very similar to the optimal values of 166 and
206, respectively. Finally, the average b values (derived
from hit and false alarm rates) were 1.039 and 1.092 for
the d ¢ 5 1 and d ¢ 5 2.16 conditions, respectively. The
optimal b value in both conditionswas 1. Taken together,
the point totals, accuracy rates, and b values suggest that
the observers had accurate knowledge of the category
distributions and were using a decision criterion that was
very nearly optimal by the end of the baseline session.

Experimental Conditions
Performance was evaluated for each of the four train-

ing blocks and the final transfer block. For completeness
and to facilitate future model testing, hit and false alarm
rates relative to Category A for each observer by block
and experimental condition are presented in Appendices
A and B. Because the point totals and accuracy rates pre-
dicted by the optimal classifier differed across condi-
tions, we computed the percentage of optimal points and
the percentage of optimal accuracy for each observer, as
well as the deviation from the optimal decision criterion.
We performed separate 2 (d ¢) 3 5 (base-rate/payoff con-
dition) 3 5 (block) within-observersANOVAs on the per-
centage of optimal points, percentageof optimal accuracy,
and deviations from optimal decision criterion.

The left-hand column of Figure 3 depicts the perfor-
mance differences between d ¢ conditions on the basis of
percentage of optimal points, percentage of optimal ac-
curacy, and deviation from optimal decision criterion.
Notice that performance is closer to optimal for all three
measures when d ¢ 5 2.16 than when d ¢ 5 1. Specifically,
the percentage of optimal points and percentage of opti-
mal accuracy measures are closer to 100%, and the devi-
ation from optimal decision criterion is smaller for d ¢ 5
2.16 than for d ¢ 5 1. The main effect of d ¢ reached sig-
nificance for all three performance measures [percentage
of optimal points, F(1,7) 5 10.96, p < .05; percentage of
optimal accuracy, F(1,7) 5 19.94,p < .005; deviation from
optimal decision criterion, F(1,7) 5 146.82, p < .001].

The right-hand column of Figure 3 depicts the perfor-
mance differences between base-rate/payoff conditions
on the basis of percentage of optimal points, percentage
of optimal accuracy, and deviation from optimal decision
criterion. The main effect of base-rate/payoff condition
reached significance for the percentage of optimal accu-
racy measure [F(4,28) 5 16.09, p < .001] and the devia-
tion from optimal decision criterion [F(4,28) 5 55.47,
p < .001] but was nonsignificant for the percentage of
optimal points [F(4,28) 5 1.63, p > .05]. Post hoc tests
revealed that percentage of optimal accuracy was signif-
icantly closer to optimal in the 3:1B/1:1P condition than
in the 1:1B/3:1P condition.Note, also, that percentage of
optimal accuracy was greater than 100% in the 1:1B/
3:1P condition. This result makes sense if the goals of
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reward maximization and accuracy maximization com-
pete in the 1:1B/3:1P condition,but not in the 3:1B/1:1P
condition. Percentage of optimal accuracy was signifi-
cantly closer to optimal in the three combination condi-
tions than in either the 3:1B /1:1P condition or the
1:1B/3:1P condition. Also, post hoc tests indicated that
deviations from the optimal decision criterion was sig-

nificantly smaller in the 3:1B/1:1P condition than in the
1:1B/3:1P conditionand that deviationwas largest in the
3:1B/3:1P condition. The smallest deviation from the
optimal decision criterion was found in the 3:1B/1:3P
and 1:3B/3:1P conditions.

The main effect of block reached significance only for
the deviation from optimal decision criterion measure

Figure 3. Average percentage of optimal points, percentage of optimal accuracy, and deviation from optimal decision criterion for
each d ¢ level (left-hand column) and for each base-rate/payoff condition (right-hand column).
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[F(4,28) 5 5.43, p < .005] and was nonsignificant for the
other two measures. Although not monotonic across
blocks, the deviation from the optimal decision criterion
tended to decrease across blocks.

Figure 4 displays the percentage of optimal points,
percentage of optimal accuracy, and deviation from op-
timal decisioncriterion by d ¢ for each of the five base-rate/
payoff conditions. The interaction between d ¢ and base-
rate/payoff condition reached significance for all three
measures [percentage of optimal points, F(4,28) 5 3.41,
p < .05; percentage of optimal accuracy, F(4,28) 5
11.24,p < .001; deviationfrom optimal decision criterion,
F(4,28) 5 22.54, p < .001]. To evaluate the interaction
more fully, we conducted separate 2 (d ¢ ) 3 5 (block)
ANOVAs for each of the five base-rate/payoff conditions.
The results indicated a significant d ¢ effect for all three
performance measures in the 3:1B/1:1P [percentage of
optimal points, F(1,7) 5 8.83, p < .05; percentage of op-
timal accuracy, F(1,7) 5 7.98, p < .05; deviation from
optimal decision criterion, F(1,7) 5 24.29, p < .005] and
1:1B/3:1P [percentage of optimal points, F(1,7) 5 8.01,
p < .05; percentage of optimal accuracy, F(1,7) 5 21.00,
p < .005; deviation from optimal decision criterion,
F(1,7) 5 57.29,p < .001] conditions.For both conditions
and for all three measures, performance was closer to op-
timal for d ¢ 5 2.16 than for d ¢ 5 1. The d ¢ effect was
significant for two of three measures in the 3:1B/3:1P
condition [percentage of optimal points, F(1,7) 5 24.26,
p < .005; deviation from optimal decision criterion,
F(1,7) 5 73.60, p < .001] and significant for only one of
three measures in the 3:1B/1:3P [percentage of optimal
accuracy, F(1,7) 5 20.49, p < .005] and 1:3B/3:1P [per-
centage of optimal points, F(1,7) 5 15.44, p < .01] con-
ditions. Regardless of significance, performance was
closer to optimal in all d ¢ 5 2.16 conditions, on all three
performance measures, than in the corresponding d ¢ 5
1 conditions, with only a single exception (percentage of
optimal accuracy, 1:3B/3:1P condition). In terms of per-
centage of optimal points, the interaction was driven pri-
marily by the 1:1B/3:1P condition. When d ¢ 5 1, the
percentage of optimal points in the 1:1B/3:1P condition
was generally lower than in the other conditions (with
one exception), but when d ¢ 5 2.16, the percentage of
optimal points was higher than in any other conditions
(see Figure 4). With respect to percentage of optimal ac-
curacy, values were higher (or about equal) when d ¢ 5 1
than when d ¢ 5 2.16 for all but the 3:1B/1:1P condition.
Finally, for deviation from optimal decision criterion, de-
viations were negative (i.e., criterion values were smaller
than optimal) in the 3:1B/1:1P, 1:1B/3:1P, and 3:1B/3:1P
conditions and differed substantially across d ¢ values,
whereas deviations were positive in the 3:1B/1:3P and
1:3B/3:1P conditions and were similar across d ¢ values.

Finally, the interaction between block and condition
reached significance for each measure [percentage of
optimal points, F(16,112) 5 3.07, p < .001; percentage
of optimal accuracy, F(16,112) 5 3.02, p < .001; devia-
tion from optimal decision criterion, F(16,112) 5 1.97,
p < .05]. The two factor ANOVA results (d ¢ 3 block,

conducted separately for each base-rate/payoff condi-
tion) indicate a significant block effect in the 3:1B/1:1P
condition [percentage of optimal points, F(4,28) 5 5.24,
p < .005; percentage of optimal accuracy, F(4,28) 5
5.24, p < .005; deviation from optimal decision criterion,
F(4,28) 5 5.28, p < .005] and also in the 1:1B/3:1P con-
dition [for two of three measures: percentage of optimal
points, F(4,28) 5 3.77, p < .05; deviation from optimal
decision criterion, F(4,28) 5 3.18, p < .05]. Post hoc
tests revealed that there was a general performance im-
provement across blocks in these two conditions. The
block effect was significant only for a single measure in
the 3:1B/3:1P [percentage of optimal points, F(4,28) 5
4.58, p < .01] and 1:3B/3:1P [percentage of optimal ac-
curacy, F(4,28) 5 3.12, p < .05] conditions and never
reached significance in the 3:1B/1:3P condition.

Flat-maxima hypothesis. The flat-maxima hypothe-
sis predicts that performance should be closer to optimal
in the d ¢ 5 2.16 condition than in the d ¢ 5 1 condition.
The ANOVA results provide strong support for this hy-
pothesis. Percentage of optimal points, percentage of op-
timal accuracy, and the deviation from optimal decision
criterion measures all suggested that performance was
closer to optimal in the d ¢ 5 2.16 condition (see Figures
3 and 4). This was true across training blocks, as well as
for the transfer block.

Competition between reward and accuracy: 3:1B /
1:1P versus 1:1B /3:1P conditions. The COBRA hy-
pothesis predicts that performance in the unequal base-
rate condition (3:1B /1:1P) should be closer to optimal
than performance in the unequal payoff condition (1:1B/
3:1P). Specifically, percentage of optimal points should
be closer to 100%, and the decision criterion values
should be closer to optimal for the unequal base-rate con-
dition than for the unequal payoff condition. Percentage
of optimal points and decision criterion values were, on
average, closer to optimal in the 3:1B/1:1P condition
than in the 1:1B/3:1P condition. In addition, the COBRA
prediction that observed accuracy in the payoff condition
should be higher than that predicted by the optimal clas-
sifier was supported in the data. This was especially prom-
inent in the d ¢ 5 1, 1:1B/3:1P condition.

A test of the independence of base-rate and payoff
information hypothesis. Equation 2 illustrates the way
in which the optimal classifier combines knowledge of
base rates and payoffs. An alternative formulation ap-
plies the natural log to both sides of Equation 2, yielding
lnbo 5 ln[P(A) /P(B)] + ln[(VaA / VbB)]. Notice that lnbo
is determined completely by the sum of independent
base-rate and payoff terms. In ANOVA terms, the inter-
action of base rates and payoffs should be nonsignifi-
cant. Following Stevenson et al. (1991), Figure 5 plots
the natural log of the average b values for the baseline,
3:1B/1:1P, 1:1B /3:1P, and 3:1B /3:1P conditions. The
top and bottom panels present data for the d ¢ 5 1 and
d ¢ 5 2.16 conditions, respectively.

The lines are slightlynonparallel for d ¢ 5 1 but are quite
parallel for d ¢ 5 2.16. ANOVAs were conducted sepa-
rately on the data from the two panels. In both cases, the
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interaction term was nonsignificant, providing support
for an independent combination of base-rate and payoff
information. The 3:1B/1:3P and the 1:3B/3:1P condi-
tions were not included in these ANOVAs because 1:3B/
1:1P and 1:1B/1:3P conditions would also be required,
and they were not included in the study. However, the
model-based analyses reported below do allow us to use
the 3:1B/1:3P and the 1:3B/3:1P conditions in a test of
independence without requiring the 1:3B/1:1P and 1:1B/
1:3P conditions.

The analyses reported above, although informative for
evaluating the hypotheses of interest, face certain limi-
tations and are far from exhaustive. First, the ANOVA
results are based on aggregate data and thus might mask
potential individual differences (Maddox, 1999). Sec-
ond, although providing some evidence in support of the
flat-maxima hypothesis, they do not allow a rigorous test
of a strong version of the flat-maxima hypothesis (to be
described shortly). Finally, in testing the independence
assumption, we were forced to omit the data from two of

Figure 4. Average percentage of optimal points, percentage of optimal accuracy, and deviation
from optimal decision criterion by d ¢ level and base-rate/payoff condition.
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our five base-rate/payoff conditions.Each of these short-
comings was remedied by using the quantitative model-
based approach described in the next section.

Modeling Analyses Based on
Decision Bound Theory

The principle axiom of decision bound theory is that
human performance rarely equals that of the optimal
classifier because of two noise sources that are inherent
in all biological organisms: perceptual noise and criter-
ial noise (Ashby & Townsend, 1986; Maddox & Ashby,
1993). Perceptual noise results from trial-by-trial fluctu-
ations in the observer’s percept of a given stimulus. Be-
cause of perceptual noise, the observer’s percept of stim-
ulus i, on any trial, is given by xpi 5 xi + ep, where ep is
a random variable that represents the effect of perceptual
noise. Criterial noise results from trial-by-trial fluctua-
tions in the observer’s memory for the decision criterion.
Because of criterial noise, the observer’s decision crite-
rion, on any trial i, is given by bi 5 b + ec, where b denotes
the observer’s averaged decision criterion stored in
memory, and ec is a random variable that represents the
effect of criterial noise (assumed to be univariate nor-

mally distributed). With the addition of perceptual and
criterial noise, the Equation 3 decision rule becomes

If lo(xpi ) > bo + ec, then respond “B”;

otherwise, respond “A” (4)

and is referred to as the optimal decision bound model
(OPT).2

Two classes of suboptimality can be explored. One
possibility is that the observer uses a suboptimal deci-
sion function, l(xpi), rather than lo(xpi ). The baseline tri-
als were included specifically to alleviate this possibil-
ity. The analyses of the baseline data indicate that the
observers had a good understanding of the category dis-
tributions prior to manipulations of base rates and pay-
offs and thus were likely using the optimal decision func-
tion. All of the models examined in this section assume
that the observer used the optimal decision function. A
second possibility is that the observer uses a suboptimal
decision criterion. We will use a series of models that as-
sume a suboptimal decision criterion to examine more
rigorously the flat-maxima and independence of base-
rate and payoff hypotheses. Specifically, we turn now to
a series of nested decision bound models, each of which
was applied simultaneously to the data from each of the
10 experimental conditions (2 category d ¢ 3 5 base-rate/
payoff conditions), separately for each observer.3 Because
the block effects were negligible, we focus only on the
transfer block.The first section addresses the flat-maxima
hypothesis, and the second section addresses the indepen-
dence hypothesis.

Flat-maxima hypothesis. The ANOVA results pro-
vide initial support for the flat-maxima hypothesis be-
cause performance (i.e., percentage of optimal accuracy,
percentage of optimal points, and decision criterion esti-
mates) was closer to optimal for d ¢ 5 2.16 than for d ¢ 5 1.
However, the ANOVA results do not test the stronger ver-
sion of the flat-maxima hypothesis that states that the ob-
server should stop adjusting their decision criterion once
he or she reaches a point on the ORF at which changes
in the decision criterion placement lead to little (if any)
change in performance. Because the steepness (or slope)
of the ORF determines how changes in the decision cri-
terion will affect performance, the flat-maxima hypoth-
esis can be instantiatedby assuming that the observer ad-
justs their decision criterion until they reach a fixed
steepness on the ORF. Since the ORF for d ¢ 5 2.16 is
steeper than the ORF for d ¢ 5 1, this model predicts that
the observer will use a decision criterion that is closer to
optimal for d ¢ 5 2.16 than for d ¢ 5 1 (see Figure 2). To
test rigorously this hypothesis, we compared two mod-
els. The flat-maxima model estimated a single steepness
value that determined the decision criterion to be used
for both the d ¢ 5 1 and the d ¢ 5 2.16 conditions.Although
the steepness parameter was “yoked” across d ¢, a sepa-
rate steepness parameter was estimated in each of the
five experimental conditions,yieldinga total of five steep-
ness parameters. This model was compared to the fixed

Figure 5. Average ln b values from the baseline, 3:1B /1:1P,
1:1B /3:1P, and 3:1B /3:1P conditions for each d ¢ level.
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decision criterion model, which assumed that the ob-
server used the same decision criterion in both d ¢ condi-
tions. In other words, this model assumed that there was
no effect of category discriminability. A separate deci-
sion criterion parameter was estimated in each of the five
experimental conditions(five parameters). For 6 of 8 ob-
servers, the flat-maxima model provided a better fit of
the data than did the fixed decision criterion model and
accounted (on average) for 93.75% of the variance in the
data from each observer. This suggests that category dis-
criminability affects decision criterion placement and
supports the hypothesis that the decision criterion place-
ment is determined by the steepness of the ORF.

Independence of base-rate and payoff information.
In this section, we provide a rigorous model-based test of
the optimal classifier assumption that base-rate and pay-
off information are combined independently. Unlike the
ANOVA results that excluded data from the 3:1B/1:3P
and 1:3B/3:1P conditions, the model-based test of the
independence assumption utilized the data from all five
experimental conditions.The model-based analyses were
conducted at the level of the individualobserver and were
not based on aggregate data. Two sets of models were de-
veloped. The first set was developed to test the indepen-
dence assumption in the data from only one of the com-
binationconditions—the 3:1B/3:1P condition.This allows
a direct comparison with our previous tests of indepen-
dence. The second set was more extensive and tested the
independence assumption in all three combination con-
ditions. Both sets of models also estimated parameters
for the 3:1B/1:1P and 1:1B/3:1P conditions.Each model
was fit to the appropriate experimental conditions sepa-
rately for each d ¢ level.

3:1B/1:1P, 1:1B/3:1P, and 3:1B/3:1P conditions. As a
test of the independence assumption, we applied two
models simultaneously to the data from the 3:1B/1:1P,
1:1B/3:1P, and 3:1B/3:1P conditions separately for each
observer and d ¢ condition. The independence model as-
sumed that the decision criterion used in the 3:1B/3:1P
condition was determined from an independent combi-
nation of the decision criterion estimates from the 3:1B/
1:1P and 1:1B/3:1P conditions. Thus, only two subop-
timal decision criterion values were estimated (one for
the 3:1B/1:1P condition, and one for the 1:1B/3:1P con-
dition). The nonindependencemodel allowed the decision
criterion for the 3:1B/3:1P condition to also be a free pa-
rameter, thus violatingindependence.Notice that the inde-
pendencemodel is a special case of the non-independence
model and G2 tests can be performed. In 11 of 16 cases
(2 d ¢ levels 3 8 observers), the nonindependence model
did not provide a significant improvement in fit over the
independence model. This was due primarily to the d ¢ 5
2.16 condition, in which 7 of 8 observers showed inde-
pendence. These results converge generally with the
ANOVA results outlined in Figure 5. When base rates
and payoffs were manipulated simultaneously in the
same direction, the observers had a tendency to use a de-
cision criterion corresponding to an independent combi-

nation of these information sources, as was suggested by
the ANOVA results.

All experimental conditions. In this section, we present
a series of models that test the independence assumption
of the optimal classifier in all three combination condi-
tions. Each of the models was fit separately to the data
from each category d ¢ level. The assumptions of the mod-
els and their nested structure are outlined in Figure 6 (the
arrows point to a more constrained model).

The simplest model tested contained two decision cri-
terion parameters. The suboptimal base-rate, suboptimal
payoff, independence model assumed that the observer
combinedbase-rate and payoff information independently
whenever base rates and payoffs were manipulated si-
multaneously. However, this model assumed a subopti-
mal estimate of both the base-rate and the payoff infor-
mation. Three models with three decision criterion
parameters were tested. Each of these models assumed
independence in two of the three combinationconditions.
For example, the suboptimal base-rate, suboptimal pay-
off, high/high non-independence model was identical to
the suboptimal base-rate, suboptimal payoff, indepen-
dence model, except that independence is violated in the
3:1B/3:1P condition. The suboptimal base-rate, subop-
timal payoff, high/low nonindependence model assumed
that independence was violated in the 3:1B/1:3P condi-
tion, and the suboptimalbase-rate, suboptimalpayoff, low/
high nonindependence model assumed that indepen-
dence was violated in the 1:3B/3:1P condition.The most
general model contained five free decision criterion pa-
rameters. The suboptimal base-rate, suboptimal payoff,
nonindependence model assumed suboptimal estimates
of both base-rate and payoff information and assumed
that the observer did not combine base-rate and payoff
information independently when base rates and payoffs
were manipulated simultaneously. The decision criterion
in each of the five conditions was a free parameter. It is
important to be clear that all of the models that assumed
both independence and suboptimality (in base-rate or
payoff knowledge) predicted a suboptimal decision cri-
terion in the 3:1B/3:1P, 3:1B/1:3P, and 1:3B/3:1P con-
ditions. If the base-rate or payoff estimate is inaccurate
but is combined independently, then suboptimality is
predicted in the simultaneous base-rate/payoff manipu-
lation conditions.

The most parsimonious model and predicted decision
criteria by condition and observer are summarized in
Table 2. In addition,when independence(i.e., Equation 2)
was violated, the Equation 2 decisioncriterion is included
in parentheses. Several interesting results emerge. First,
the estimated 3:1B/1:1P and 1:1B/3:1P decision criteria
derived from hit and false alarm rates and from the si-
multaneous fits are similar [r(30) 5 .86, p < .01], sug-
gesting that both approaches converge upon the same gen-
eral conclusion. Second, independence was violated in
about half of the cases—12 of 24 cases (8 observers 3 3
combination conditions)when d ¢ 5 1 and 11 of 24 cases
when d ¢ 5 2.16. This result makes it difficult to support
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an argument either for or against independent combina-
tion of base-rate and payoff knowledge. Notice that one
observer violated the independence assumption in every
combination condition. For the remaining observers, vi-
olations were not so systematic. In addition, no particu-
lar combinationconditionappears more likely to produce
violations of independence than the others. Violations
appeared approximately half the time for each combina-
tion condition.

The results of fitting the simultaneousmodels to all the
experimental conditions (within a single d ¢ level) appear
to be somewhat at odds with earlier results reported by
Maddox and Bohil (1998a, Experiment 2). In the earlier
study, observers violated independence in only 25% of
the cases. A direct comparison of the results, however, is
difficult because of methodological differences between
the studies. In the earlier study, 4 observers completed
three combination conditions, all with a d ¢ level of 2.16,

thus generating 12 cases for testing independence. In the
present study, there were 48 possible cases to examine in-
dependence. Also, Maddox and Bohil’s (1998a) earlier
study utilized bivariate category structures, whereas in the
present study, stimuli varied along only a single dimen-
sion. It is well established that observers require far more
training to learn bivariate categories than univariate cat-
egory structures. However, in both studies, the observers
received enough training on the category structures to en-
sure a good understanding of the category distributions
prior to beginning the experimental conditions. Because
category learning and base-rate/payoff learning were sep-
arated in each study, and because the base-rate and pay-
off ratios were identical across experiments, it is reason-
able to assume that the dimensionality of the categories
was not the major cause of the discrepant results.

Also, in Maddox and Bohil’s (1998a, Experiment 2)
earlier study, the observers received a great deal more

Figure 6. Nested relationship among the decision bound models applied to all three combination conditions within
each level of d ¢. Each arrow points to a more constrained model. S-O, suboptimal; HH, high/high condition (or 3:1B /
3:1P, see the text for an explanation); HL, high/low condition (or 3:1B /1:3P); LH, low/high condition (or 1:3B /3:1P).
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experience in the base-rate-alone and payoff-alone con-
ditions (four 540-trial sessions in each experimental con-
dition) than in the present study. In the earlier study, ob-
servers appeared to learn the base-rate and payoff ratios
quickly (often in a single session) and reached asymptotic
performance early on in each experimental condition.The
observers then continued receiving training on the base-
rate or payoff ratio until they had completed four sessions
in that condition. Although speculative, greater experi-
ence with the base-rate and payoff ratios could explain
the fact that violations of independence were less preva-
lent in Maddox and Bohil’s (1998a) earlier study.

GENERAL DISCUSSION

In this study, the differential effects of category dis-
criminability on base-rate and payoff sensitivitywithin a
fixed experimental framework were examined. The cat-
egory discriminabilities were such that the flat-maxima
hypothesis predicted less optimal performance in the
d ¢ 5 1 condition than in the d ¢ 5 2.16 condition. Base-
rate-alone, payoff-alone, and simultaneousbase-rate/pay-
off conditionswere included to test the assumption of the
optimal classifier that base-rate information and payoff
information are combined independently. These issues
were examined through analyses of point totals, accuracy
rates, and decision criterion values derived from hit and
false alarm rates, as well as through the application of a
series of decision bound models.

The results can be summarized as follows. First, on
the basis of points, accuracy, and decision criterion esti-
mates derived from hit and false alarm rates and from the
model-based analyses, we found support for the flat-
maxima hypothesis.Specifically, performance was closer
to optimal in the d ¢ 5 2.16 condition, for which the ORF
was steepest, than in the d ¢ 5 1 condition, for which the
ORF was flatter. This is an important finding because
much of the previous research utilized categories with
d ¢ 5 1. The performance suboptimalities found in these
earlier studies were taken as evidence that humans are
poor at utilizing base-rate and payoff information. The
present results suggest that the common use of small val-
ues of d ¢ might have exaggerated the degree of subopti-
mality in previous studies.

Second, as was found in previous studies, performance
was closer to optimal in the base-rate conditions than in
the payoff conditions. This difference was more pro-
nounced in the d ¢ 5 1 condition than in the d ¢ 5 2.16
condition.This d ¢ effect makes sense if considered in light
of both the flat-maxima hypothesis and the COBRA hy-
pothesis. The COBRA hypothesis asserts that observers
wish to maximize both reward and accuracy and that,
with asymmetric category payoffs, overall accuracy must
be sacrificed in order to maximize reward. This tradeoff
between reward and accuracy maximization does not
exist in the base-rate conditions. When d ¢ 5 1 in payoff
conditions, adjusting the decision criterion in the direc-
tion that maximizes reward results in a greater accuracy

Table 2
Most Parsimonious Model and b Estimates

From the Simultaneous Fit Models Within Each Level of d ¢
Most

Parsimonious 3:1B/1:1P 1:1B/3:1P 3:1B/3:1P 3:1B/1:3P 1:3B/3:1P
Observer Model ( bB) ( bP) (bHH) (bHL ) (bLH )

d ¢ 5 1
1 HH 1.84 .67 2.82 (1.24) 2.73 .37
2 NI 5.51 1.69 3.21 (9.31) 5.53 (3.26) .56(.31)
3 I 2.13 1.30 2.76 1.64 .61
4 NI 2.68 1.37 7.25 (3.66) 1.58 (1.96) .83 (.51)
5 HH 2.78 1.74 2.93 (4.84) 1.59 .63
6 LH 7.50 8.85 66.39 .85 .94 (1.18)
7 NI 2.11 1.36 3.49 (2.87) 1.16 (1.56) .99 (.64)
8 I 2.07 1.47 3.05 1.41 .71

Optimal b 3.00 3.00 9.00 1.00 1.00

d ¢ 5 2.16
1 HL 4.46 .84 3.77 2.64 (5.28) .19
2 NI 2.92 3.42 6.19 (9.98) 2.36 (.85) .10 (1.17)
3 LH 2.11 1.53 3.21 1.38 .19 (.72)
4 I 3.58 2.66 9.52 1.35 .74
5 LH 1.97 2.22 4.39 .89 .56 (1.13)
6 NI 15.41 2.80 27.69 (43.16) 1.11 (5.5) 1.32 (.18)
7 HL 2.62 2.31 6.05 2.26 (1.14) .88
8 HH 1.00 1.15 2.77 (1.16) .87 1.15

Optimal b 3.00 3.00 9.00 1.00 1.00

Note—When independence was violated, the Equation 2 decision criterion is included in parentheses. HH,
suboptimal base-rate, suboptimal payoff, high–high nonindependencemodel; NI, suboptimal base-rate, sub-
optimal payoff, nonindependencemodel; I, optimal base-rate, optimal payoff, independence model; LH, sub-
optimal base-rate, suboptimal payoff, low–high nonindependence model; HL, suboptimal base-rate, subopti-
mal payoff, high–low nonindependence model.
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loss than when d ¢ 5 2.16 (see Table 1). Thus, when d ¢ 5
1, an observer who places a great deal of emphasis on
accuracy might be more averse to selecting a reward-
maximizing criterion than when d ¢ 5 2.16. This would
amplify the performance difference between base-rate
and payoff conditions when d ¢ 5 1. When d ¢ 5 2.16, the
observer can emphasize reward maximization without a
great loss in terms of accuracy.

Finally, we found mixed support for the notion that ob-
servers combine base-rate and payoff information inde-
pendently. Independencewas supported in the 3:1B/3:1P
condition, based on an ANOVA on the criterion values
derived from hit and false alarm rates, as well as decision
criterion values estimated by the simultaneous model
fits. However, when more rigorous simultaneous models
were applied to all three combination conditions, the ev-
idence for independence came into question. Specif i-
cally, independence was observed in about half of the ex-
perimental conditions, and in most cases, each observer
violated independence in at least one experimental con-
dition. Clearly, analyzing the entire data set for each in-
dividual observer constitutes the strongest test of the in-
dependence assumption, and future attempts to clarify
this issue should be careful to follow a similar approach.

FUTURE RESEARCH

Flat-Maxima Interpretation of the Results
The fact that performance was closer to optimal when

d ¢ 5 2.16 supports the flat-maxima hypothesis. How-
ever, an alternative explanation is that performance ap-
proaches the optimal level as optimal point totals and ac-
curacy rates increase. Because optimal accuracy and
optimal points are higher in the d ¢ 5 2.16 than in the
d ¢ 5 1 condition, this hypothesis predicts more nearly
optimal performance in d ¢ 5 2.16, which was observed.
Although this hypothesis accounts for the ordinal trends
in the data, recall that the model-based analyses sup-
ported a strong version of the flat-maxima hypothesis
that made quantitative performance predictions. Specif-
ically, the model-based analyses supported a version of
the flat-maxima hypothesis that postulated that the ob-
server’s decision criterion in the d ¢ 5 1 and d ¢ 5 2.16
conditions could be determined from a single steepness
parameter derived from the objective reward functions.
Although these more rigorous model-based analyses tend
to support the flat-maxima hypothesis over the proposed
alternative, clearly more work is needed.

One possibility would be to add a third, larger d ¢ level
to the experiment. For example, suppose that the d ¢ val-
ues were 1, 2, and 3. In this case, optimal accuracy and
optimal point totals increase as d ¢ increases. Thus, the
hypothesis that performance approaches the optimal
level as optimal point totals and accuracy rates increase
would predict that performance should be closer to opti-
mal when d ¢ 5 3 and would be furthest from optimal
when d ¢ 5 1. The flat-maxima hypothesis, on the other
hand, makes a different prediction. It is straightforward
to show that the ORF is steepest for d ¢ 5 2 and is flattest

for d ¢ 5 1. Thus, the flat-maxima hypothesis predicts
performance that is closest to optimal for d ¢ 5 2 (not d ¢ 5
3, as predicted from the alternative hypothesis) and that
is furthest from optimal for d ¢ 5 1.

The Influence of Trial-by-Trial Feedback
The results of this study suggest strongly that category

discriminability affects the optimality of human perfor-
mance. However, there are other factors that might also
play a role in the optimality of human performance. One
such possibility concerns the corrective feedback that ob-
servers are commonly presented with during experiments
of this type. When observers are presented with trial-by-
trial feedback that indicates their gain for the previous
trial, they also receive information about the accuracy of
their responses. Thus, researchers may unwittingly in-
duce observers to attend to accuracy, which can result in
suboptimal performance. It might be worthwhile to ex-
periment with different types of feedback to assess their
effect on base-rate and payoff learning. One possibility
might be to present feedback only after the observer has
completed a number of trials. In this way, the observer
would get feedback for maximizing reward without re-
ceiving a constant reminder of his or her accuracy per-
formance. Also, it might be useful to present observers
with different types of feedback about their potential
earnings (e.g., the amount that they could possibly earn).
For example, observers could be presented with feed-
back regarding potential earnings that is based on the
performance of the optimal classifier. In other words, the
potential earnings feedback could reflect use of the op-
timal decision criterion (performance that is possible for
them to nearly achieve), instead of the usual objective
feedback (which represents a level of performance that
is impossible to achieve, even for the optimal classifier).

Learning Models
The two studies just described (using additional d ¢

values and varying feedback type) could answer some
important questions about the way humans utilize their
knowledge of category base rates and payoffs. Clearly,
however, there are a vast number of avenues for future re-
search. For example, a number of learning models, such
as Busemeyer and Myung’s (1992) hill-climbing model,
Erev’s (1998; see also Erev, Wallsten, & Budescu, 1994)
cutoff reinforcement learning model, and Wallsten and
Gonzalez-Vallejo’s (1994) stochastic judgment model,
promise to shed new light on these issues. The prospect
for many future studies of base-rate and payoff use is in
keeping with the importance of understanding how hu-
mans utilize these sources of information.

REFERENCES

Ashby, F. G. (1992a). Multidimensional models of categorization. In
F. G. Ashby (Ed.), Multidimensional models of perception and cog-
nition (pp. 449-484). Hillsdale, NJ: Erlbaum.

Ashby, F. G. (1992b). Multivariate probability distributions. In F. G.
Ashby (Ed.), Multidimensional models of perception and cognition
(pp. 1-34). Hillsdale, NJ: Erlbaum.



374 BOHIL AND MADDOX

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron,

E. M. (1998). A neuropsychological theory of multiple systems in
category learning. Psychological Review, 105, 442-481.

Ashby, F. G., & Lee, W. W. (1991). Predicting similarity and catego-
rization from identification. Journal of Experimental Psychology:
General, 120, 150-172.

Ashby, F. G., & Lee, W. W. (1993). Perceptual variability as a funda-
mental axiom of perceptual science. In S. C. Masin (Ed.), Foundations
of perceptual theory (pp. 369-397). New York: North-Holland.

Ashby, F. G., & Maddox, W. T. (1998). Stimulus categorization. In
M. H. Birnbaum (Ed.), Measurement, judgment, and decision mak-
ing (pp. 251-301). New York: Academic Press.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual inde-
pendence. Psychological Review, 93, 154-179.

Busemeyer,J. P., & Myung, I. J. (1992).An adaptiveapproach to human
decision making: Learning theory, decision theory, and human perfor-
mance. Journal of Experimental Psychology: General, 121, 177-194.

Dusoir, A. E. (1980). Some evidence on additive learning models. Per-
ception & Psychophysics, 27, 163-175.

Erev, I. (1998). Signal detection by human observers: A cutoff rein-
forcement learning model of categorization decisions under uncer-
tainty. Psychological Review, 105, 280-298.

Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous
over- and underconfidence: The role of error in judgment processes.
Psychological Review, 101, 519-527.

Geisler, W. (1989). Sequential ideal-observer analysis of visual dis-
crimination. Psychological Review, 96, 267-314.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and
psychophysics. New York: Wiley.

Healy, A. F., & Kubovy, M. (1981). Probability matching and the for-
mation of conservative decision rules in a numerical analog of signal
detection. Journal of Experimental Psychology: Human Learning &
Memory, 7, 344-354.

Koehler, J. J. (1996). The base-rate fallacy reconsidered: Descriptive,
normative, and methodological challenges. Behavioral & Brain Sci-
ences, 19, 1-53.

Kubovy, M. (1977).A possiblebasis for conservatism in signal detection
and probabilistic categorization tasks. Perception & Psychophysics,
22, 277-281.

Kubovy, M., & Healy, A. F. (1977). The decision rule in probabilistic
categorization: What it is and how it is learned. Journal of Experi-
mental Psychology: General, 106, 427-466.

Kubovy, M., & Healy, A. F. (1980). Process models of probabilistic
categorization. In T. S. Wallsten (Ed.), Cognitive processes in choice
and decision behavior (pp. 239-262). Hillsdale, NJ: Erlbaum.

Lee, W., & Janke, M. (1964). Categorizing three externally distributed
stimulus samples for three continua. Journal of Experimental Psy-
chology, 68, 376-382.

Lee, W., & Janke, M. (1965). Categorizing externally distributed stim-
ulus samples for unequal molar probabilities. Psychological Reports,
17, 79-90.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A
user’s guide. New York: Cambridge University Press.

Maddox, W. T. (1995). Base-rate effects in multidimensional perceptual
categorization. Journal of Experimental Psychology: Learning,
Memory, & Cognition, 21, 288-301.

Maddox, W. T. (1999). On the dangers of averaging across observers
when comparing decision boundmodels and generalized context mod-
els of categorization. Perception & Psychophysics, 61, 354-374.

Maddox,W. T., & Ashby, F. G. (1993). Comparing decision boundand
exemplar models of categorization. Perception & Psychophysics, 53,
49-70.

Maddox, W. T., & Ashby, F. G. (1996). Perceptual separability, deci-
sional separability, and the identification–speeded classification re-
lationship. Journal of Experimental Psychology: Human Perception
& Performance, 22, 795-817.

Maddox, W. T., & Ashby, F. G. (1998). Selective attention and the for-
mation of linear decision boundaries: Comment on McKinley and
Nosofsky (1996). Journal of Experimental Psychology: Human Per-
ception & Performance, 24, 301-321.

Maddox, W. T., & Bogdanov, S.V. (2000). On the relation between de-

cision rules and perceptual representation in multidimensional per-
ceptual categorization. Perception & Psychophysics, 62, 984-997.

Maddox, W. T., & Bohil, C. J. (1998a). Base-rate and payoff effects in
multidimensional perceptual categorization. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 24, 1459-1482.

Maddox, W. T., & Bohil, C. J. (1998b). Overestimation of base-rate
differences in complex perceptual categories. Perception & Psycho-
physics, 60, 575-592.

Maddox, W. T., & Bohil, C. J. (2000). Costs and benefits in percep-
tual categorization. Memory & Cognition, 28, 597-615.

Maddox, W. T., & Estes, W. K. (1996, August). A dual process model
of category learning. Paper presented at the 31st Annual Meeting of
the Society for Mathematical Psychology, University of North Car-
olina, Chapel Hill.

Maloney, L. T., & Thomas, E. A. C. (1991). Distributional assump-
tions and observed conservatism in the theory of signal detectability.
Journal of Mathematical Psychology, 35, 443-470.

Stevenson, M. K., Busemeyer, J. R., & Naylor, J. C. (1991). Judg-
ment and decision-making theory. In M. D. Dunnette & L. M. Hough
(Eds.), Handbookof industrialandorganizationalpsychology (2nd ed;
Vol. 1, pp. 283-374).Palo Alto, CA: Consulting PsychologistsPress.

Thomas, E. A. C. (1975). Criterion adjustment and probability match-
ing. Perception & Psychophysics, 18, 158-162.

Thomas, E. A. C., & Legge, D. (1970). Probability matching as a basis
for detection and recognition decisions. PsychologicalReview, 77, 65-
72.

von Winterfeldt, D., & Edwards, W. (1982). Costs and payoffs in
perceptual research. Psychological Bulletin, 91, 609-622.

Wallsten, T. S., & Gonzalez-Vallejo, C. (1994). Statement verifi-
cation: A stochastic model of judgment and response. Psychological
Review, 101, 490-504.

Wickens, T. D. (1982). Models for behavior: Stochastic processes in
psychology. San Francisco: Freeman.

NOTES

1. There are several ways in which the weighting hypothesismight be
instantiated. For example, it is possible that observers store two differ-
ent decision criteria—one for accuracy maximization and one for re-
ward maximization. On each trial, the two decision criteria might com-
pete with one another for the opportunity to generate the categorization
response. This competition could be modulated by a weighting function
that emphasizes one goal more than the other (similar proposals have
been offered by Ashby, Alfonso-Reese, Turken, & Waldron, 1998, and
Maddox & Estes, 1996). Another possibility is that the weighting func-
tion results in a single decision criterion that is intermediate between
that for accuracy maximization and that for reward maximization. A
third possibility is that observers are attempting to maximize expected
utility (e.g., Stevenson et al., 1991).A rigorouscomparison of these possi-
bilities is beyond the scope of this article. For ease of exposition,we as-
sume that a single decision criterion is generated.

2. Throughout this article, it is assumed that perceptual noise is nor-
mally distributed and that the perceptual variance spi 5 sp. Under these
assumptions, the perceptual variance for each stimulus is identical.Clearly,
in many cases these assumptions are incorrect (e.g., Ashby & Lee, 1991,
1993; Ashby & Maddox, 1998; Maddox & Ashby, 1996, 1998; Maddox
& Bogdanov, 2000). However, with high-contrast, response-terminated
displays and fairly simple stimuli, as in the present study, this is often a
reasonable assumption. In addition, perceptual and criterial noise are
nonidentifiable in the models outlined in this paper; thus, only the sum
of perceptual plus criterial noise is estimated (Ashby, 1992a).

3. Two models are considered nested when one model can be derived
from the other by setting some parameters of the more general model
to constants. With nested models, likelihood ratio tests can be used to
determine the most parsimonious model for each observer (Ashby,
1992b;Wickens, 1982). The most parsimonious model is defined as the
model having the fewest free parameters that is not “significantly” im-
proved on by a more general model (i.e., a model with more free param-
eters). Likelihood ratio tests should be interpreted with caution, because
the test assumes independent observations that might be violated in our
data.
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APPENDIX A
Hit Rate (Relative to Category A) for

Each Experimental Condition by Observer and Block
d ¢ 5 1 d ¢ 5 2.16

Observer Condition 1 2 3 4 5 1 2 3 4 5

1 3:1B/1:1P .72 .84 .82 .83 .83 .92 .96 .98 .96 .93
1:1B/3:1P .55 .57 .58 .58 .58 .88 .88 .87 .85 .85
3:1B/3:1P .83 .89 .91 .91 .92 .94 .94 .96 .94 .94
3:1B/1:3P .92 .94 .93 .92 .91 .94 .94 .92 .90 .92
1:3B/3:1P .30 .27 .37 .13 .27 .73 .80 .80 .77 .70

2 3:1B/1:1P .86 .93 .92 .93 .97 .83 .89 .92 .88 .88
1:1B/3:1P .82 .78 .67 .73 .85 .77 .87 .80 .90 .93
3:1B/3:1P .87 .88 .86 .87 .93 .92 .90 .93 .92 .97
3:1B/1:3P .86 .80 .86 .83 .98 .89 .87 .90 .90 .90
1:3B/3:1P .60 .10 .40 .27 .40 .73 .63 .63 .60 .50

3 3:1B/1:1P .88 .83 .89 .83 .83 .88 .94 .94 .97 .88
1:1B/3:1P .83 .88 .85 .87 .85 .88 .95 .88 .95 .93
3:1B/3:1P .88 .88 .93 .93 .90 .96 .93 .92 .93 .92
3:1B/1:3P .84 .83 .90 .82 .82 .91 .91 .93 .90 .89
1:3B/3:1P .43 .53 .47 .40 .43 .73 .70 .73 .67 .70

4 3:1B/1:1P .87 .93 .86 .88 .89 .90 .94 .93 .94 .91
1:1B/3:1P .87 .85 .77 .75 .80 .93 .92 .93 .93 .92
3:1B/3:1P .96 .98 .99 .97 .98 .94 1.00 .98 .97 .97
3:1B/1:3P .72 .80 .76 .74 .78 .87 .92 .91 .91 .90
1:3B/3:1P .57 .47 .47 .53 .60 .87 .83 .87 .83 .83

5 3:1B/1:1P .72 .77 .83 .89 .89 .87 .91 .93 .91 .90
1:1B/3:1P .85 .90 .85 .82 .87 .93 .93 .90 .92 .92
3:1B/3:1P .90 .89 .91 .94 .91 .96 .99 .98 .97 .92
3:1B/1:3P .74 .70 .82 .80 .80 .87 .86 .87 .86 .83
1:3B/3:1P .53 .50 .50 .53 .47 .73 .87 .83 .90 .80

6 3:1B/1:1P .89 .90 .96 .94 .98 .90 .97 .99 .96 .99
1:1B/3:1P .78 .88 .73 .77 .98 .87 .92 .85 .92 .93
3:1B/3:1P .93 .96 .96 .97 .99 .97 .97 .99 .99 .99
3:1B/1:3P .86 .71 .80 .80 .63 .81 .86 .87 .82 .84
1:3B/3:1P .80 .47 .43 .30 .70 .77 .87 .73 .73 .83

7 3:1B/1:1P .77 .88 .86 .89 .86 .81 .84 .92 .90 .90
1:1B/3:1P .68 .73 .78 .77 .82 .93 .95 .92 .93 .93
3:1B/3:1P .87 .92 .90 .94 .92 .90 .91 .94 .89 .97
3:1B/1:3P .72 .67 .64 .72 .67 .82 .89 .84 .89 .91
1:3B/3:1P .57 .70 .70 .67 .67 .80 .83 .80 .83 .80

8 3:1B/1:1P .72 .83 .87 .81 .90 .84 .86 .87 .84 .86
1:1B/3:1P .80 .78 .77 .75 .80 .88 .87 .88 .87 .88
3:1B/3:1P .86 .92 .92 .88 .91 .87 .88 .96 .90 .91
3:1B/1:3P .78 .79 .70 .72 .77 .84 .83 .82 .79 .82
1:3B/3:1P .70 .70 .67 .63 .53 .83 .83 .87 .83 .83

Average 3:1B/1:1P .80 .87 .88 .88 .89 .87 .91 .94 .92 .91
1:1B/3:1P .77 .80 .75 .75 .82 .89 .91 .88 .91 .91
3:1B/3:1P .89 .91 .92 .93 .93 .93 .94 .96 .94 .95
3:1B/1:3P .81 .78 .80 .80 .79 .87 .88 .88 .87 .88
1:3B/3:1P .56 .47 .50 .43 .51 .78 .80 .78 .77 .75

(Continued on next page)
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APPENDIX B
False Alarm Rate (Relative to Category A)

for Each Experimental Condition by Observer and Block
d ¢ 5 1 d ¢ 5 2.16

Observer Condition 1 2 3 4 5 1 2 3 4 5

1 3:1B/1:1P .57 .57 .60 .43 .60 .43 .27 .40 .40 .30
1:1B/3:1P .17 .17 .20 .23 .22 .13 .13 .15 .10 .13
3:1B/3:1P .70 .63 .63 .67 .70 .33 .27 .40 .37 .27
3:1B/1:3P .73 .77 .67 .77 .67 .27 .33 .27 .27 .23
1:3B/3:1P .09 .09 .12 .04 .06 .09 .10 .11 .07 .02

2 3:1B/1:1P .73 .80 .73 .73 .87 .27 .27 .20 .27 .33
1:1B/3:1P .43 .55 .32 .37 .48 .17 .18 .13 .22 .35
3:1B/3:1P .77 .60 .57 .67 .70 .37 .37 .40 .43 .33
3:1B/1:3P .67 .53 .43 .57 .83 .30 .27 .30 .27 .27
1:3B/3:1P .28 .19 .16 .16 .17 .03 .06 .03 .04 .06

3 3:1B/1:1P .60 .50 .73 .60 .63 .37 .33 .27 .30 .30
1:1B/3:1P .62 .55 .63 .55 .43 .27 .25 .27 .28 .22
3:1B/3:1P .63 .67 .70 .63 .70 .33 .27 .30 .30 .27
3:1B/1:3P .60 .63 .63 .67 .60 .40 .27 .23 .23 .23
1:3B/3:1P .17 .24 .21 .19 .18 .12 .04 .06 .04 .03

4 3:1B/1:1P .73 .77 .73 .73 .70 .27 .30 .43 .43 .30
1:1B/3:1P .50 .50 .43 .42 .42 .28 .27 .27 .28 .25
3:1B/3:1P .83 .87 .83 .90 .90 .40 .47 .50 .53 .50
3:1B/1:3P .23 .47 .33 .43 .57 .27 .23 .30 .40 .20
1:3B/3:1P .31 .23 .14 .24 .24 .18 .30 .24 .19 .17

5 3:1B/1:1P .30 .57 .57 .67 .70 .30 .27 .30 .30 .23
1:1B/3:1P .37 .52 .53 .47 .50 .17 .22 .20 .27 .25
3:1B/3:1P .77 .77 .83 .70 .70 .53 .60 .43 .47 .37
3:1B/1:3P .33 .33 .53 .50 .60 .20 .23 .27 .23 .17
1:3B/3:1P .17 .29 .27 .21 .22 .12 .19 .20 .17 .10

6 3:1B/1:1P .70 .83 .77 .67 .87 .23 .43 .33 .33 .53
1:1B/3:1P .38 .65 .65 .68 .97 .15 .28 .27 .30 .30
3:1B/3:1P .77 .90 .90 .90 1.00 .33 .53 .57 .50 .67
3:1B/1:3P .53 .40 .40 .37 .33 .13 .23 .20 .13 .23
1:3B/3:1P .36 .37 .38 .17 .29 .16 .14 .16 .13 .17

7 3:1B/1:1P .47 .53 .70 .67 .63 .23 .27 .23 .23 .23
1:1B/3:1P .37 .40 .35 .37 .38 .17 .27 .27 .33 .30
3:1B/3:1P .73 .77 .77 .90 .77 .40 .23 .33 .30 .33
3:1B/1:3P .43 .30 .20 .47 .53 .20 .23 .23 .27 .23
1:3B/3:1P .27 .38 .31 .34 .33 .16 .09 .16 .12 .10

8 3:1B/1:1P .43 .57 .53 .70 .60 .20 .20 .23 .20 .20
1:1B/3:1P .38 .43 .43 .38 .37 .15 .15 .17 .17 .13
3:1B/3:1P .77 .73 .80 .80 .77 .37 .27 .37 .30 .30
3:1B/1:3P .40 .40 .47 .33 .53 .20 .27 .23 .17 .23
1:3B/3:1P .33 .38 .32 .38 .28 .16 .14 .16 .14 .19

Average 3:1B/1:1P .57 .64 .67 .65 .70 .29 .29 .30 .31 .30
1:1B/3:1P .40 .47 .44 .43 .47 .19 .22 .21 .24 .24
3:1B/3:1P .75 .74 .75 .77 .78 .38 .38 .41 .40 .38
3:1B/1:3P .49 .48 .46 .51 .58 .25 .26 .25 .25 .23
1:3B/3:1P .25 .27 .24 .22 .22 .13 .13 .14 .11 .10
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