
Humans and other animals appear to compute descrip-
tive statistics in a variety of domains—from language 
(e.g., Aslin, Saffran, & Newport, 1999), to foraging (Gal-
listel, 1990), to vision (e.g., Ariely, 2001) and motor skills 
(Trommershäuser, Maloney, & Landy, 2003). These statis-
tics may derive from mental magnitudes representing el-
ementary abstractions like number, duration, and distance 
(Gallistel, Gelman, & Cordes, 2006). These magnitude 
representations are approximate (i.e., fuzzy estimates) and 
nonverbal—animals, preverbal human infants, and adult 
humans engaged in conflicting verbal tasks use them, sug-
gesting a common cross- species mechanism for represent-
ing quantity (e.g., Cordes, Gelman, Gallistel, & Whalen, 
2001; Meck & Church, 1983; Xu & Spelke, 2000).

There is a growing psychophysical literature on the non-
verbal representation of these basic quantities (Brannon 
& Roitman, 2003; Dehaene, 1997; Gallistel & Gelman, 
2005). A well-established finding is that performance 
obeys Weber’s law; that is, the ease with which two sub-
jective quantities (e.g., numbers) can be ordered is pro-
portional to their ratio (Brannon & Terrace, 2000, 2002; 
Buckley & Gilman, 1974; Dehaene, Dupoux, & Mehler, 
1990; Moyer & Landauer, 1973; Parkman, 1971). This 
Weber- characteristic is also evidenced when subjects 
must repeatedly state the number of rapid arrhythmic 
flashes they have seen or rapidly press a button a given 

number of times without verbal counting; the standard 
deviation of the resulting distribution is proportional to its 
mean (Cordes et al., 2001; Whalen, Gallistel, & Gelman, 
1999). This scalar characteristic of the variability has led 
to the widely accepted hypothesis that discrete quantity 
(number) is represented nonverbally by continuous, noisy 
symbols (or signals) called mental magnitudes.

It has been shown that both animal and human sub-
jects can do arithmetic with these nonverbal numerical 
symbols (Barth et al., 2006; Barth, La Mont, Lipton, 
& Spelke, 2005; Brannon, Wusthoff, Gallistel, & Gib-
bon, 2001; Cordes, King, & Gallistel, 2007; Gallistel 
& Gelman, 2005; Gibbon & Church, 1981; McCrink 
& Wynn, 2004; Pica, Lemer, Izard, & Dehaene, 2004). 
For example, one particular line of work with bilingual 
adult humans comparing “exact” (language- dependent) 
versus “approximate” (thought to employ nonverbal mag-
nitudes) arithmetic finds that when subjects must choose 
the exact answer to arithmetic problems (e.g., 16  18  
41 or 34), the reaction time is longer when the problem is 
posed in the subject’s second (nonnative) language (De-
haene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Spelke 
& Tsivkin, 2001). By contrast, when subjects must only 
approximate the answer (give the response closest to the 
correct answer—e.g., 16  18  41 or 36), they choose 
equally rapidly regardless of the language of presenta-
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The first task (our baseline task) requires the subject to 
estimate the number of flashes seen (N̂1), remember the 
estimate, and compare that remembered number to their 
current (online) estimate of the accumulated number of 
taps they have so far made (N̂2). The subject stops when 
this current estimate (number of taps) equals the remem-
bered number of flashes. Noise (variability) may enter at 
any or all of the stages. The nonverbal enumeration pro-
cess that generates an online estimate of the number of 
events (flashes or taps) may generate different estimates 
from one occasion to the next (estimation noise, that is, 
variable subjective numbers for repetitions of the same 
objective number). An estimate made on one trial may be 
forgotten or confused with an earlier estimate or otherwise 
degraded between the time when it is read into memory 
and the time when it is retrieved from memory for com-
parison with the accumulating number of taps (memory 
noise). And the comparison process may itself be noisy, 
as it is in diffusion models of the process (Buckley & Gil-
man, 1974; cf. Ratcliff & Smith, 2004).

In the second task (an arithmetic task), the subject must 
estimate and remember the number of flashes in the first 
sequence (N̂1), estimate and remember the number of 
flashes in the second sequence (N̂2), add or subtract the 
two remembered numbers and compare the resulting sub-
jective sum or difference (N̂1   N̂2) to an online estimate 
of the accumulated number of taps (N̂3). Relative to the 
first (baseline) task, the second also has the potential for 
noise generated from the computational process (as pos-
tulated by Zorzi et al., 2006) and additional memory noise 
(since more values are stored in memory).

The expected results of a comparison of the response 
variability in the second (arithmetic) task to that of the first 
(baseline) task depend on which sources of noise one as-
sumes predominate. If, for example, memory is the domi-
nant source of noise (that is, much greater than the other 
sources), then one would expect the variance in responding 
for a given sum or difference in the arithmetic task to be the 
sum of the variances observed for the two operands in the 
baseline task, because the variance of the sum or difference 
of two independent random variables is the sum of their 
variances ( 2

x y  2
x 2

y). It does not matter whether the 
variables are added or subtracted; the variance in the result 
depends only on the magnitude of the operands, not on the 
magnitude of the result: The expected variance for 15  
15  30 is the same as for 15  15  0.

If, on the other hand, all of the noise is in the comparison 
process, then the variability in the second task should de-
pend only on the magnitude of the result, not on the mag-
nitude of the operands. Moreover, it should be the same in 
the second task as in the first, because in both cases there 
is only one comparison stage. Thus, the expected variance 
for 15  15  30 is the same as for straightforward estima-
tions of 30 in the baseline task (no computation).

Our analysis also bears on the question of the quantita-
tive relation between objective and subjective numerical 
magnitude, at the point where the mental magnitudes are 
added and subtracted. One common hypothesis explaining 
the Weber-characteristic of numerical representations is 
that subjective number is proportional to the logarithm of 

tion. These studies and others suggest that while exact 
arithmetic engages arithmetic skills taught in school and 
dependent on language, approximate arithmetic taps into 
primitive nonverbal calculation abilities. These nonver-
bal arithmetic abilities, presumably employing nonverbal 
quantity representations, are language-independent and 
inexact—mean responses approximate the correct answer, 
yet responses are quite variable. 

Despite the growing literature on nonverbal arithme-
tic capabilities, little is known about the sources of the 
noise in nonverbal representations of number, nor about 
the properties of the computations that take these noisy 
mental magnitudes as inputs. For example, neural network 
models of arithmetic have varied greatly in where noise is 
implemented, simply because this information is currently 
not known (Verguts & Fias, 2004; Zorzi, Stoianov, & 
 Umiltà, 2005). One approach to the behavioral analysis of 
these processes is by way of a noise analysis (see Church, 
Meck, & Gibbon, 1994; Gibbon & Church, 1992): How 
does the variability and resulting uncertainty in the repre-
sentation of the inputs propagate through the computation 
to determine the variability in the result? In this article, 
we analyze the propagation of noise through the nonverbal 
computation of numerical sums and differences.

We compare the variability in the performance of two 
nonverbal numerical tapping tasks by the same subjects. 
The first task requires the subjects only to tap out the num-
ber of rapid, arrhythmic flashes they have just seen. The 
second requires them to compute the sum or difference of 
two sequences of flashes and tap out the (signed) result. 
The reasoning behind this experimental comparison is ex-
plained by reference to the flow diagrams in Figure 1.

Figure 1. Flow diagrams decomposing the two tapping tasks 
into stages at which noise might enter: estimation, memory, com-
putation, and comparison. The diamond represents the compari-
son of two estimates (one remembered and one online); the circle 
with an X represents unweighted linear combination (either the 
addition or the subtraction) of two remembered numbers. Ni, ob-
jective number (of f lashes);  N̂i (“Ni-hat”), the online subjective 
estimate of Ni; N̂i  (“Ni-hat-basket”), the remembered estimate.
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clear predictions of systematic responding to computa-
tions involving a zero or negative difference, the logarith-
mic account does not. Thus, it is particularly interesting to 
compare the variability in subtraction answers around 0 to 
the variability well away from 0.

The goals of the present study are twofold. First, by 
comparing response variability obtained in arithmetic 
tasks to that of a baseline reproduction task, we provide 
an analysis of both the quantity and quality of the various 
sources of noise in the resultants of nonverbal arithmetic. 
Second, by comparing variability in the subtraction task 
when the difference is near 0 with variability for differ-
ences well away from 0, we ask whether there is evidence 
for a singularity at 0, the existence or absence of which 
distinguishes between the logarithmic versus nonlogarith-
mic hypotheses. 

METHOD

Subjects
Four undergraduate students (2 male, 2 female) at Rutgers Uni-

versity, New Brunswick, participated in this study. Subjects were 
paid to participate in a total of five 1-h sessions.1

Materials and Stimuli
PsyScope 1.01 was used to present stimuli on a 19-in. color 

Macintosh computer screen. A Power Macintosh G4 was used to 
record responses. Subjects indicated their responses using both a 
lab-constructed response box with two large buttons (connected to a 
PsyScope button box) and the computer keyboard.

Stimuli construction. Stimuli were sequences of rapid, arrhyth-
mic dot flashes. Dots were formed by printing the character “l” in 
Wingdings black font, size 120, on a white background. Both dot 
flash durations and interflash interval durations were randomly cho-
sen from a geometric (i.e., discrete exponential) distribution with an 
expectation of 100 msec (minimum of 50 msec). This prevented the 
minimum flash duration from being less than 50 msec, and made 
the expected flash  interflash duration 200 msec. These param-
eters made the dot flash sequences both arrhythmic and extremely 
rapid—making verbal counting and/or timing both highly inefficient 
and inaccurate. In the baseline condition, the flash sequence was 
presented in the center of the screen. In the subtraction and addi-
tion conditions, flash sequences were presented sequentially on the 
left and right sides of the screen (25% and 75% of the horizontal 
dimension, centered vertically). The order of side presentation (left 
vs. right) was randomly determined on each trial. The number of dot 
flashes presented on any given trial was also randomly chosen from 
a geometric distribution with an expectation of 15 (minimum 1, 
maximum 100). 

Procedure
The experiment took place in a dark room with the experimenter 

seated nearby to ensure subject compliance with instructions and to 
answer questions. Subjects were told that their responses were not 
expected to be accurate, but to perform to the best of their ability. 
It was stressed that subjects were not to count verbally at any time 
during the session, but just to get a “feel” for the numbers, and to 
make all button responses as rapidly as possible. 

All subjects participated in the baseline condition first (one ses-
sion), while the order of participation in the subtraction (two ses-
sions) and addition (two sessions) tasks were counterbalanced across 
subjects. Each session had two scheduled 5-min breaks. Subjects 
were encouraged to take additional breaks when necessary. Practice 
trials were presented at the beginning of each new session as well as 
following both of the 5-min breaks during the session. All sessions 
were audio-recorded.

objective number and that the noise in a subjective mag-
nitude is independent of the magnitude (i.e.,   k, a con-
stant, where  is the standard deviation in a distribution of 
mental magnitudes; Buckley & Gilman, 1974; Dehaene, 
2001, 2002; Moyer & Landauer, 1967). An alternative, 
less popular hypothesis, called the scalar variability hy-
pothesis, is that subjective number is proportional to ob-
jective number and so is the noise (i.e.,   kN, where N 
represents objective number; Gallistel & Gelman, 1992; 
Gibbon, 1977; Meck & Church, 1983). Although both hy-
potheses account equally well for the behavioral data from 
numerical estimation and discrimination tasks, there is de-
bate as to whether this is also the case for data from tasks 
requiring nonverbal computations (see Dehaene, 2001, and 
Gallistel, Brannon, Gibbon, & Wusthoff, 2001). One of 
the insights from the theory of measurement is that mental 
(brain) quantities cannot be measured by behavioral meth-
ods except at points of combination (Stevens, 1951). Thus, 
the question as to how well each theory accounts for mag-
nitude arithmetic is a crucial one in this debate.

In the case of nonverbal arithmetic, the scalar variabil-
ity hypothesis predicts that subjective sums and differ-
ences scale proportionally with the objective sums and 
 differences—that is, arithmetic is a straightforward process. 
The logarithmic hypothesis, on the other hand, requires the 
further assumption that the sums and differences of sub-
jective numbers are computed by means of look-up tables 
(Dehaene, 2001), because straightforward addition and 
subtraction simply do not exist in the logarithmic domain 
[log(N1  N2)  log(N1)  log(N2)]. The only mathemati-
cally defined way (the only closed procedure) for obtaining 
the log of the sum or difference of two objective quantities 
from their logarithms (the putative corresponding subjec-
tive quantities) is by taking antilogs and then adding or sub-
tracting those antilogs. When the antilogs of the subjective 
quantities have been taken, the resulting subjective quanti-
ties, which are the ones that enter into the subjective com-
binatorial operation (subjective addition or subjective sub-
traction), are proportional to the corresponding objective 
quantities—in accord with the scalar variability hypothesis. 
Models that avoid the intermediate step of taking antilogs 
do so by resort to look-up tables (Dehaene, 2001).

If the logarithmic hypothesis is augmented to include 
look-up tables for implicit arithmetic, then hard-to-predict 
things should happen to variability when the subjective 
difference of two values approaches 0 and becomes nega-
tive, since the logarithms of these values do not exist. To 
illustrate, given a subtraction table (much like the multi-
plication tables taught in school) with rows correspond-
ing to the subjective representation of the minuend and 
columns corresponding to that of the subtrahend, then one 
can mentally locate the row corresponding to log 8 (sub-
jective representation of 8) and the column corresponding 
to log 5 (subjective 5), and discover that the value at their 
intersection, representing their difference, is log 3, and 
respond accordingly without problem. However, when 
one must subtract (e.g., 5  5 or 5  8), what value is 
found at the corresponding intersection? The logarithm 
of 0 is minus infinity, and negative quantities do not have 
logarithms. Whereas the scalar variability hypothesis has 
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Infrequently, the button box recorded two buttonpresses when 
the subject made only one press. In these cases, the recorded inter-
response time was either negative or only a few milliseconds—a 
physically impossible feat. Therefore, buttonpresses with a recorded 
interpress interval of less than 5 msec were excluded from data 
analyses. Also, interresponse intervals greater than three standard 
deviations away from the mean were excluded from analysis, so as 
to avoid an inaccurate reflection of the average responding.

For purposes of data scoring and analysis, data from the sub-
traction task were treated as follows: Flashes on the left side of the 
screen were attributed negative values and flashes on the right side 
were attributed positive values. Because the subject’s presses were 
compensatory (opposite in sign to the perceived difference in the 
number of flashes), they were given the opposite sign: presses on the 
left button were scored as positive and presses on the right button as 
negative. Thus, for example, in a trial in which there were 6 flashes 
on the left and 8 on the right and the subject pressed the right key 
three times, the scored answer would be 3 (a response indicating 
a perceived difference of 3 in favor of the left side when the true 
difference was 2 in favor of the right side). The signed error would 
be 3 (response)  ( 2) (true difference)  5 (a left-directed 
error of magnitude 5). On a trial with 11 flashes on the left and 2 
on the right (a true difference of 9), in which the subject pressed 
the right button seven times (perceived difference of 7), the 
scored answer would be 7, and the signed error 7  ( 9)  2 
(a right-directed error of magnitude 2).

RESULTS AND DISCUSSION

Data from the baseline condition (Figure 2) were com-
parable to nonverbal counting data obtained in previous 
reproduction studies (Cordes et al., 2001; Whalen et al., 
1999). Plots of the data revealed the number of presses 
(z) increased as an approximately linear function of the 
number of flashes presented (x), as did variability (i.e., the 
standard deviation of the distribution of presses); that is, 
z  sx and z  wsx, where s is the slope of the regression 
line relating objective to subjective number and w is the 
the Weber fraction (coefficient of variation).2 This pattern 
of scalar variability is ubiquitous in both the human and 
animal nonverbal counting data. 

Data from the addition and subtraction conditions are 
plotted in Figures 3 and 4, respectively. The number of 
presses made increased in proportion to the sum (addi-
tion) or difference (subtraction) of the number of flashes, 
indicating that subjects could do the requested combinato-
rial operation and base their responding upon the result-
ing mental magnitude. Results from the both the baseline 
and arithmetic tasks demonstrate that humans represent 
numerosity nonverbally while providing some of the first 
direct evidence that these representations are subject to 
arithmetic manipulation. The finding that nonverbal arith-
metic was a feasible, nontrivial task for our subjects is sig-
nificant in that it strengthens the claim that computations 
involving these magnitude representations may serve as a 
basis for learning.

Variance Analyses
The variability in the addition data appears to increase 

as a function of the objective sum of the operands but not 
the variability in the subtraction data. Why is this the case? 
If we assume that the variability in the baseline condi-
tion is dominated by variability in the underlying mental 

Baseline task. All trials began with a Ready? prompt in the 
center of the screen. When ready, the subject pressed a button and 
immediately saw a dot flash sequence in the center of the screen. 
Following the termination of the sequence, subjects were prompted 
with How many? in the center of the screen. At this point, subjects 
rapidly pressed a button on the button box as many times as they 
felt they had seen the dot flash. To prevent the counting of button-
presses, subjects were asked to say “the” with every press. Thus, they 
said “the” at the moment when they would ordinarily say a count 
word if verbally counting (vocally or subvocally), and, because sub-
jects pressed as rapidly as they could, the stream of “the”s formed 
a continuous and crowded articulatory sequence, precluding verbal 
counting (this method has been employed as an effective measure of 
articulatory suppression of count words by both Logie & Baddeley, 
1987, and Cordes et al., 2001). Subjects then pressed the computer 
space bar to indicate completion of the trial. Subjects participated in 
a total of 150 trials in the 1-h baseline session. 

Subtraction task. All trials began with a Ready? prompt on ei-
ther the right or left side of the computer screen (position of the first 
prompt was randomized across trials). After a buttonpress, subjects 
were presented with a dot flash sequence on that same side. Again, 
subjects were asked to refrain from counting the flashes verbally, 
just to get a “feel” for how many flashes they saw. Subjects then 
saw another Ready? prompt on the opposite side of the screen. After 
another buttonpress, another dot flash sequence was presented on 
that side of the screen. Following the presentation of both sequences, 
subjects saw the How many? prompt in the center of the screen. 
At this point, subjects rapidly pressed the button (on the button 
box) corresponding to the side with fewer flashes as many times as 
they felt was the numerical difference between the two sequences 
of flashes without counting, again while saying “the” with every 
press. For example, if a subject saw 9 flashes on the right side and 
15 flashes on the left side, she would rapidly press the right button 
approximately six times. Subjects then pressed the computer space 
bar to indicate completion of the trial. Occasionally, the numbers of 
flashes on each side were the same. Subjects were instructed that 
in this case, to indicate a zero response, just to press the space bar 
(without pressing the button box). The subtraction task consisted of 
a total of 300 trials, 150 trials per session. 

Addition task. Trials in the addition task were exactly the same 
as the subtraction task except that in addition trials, subjects were 
instructed to press the button corresponding to the side with fewer 
flashes as many times as they felt was the sum of the two sequences 
of flashes. So, given stimuli as in the above example (9 on right, 15 
on left), the subject would rapidly press the right button approxi-
mately 24 times. All other trial attributes were identical. 

Data Analyses
Those trials requiring the greatest number of presses were ex-

cluded from data analyses; that is the baseline, addition, and sub-
traction data were sorted by objective number, sum, and absolute 
difference (of flashes), respectively, and the last 10% of trials were 
excluded (amounting to a total of 15 trials in baseline, and 30 trials 
in each of the arithmetic conditions per subject). The decision to em-
ploy this data-limiting strategy was made prior to analyses for a num-
ber of reasons. First, the number of flashes in each flash sequence 
was randomly chosen from a geometric distribution. Thus, the data 
points obtained in this larger flash range were relatively sparse, and 
may have provided less reliable estimates of the variability in this 
range. Second, since these trials were those requiring subjects to 
make the most number of presses, there were concerns regarding 
possible subject fatigue adversely affecting the data in this range. 
Finally, results from previous pilot work using fixed target values 
(as opposed to values chosen from a distribution) showed signs of 
anchoring effects, such that subjects tended to grossly underestimate 
the larger flash sequences. This result initially influenced our deci-
sion to choose flash sequence values from a distribution (as opposed 
to from a list of predetermined targets), and later provided a similar 
rationale for excluding the final 10% of the data.



NONVERBAL ARITHMETIC IN HUMANS    1189

answer variability should covary with answer magnitude in 
the case of addition, because the magnitude of the answer 
covaries with the magnitude of the operand pair (thus the 
clear pattern of scalar variability in Figure 3). In the case of 
subtraction, however, it does not; pairs of arbitrarily small 
or large operands can yield the same answer—for instance, 
3 2  1 and 9,999 9,998  1 (thus, when the data are 
plotted as a function of the answer as in Figure 4, variability 
patterns appear unsystematic). The variability patterns in 
Figures 3 and 4 therefore imply that answer variability is 
dominated by operand variability, variability in the inputs to 
the combinatorial operations. The question then becomes, 
to what extent is the variability in the answers predictable 
from the variability in the operands? That is, is arithmetic 
variability purely a function of noise in the representation 
of the operands, or do other sources play a role?

Within-Task Variance Characterization
Before predicting the variability in the addition and 

subtraction conditions from the variability in the baseline 
condition, we must accurately characterize variability 
under baseline conditions. Is it in fact purely scalar?

Baseline condition. To answer this question, we did 
a weighted linear regression, minimizing the sum of the 
squared deviations weighted by the inverse of the square 
of x. Deviations were weighted in this way to offset the 
approximately scalar heteroscedasticity evident in the 

magnitudes (as opposed to the comparison process) and 
that there is no source of covariance in the two estimates 
made on each combinatorial trial, then the input variances 
will add. That is, the variance obtained in our addition and 
subtraction tasks should equal the sum of the variances 
associated with the individual operands (as determined by 
our baseline data), because, for random normally distrib-
uted variables, x and y,

 2
x y  2

x 2
y  2cov(x, y) 

 
(1)

and
 2

x y  2
x 2

y  2cov(x, y), (2)

where 2
x y and 2

x y are the variances of the sums and dif-
ferences, and 2

x and 2
y are the variances of the operands.

Note that with independent operands (hence, zero covar- 
iance), the variances associated with the sum and the dif-
ference of any pair of operands are the same; they are both 
equal to the sum of the operand variances. When operand 
variability scales with operand magnitude

 

x y x y x y

wsx wsy ws x y

or 2 2

2 2 2 2( ) ( ) .  (3)

That is, the variability in the results will depend on x2  y2, 
which we call the magnitude of an operand pair, by analogy 
with the magnitude of a complex number. On this analysis, 
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these additional, nonscalar sources? Additive sources of 
variability are brought about by factors such as a failure to 
immediately stop pressing the button once the target num-
ber of presses is attained, and a failure to stop the nonver-
bal count process immediately after the last flash on the 
screen (resulting in counting more flashes than seen); that 
is, trial-to-trial variations whose magnitude is independent 
of the number being estimated. Counting  errors—errors 
from skipped items or double counts—yield binomial 
variability. Binomial variability arises whenever there is 
an approximately constant probability of deviation for 
each item or event in an array or sequence.

As Equation 4 makes clear, the contributions of both 
additive and binomial variability relative to the scalar 
component must diminish as the number of flashes gets 
larger, because additive sources are independent of the 
number of flashes (i.e., constant) and binomial variability 
grows in proportion only to the square root of the number 
of flashes. Thus these additional sources of variance must 
be responsible for the pattern obtained in Figure 5.

We fit the Killeen variance equation to our data by an 
iterative search for the maximum likelihood values for 
A, B, and C. The parameters of the regression line are an 
analytic function of the variance parameters (see Appen-
dix B), so, in determining the values of A, B, and C, one 
determines the value of the slope and intercept of the re-
gression line. The maximum likelihood values for these 
parameters are given in Table 1. Generalized likelihood 

plots, the tendency of the variance ( 2
z) to increase as the 

square of the predicted value. If the variability (i.e., the 
standard deviation, z) about the resulting regression line, 
z  ax  b, increases strictly in proportion to the value of 
x (the independent variable)—that is, if it is scalar—then 
there will be no trends in the residuals when they have 
been normalized by the predicted variability. That is,

 

| |z z

z  
should be independent of x. Alternatively, trends in the 
normalized residuals would suggest the influence of non-
scalar noise sources.

The normalized residuals are plotted in Figure 5. They 
show a clear trend: Large deviations from predictions are 
more common for small test values. This implies nonscalar 
components of the variability in these data, and in particu-
lar components that make a relatively greater contribution 
to overall variability at small values than at large.

Killeen and colleagues (Fetterman & Killeen, 1995; 
Killeen & Weiss, 1987) have characterized the variance 
associated with interval timing and counting as the com-
position of scalar, binomial, and additive variances:

 2
x  Ax2  Bx  C, (4)

where the coefficient C corresponds to additive sources of 
variability, B to binomial sources, and A to scalar sources 
of noise (where A   ws). What leads to the influence of 
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data. For example, the likelihood fits of S10’s data did not 
reveal any additive variability but revealed a contribution 
of binomial variability, whereas S14’s data revealed the 
opposite pattern. What can account for these individual 
differences? There are two likely contributing factors. 
First, it is highly probable that there are both individual 
and day-to-day differences in factors related to perform-
ing in this task. For example, differences in attention may 
have lead to differences in the number of items not counted 
or double-counted and/or in the amount of time it took to 
stop the nonverbal count. Our ability to specify the sources 
of these individual differences is limited by our lack of 
certainty about the true values of the variance coefficients 
for a given subject. That is, though we can be fairly certain 
that nonscalar influences affected our data, the precision 
in our maximum likelihood estimates for the scalar and 
binomial variance components is low. Contour plots of the 
loss surfaces showed strong negative covariation between 
these estimates; very different combinations of the bino-
mial and scalar variance coefficients gave equally likely 
fits (Figure 6). A similar trade-off is not found with the 
additive component, suggesting that estimates for this pa-
rameter are reasonably independent of the estimates for 
the other variance parameters. Although discussions of the 
total amount of response variability from each subject can 
be conducted with confidence, the relative amounts of sca-

ratio tests (Mood & Graybill, 1963) confirmed that the 
fits of the data using the Killeen variance equation (Equa-
tion 4) were significantly better ( p  .001) than the purely 
scalar fits of the data in all 4 subjects [in Subject 10 (S10), 

2(2, N  135)  15.83; in S11, 2(2, N  135)  33.13; 
in S13, 2(2, N  135)  25.25; in S14, 2(2, N  135)  
25.68]. This is the first time these alternative (nonscalar) 
variability sources have been estimated in human nonver-
bal counting data.

Plots of the baseline data with the new regression lines 
and lines of 1 standard deviation show that this model 
provides a fairly accurate fit of the spread around the re-
gression line (Figure 2). As can be seen in Table 1, how-
ever, there are noticeable differences in exactly how much 
contribution each noise source made to each individual’s 
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Table 1 
Variance and Regression Parameters Obtained Through Fits 

of the Baseline Data Using the Killeen Variance Equation 
(Equation 4): x

2  Ax2  Bx  C

   Regression  Additive  Binomial  Scalar  

S10 0.70x  0.78 0 0.27 0.021
S11 0.80x  1.05 0.20 0.19 0.020
S13 0.75x  1.32 0.31 0.39 0.033
S14 0.73x  1.31 0.47 0 0.057

Note—S10, Subject 10; S11, Subject 11; S13, Subject 13; S14, Subject 14.
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based on the following two assumptions: (1) representations 
of the two operands were independent [i.e., cov(x, y)  0] 
and (2) the implementation of an arithmetic operation did 
not create any additional noise in the representations. As in 
the baseline case, the regression parameters were analyti-
cally derived from the variance parameters returned by the 
search. (Derivations of the loss equation and the regression 
parameters are described in Appendix B.)

The parameters obtained from this new search appeared 
to describe the data well. The new z scores obtained from 
the Killeen fit of the data were plotted as a function of op-
erand magnitude, answer magnitude, and predicted stan-
dard deviation. None of these plots revealed significant 
trends, suggesting that the Killeen parameter search led 
to an appropriate representation of the scatter in the arith-
metic data. This was confirmed by generalized likelihood 
ratio tests comparing the new fits with the purely scalar 
model. The Killeen variance fits were a significantly better 
characterizations ( p  .0001) of the data than the purely 
scalar model in both the addition and subtraction data for 
all subjects, except for S10’s subtraction data [addition 
data for S10, 2(2, N  271)  126.38; for S11, 2(2, N  
271)  68.86; for S13, 2(2, N  270)  20.07; for S14, 

2(2, N  271)  51.12; subtraction data for S10, 2(2, 
N  271)  3.96, p  .14; for S11, 2(2, N  272)  
81.29; for S13, 2(2, N  269)  77.34; for S14, 2(2, 
N  273)  89.05].

Across-Task Variability
Given the uncertainty in the estimates of the variance 

components (the values for the variance parameters A, B, 

lar and binomial variability in the data from a given subject 
cannot be estimated with any confidence.

Arithmetic data. Given the presence of both additive 
and binomial variabilities in the baseline data, it was likely 
these sources also played a part in the variance obtained 
in the addition and subtraction cases. Preliminary analy-
ses confirmed this. Again, if response variability were ex-
clusively a function of noise in the representations of the 
operands (i.e., variability was scalar with respect to the 
operands only), then there would not be a relationship be-
tween the distribution of z scores and the magnitude of the 
operands; that is, variability in the plots would be flat. Plots 
of the z scores obtained from multiple weighted regres-
sions of the arithmetic data (with weights again inversely 
proportional to the square of the magnitude of the operands 

2
i ~ x2

i  y2
i )3 as a function of the magnitude of the oper-

ands revealed trends (see Figures 7 and 8). The z scores 
followed a pattern similar to that seen in the baseline data. 
Both sets of z scores showed relatively more variability 
when subjects were presented small numbers of flashes, 
again suggesting additive and/or binomial components.

To determine exactly how much noise was contributed 
by these nonscalar sources, the variance of the arithme-
tic data was also fit by iterative search for the maximum 
likelihood parameters of the bivariate form of the Killeen 
variance equation.

 x y A x y B x y C2 2 2 2(| | | |) .  (5)

We first examined the simplest-case scenario—the case 
in which the impact of variables other than inherent noise 
in the representations is minimal. Thus, calculations were 
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the operands, the points in Figure 9 would cluster around 
a line with slope  1 (solid line).

There are three points to notice from these plots. First, 
the plots from the addition task in all four subjects fall 
above the solid comparison line (slope  1). This means 
that the standard deviations obtained from the Killeen fits 
of the addition data were greater than predicted. While the 
obtained variability is greater in all subjects, the differing 
shapes of the curves reflect possible discrepancies in esti-
mates of the individual variance parameters. For example, 
the exaggerated curvature seen in S14’s data is most likely 
an artifact of the lack of binomial contributions estimated 
in her baseline data. Regardless, it is not certain that any 
one source of variability can account for the discrepancy 
between baseline predictions and the obtained variability. 
For the reasons listed above (i.e., individual differences 
and large confidence limits on estimates of the parame-
ters), these differences in curvature were deemed orthogo-
nal to the question of overall variability patterns.

Second, the subtraction data do not seem to differ sig-
nificantly from a slope of one in any common systematic 
fashion across subjects. That is, 2 subjects (S11 and S14) 
appear to have produced less variable data in the subtrac-
tion task than predicted by their baseline estimates, whereas 
1 subject (S13) produced more variable data in this task, 
and the last subject’s data (S10) matched predictions fairly 
well. So, although the addition data appear to be more vari-
able than predictions of the simple model of additive vari-
ance, the subtraction data match predictions fairly well.

Finally, for a given pair of operands, the addition condi-
tion consistently yielded more variable data than the sub-
traction task. This is most evident when the standard de-

and C), predicting each component in the arithmetic data 
from the estimate of the corresponding component in the 
baseline data would not be justified. Instead, we asked to 
what extent the total variance estimates for the two oper-
ands obtained from the baseline condition predicted the 
variance estimates obtained by fitting the data from the 
arithmetic conditions. The model of the baseline data yields 
an estimate of the variance associated with each individual 
operand. This estimate can be compared on an operand-
pair-by-operand-pair basis with the estimates for each pair 
obtained from the multiple-regression models for the arith-
metic data. Specifically, for each operand, we obtained 
from the maximum-likelihood model of the baseline data 
the estimate of the variance to be expected. The predicted 
standard deviation for the sum or difference of the pair of 
operands was the square root of the sum of the two vari-
ance estimates (one for each operand) obtained from the 
baseline condition. These predictions were plotted against 
the observed standard deviation for that pair; that is, the 
standard deviation obtained from the maximum-likelihood 
model for the arithmetic data. In other words, we took each 
pair of operands presented to the subject in the arithmetic 
task (e.g., 18  7) and computed the standard deviation 
predicted by baseline—that is,

pred base(18) base(7)( )18 7
2 2

 

—and plotted it against the standard deviation estimated 
in the arithmetic task for that particular pair of operands 
( 18 7). Figure 9 plots the observed estimates against the 
predicted estimates. If the variability in the responses 
could be predicted from the estimates of the variability in 

Figure 8. The z scores (absolute value of the difference between the observed and 
 regression-predicted values divided by the standard deviation at that point) from the subtrac-
tion condition plotted as a function of the magnitude of the number of flashes presented.
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then (as outlined in the introduction) the variability ob-
served in both addition and subtraction answers would 
depend only on the variability estimates for the operands. 
The variance in the addition and subtraction answers 
would be the same, and it would be equal to the sum of the 
variance estimates for the two operands obtained from the 
baseline data. In this case, the variances obtained on trials 
where subjects were required to compute the sum of say, 
30 and 29, should be identical to the variance associated 
with the responses on those trials where the difference 
between these two values was computed; that is, responses 
as high as 59 buttonpresses should be just as variable as 
those around 1. This model, which is rather counterintui-
tive, is the one we have so far tested, and it clearly fails.

The consideration of the extreme case shows how some-
thing like the pattern of results we observe would arise. A 
conclusion from this consideration is that we ought to in-
clude in our regression terms that depend on the sums (and 
differences) of the operands. Therefore, the baseline predic-
tions as well as fits of the arithmetic data were modified to 
include potential answer noise. That is, for the case of the 
arithmetic data, Equation 5 was modified to include variance 
associated with the magnitude of the answer as follows:

 

x y A x y B x y C

A x

2 2 2 3(| | | |)

( yy B x y) (| |).2
 (6)

Notice that we have added three terms to the variance equa-
tion (Equation 5) intended to allow for a dependence on the 
square of the sum of the operands (scalar answer- dependent 
variability) and on the simple sum (binomial answer-
 dependent variability), and for additional additive noise. To 

viation of the addition data is plotted against the standard 
deviation of the subtraction data in each subject (Figure 10). 
In this case, all four plots are above a slope of 1. (Recall 
that if variability in the answers could be predicted simply 
from summing the variance estimates associated with the 
operands, then the variance in the sum of two operands 
would be the same as the variance in their difference.)

The plots in Figure 9 indicate that the variability in the 
sums and differences of two nonverbal numerical estimates 
cannot be adequately predicted from the sum of the vari-
ance estimates associated with the operands via the baseline 
task alone. This is not surprising, because there are likely 
to be at least two sources of variability in the arithmetic 
tasks—variability in the nonverbal estimates of the num-
ber of flashes (operands) and in the representation and tap-
ping out of the computed sum or difference (answer)—and 
these would be expected to obey different combination 
rules. When two nonverbal estimates are mentally summed 
or subtracted, the variance in the resulting subjective sum 
or difference should be the sum of the variances associ-
ated with the operands, that is to say, of the variability in 
those estimates. Once the sum or difference is computed, 
however, that estimate is then stored in memory where it is 
subject to additional scalar noise and then buttonpresses are 
counted out to this value, providing additional additive and 
binomial noise (counting error variability). This additional 
noise contributed by the representation and counting out of 
the computed answer should thus be scalar and binomial 
with respect to the magnitude of the answer (i.e., | x  y |).

The importance of this distinction may be appreciated 
by considering the extreme case. If there were no addi-
tional variability provided by the answer representation, 
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baseline variability would do better. It is also possible that 
these final discrepancies could be attributed to a lack of 
independence in the representations of the two operands. 
That is, cov(x, y)  0, such that the probability of the sub-
ject overestimating both operands or underestimating both 
operands on any given trial was greater than chance.

How could covariation in the operands—that is, in the 
subjective estimates of the two flash numerosities—arise, 
given that the objective numerosities were independent? 
Subjects might have attempted to compensate for a (in-
correctly) perceived under or overestimation of the first 
operand by purposely over or underestimating the second. 
Subject interviews do not provide any evidence to suggest 
this is the case. A second, and perhaps more likely, expla-

make the iterative search for maximum likelihood values 
tractable, we have forced the coefficients of scalar and bino-
mial variability to be the same for these two terms as for the 
original two terms. In other words, we have assumed that 
the mixture of scalar and binomial variability is the same 
for the estimates of flash number (operand representations) 
and the answer estimates.4 Our rationale for proceeding was 
simply to see whether allowing for a dependence on answer 
magnitude as well as operand pair magnitude improved our 
ability to predict the addition and subtraction data from the 
baseline data. These parameters obtained from this new fit 
of the arithmetic data are listed in Table 2.

The standard deviations obtained from these new base-
line predictions were re-plotted against the standard de-
viations from the new fits of the arithmetic data including 
answer noise (Figure 11). Comparisons of the plots in Fig-
ure 11 with those in Figure 9 (the original plots without 
variability due to the answer magnitude) reveal that, while 
it is not clear whether the plots of the subtraction data 
benefit substantially from this new fit, the addition data 
from all four subjects are significantly closer to a line with 
slope one, indicating it is likely that the magnitude of the 
answer to the arithmetic manipulation also contributed to 
the response variability obtained.

Despite the improvement in these new fits, it is clear that 
the variability obtained in the arithmetic conditions does 
not entirely match up with that predicted by each subject’s 
baseline performance. In addition, in 3 out of 4 subjects, 
the addition data remain more variable than the subtraction 
data. It is entirely possible that a fit that allowed the coef-
ficients of scalar and binomial variability to be different 
for the estimation and the tapping-out components of the 
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Table 2 
Variance and Regression Parameters Obtained Through 

Fitting the Arithmetic Data Using the Bivariate Form of the 
Killeen Variance Equation, Including Terms for Answer Noise 

(Equation 6): 2
x y A (x2  y2)  B (| x |  | y |)  3C   

A (x  y)2  B | x  y |)

  Regression  Additive  Binomial  Scalar

Subtraction Data
 S10 0.69(x  y)  0.21 0 0.064 0.024
 S11 0.55(x  y)  0.14 0.767 0.048 0.012
 S13 0.74(x  y)  0.82 0 1.580 0.012
 S14 0.62(x  y)  0.49 0 0.663 0
Addition Data
 S10 0.84(x  y)  0.98 0 0.161 0.036
 S11 0.71(x  y)  6.31 2.280 0.138 0.013
 S13 0.82(x  y)  2.37 0 0.519 0.043
 S14 0.86(x  y)  5.91 0.487 1.470 0

Note—S10, Subject 10; S11, Subject 11; S13, Subject 13; S14, Subject 14.
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tations themselves, rather than noise in the comparison 
process (i.e., the comparison between the representation 
of the sum and the number of buttonpresses made thus 
far). If the variability arose primarily in the comparison 
process, then it would depend primarily on the magnitude 
of the resultant, rather than on the magnitude of the oper-
ands. That is, the variability associated with 2  3 would 
be equivalent to that associated with 58  53. We find 
the opposite; it depends primarily on the magnitude of an 
operand pair.

A significant portion of the behavioral noise in the task, 
however, does appear to arise from the comparison pro-
cess, because the variability for an operand pair with a 
given magnitude is substantially greater when the resul-
tant is their sum than when the resultant is their differ-
ence. If the variability in the behavioral consequences of 
arithmetic composition depended only on the magnitude 
of the operand pair, then, for a given pair, the variability 
in sums and differences would be the same. There is, how-
ever, a second plausible source for the discrepancy in the 
variability of sums and differences. Factors that tended to 
covary over- and underestimates for the numerosities of 
the two flash sequences presented on compositional trials 
would also produce greater variability in the sums than in 
the differences, because the covariance term is additive for 
sums and subtractive for differences. The ubiquitous phe-
nomenon of 1/f noise in psychophysical judgments makes 
the assumption of appreciable covariance plausible.

The two possibilities—variability in the comparison 
process and covariance in operand noise—are not mutu-
ally exclusive. If the discrepancy between variabilities in 
the sums and differences derived entirely from covaria-

nation for a nonzero operand covariation is that there is 
1/f noise in the process of nonverbally estimating numer-
osities. This ubiquitous source of noise in psychophysical 
tasks is a fluctuation in time in psychophysical judgments, 
in which the power density is inversely proportional to 
the frequency, that is, the low-frequency, long-period fluc-
tuations are bigger than the high-frequency, short-period 
fluctuations (Gilden, Thornton, & Mallon, 1995). Period 
is typically measured in number of trials. Thus, a low fre-
quency fluctuation is a change in the tendency to over or 
underestimate numerosity that is cyclical, with cycle dura-
tion extending over many trials. Such a fluctuation would 
induce covariation in the subjective numerosities of the 
two flash sequences presented on each trial.

The arithmetic data were fit using a model including 
covariance. The inclusion of this component, however, 
did not appear to significantly improve the fit of the data, 
with the possible exception of S10’s subtraction data. This 
model was not pursued any further, due to the difficulty 
in distinguishing the contributions of the various noise 
sources from the covariance, and thus a difficulty in com-
paring these new fits to baseline predictions.

DISCUSSION

The Loci of Variation
In summary, the variability obtained in our addition and 

subtraction data was primarily a function of variability in 
the representation of the operands and of the answer. Our 
results imply that the noise (variability) observed in the re-
sults from the arithmetic composition of nonverbal mental 
magnitudes derives primarily from noise in the represen-
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log(x2)] is not the same as the value (resultant) that the 
relevant table delivers [log(x1  x2)]. What it delivers is the 
logarithm of the sum or difference of the objective values 
represented by those input signals. The table is able to do 
this because there is no necessary connection between the 
values used to access a location and the value stored at that 
location. The retrieval of the value stored at a given address 
in a table is a nonarithmetic data-processing operation.

Any version of a table look-up model for combining 
mental magnitudes that are a logarithmic function of the 
objective magnitudes they represent must find a way to 
deal with the singularity in the logarithmic mapping at 0. 
The logarithm of 0 is minus infinity, which is to say that 
it is a physically unrealizable answer and must be treated 
as a special case. Zero was the most common objectively 
correct answer in our subtraction condition. Most impor-
tantly, the variability in our subjects’ responses in the vi-
cinity of 0 was of a piece with the variability in answers 
comfortably away from 0. From the perspective of a noise 
analysis, there was nothing special about subjective dif-
ferences at or near 0.

A table look-up model with logarithmically compressed 
mental magnitudes as representations of both entrant and 
answer magnitudes will have to have special machinery for 
dealing with the case where the subjective difference is 0— 
that is, where the numerosities of the flashes on the two 
sides are subjectively equal. It will also have to deal with 
the related problem that when subtraction is implemented 
in this way, it is not a closed operation. Negative quantities 
have no logarithms, so a mental magnitude can never be 
subtracted from a mental magnitude smaller than it. The 
direction (sign) of a difference must be determined before 
the table is entered. Given that the order of presentation of 
the large and small operands in our subtraction task was 
randomized, a look-up table would require the additional 
task of determining which input value corresponded to the 
row value and which to the column. This is not required in 
the case of a scalar mapping. How to handle differences 
that include zero and negative values (signed differences) 
in such a way that the propagation of variability from oper-
ands to answers behaves just as it does well away from the 
singularity at 0 presents an interesting challenge to such a 
model. If this challenge cannot be surmounted, then our 
data argue in favor of an approximately scalar mapping 
from objective magnitudes to subjective magnitudes, at 
least at the point where subtraction is implemented.

Alternative Estimation Strategies
We assume that our subjects based their responses on 

estimates of the numbers of flashes in the flash sequence 
and that they did not make those estimates by means of 
subvocal verbal counting. Here, we review the thinking 
behind those assumptions.

Did subjects verbally count flashes? The speed of the 
flash sequences made it unlikely that subjects used verbal 
counting to keep track of the number of flashes. Subjects 
reported that they felt the flash sequences were presented 
much too quickly to be counted. They expressed surprise 
at the rapidity of the flash sequences, and doubted, before-

tion between operands, then the two variabilities would 
straddle the variability predicted on the assumption of 
simple additivity: The sums would have greater than pre-
dicted variability and the differences less than predicted. 
If the discrepancy derived entirely from the comparison 
process, then both variabilities would be greater than 
predicted by the additivity of input variances, with the 
variability in the sums being more excessive than the 
variability in the differences. The actual patterns differ 
somewhat between subjects, but the variability in the dif-
ferences tends to approximate the additive prediction, 
whereas the variability in the sums clearly exceeds it. 
This pattern is consistent with the plausible assumption 
that there is both some operand covariance and variabil-
ity in the comparison process (variability dependent on 
answer magnitude).

Variability in the translation of mental magnitudes into 
numbers of presses is the most plausible source for the 
additive and binomial components of the variance in our 
baseline task, which involved simply duplicating in the 
number of one’s presses the number of flashes seen. Our 
task requires subjects to produce behavior—a number of 
presses—that varies in the same way as the inputs (num-
bers of flashes). It may be possible to get a less contami-
nated, albeit more indirect, view of the variability in the 
underlying number-representing signals and their compo-
sition using two-alternative forced choice procedures (see 
Barth et al., 2006).

The Form of the Mapping From Objective to 
Subjective Magnitude

The Weber-law characteristic in judgments of numerical 
(and other) order is susceptible to at least two contrasting 
explanations: Model 1. The subjective magnitude (brain 
signal) is proportional to the logarithm of the objective 
magnitude and the noise in that signal is constant, that is, 
independent of signal magnitude (Dehaene et al., 1990). 
Model 2. The subjective magnitude is proportional to the 
objective magnitude and so is its variability (Gibbon, 
1977). In either model, the overlap between two signal 
distributions—hence, the discriminability of the objective 
variables that the two signals represent—is a function of 
the ratio of their means (Weber’s law).

Studies revealing arithmetic competence (specifically, 
in the case of subtraction) in nonhuman animals (Brannon 
et al., 2001; Gibbon & Church, 1981) support the second 
kind of model (scalar mapping and scalar variability) put 
forth by Gibbon (1977). Dehaene (2001) has suggested 
that mental magnitudes are proportional to the logarithms 
of objective magnitudes and that, to obtain from them the 
mental magnitude corresponding to an objective differ-
ence, the brain uses a neuronal look-up table. A look-up 
table uses the subjective representations of two inputs as 
row and column header values that together determine the 
location (cell) within the table that contains the resultant. 
The table overcomes the fact that logarithmic transfor-
mation is a nonlinear operator—that is, log(x1  x2)  
log(x1)  log(x2). In this model, the value obtained from 
adding (or subtracting) the two input signals [log(x1)  
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them and they could have attempted to produce a given 
number of presses by timing the duration of their tapping. 
Although we think this unlikely, it is not material to our 
purpose, so we did not pursue it further. The current lit-
erature indicates that the nonverbal representations of time 
and of number have identical psychophysical properties 
(Meck & Church, 1983; Meck, Church, & Gibbon, 1985; 
Roberts, 1995). Our purpose was to use noise analyses to 
determine the locus of the variability in tasks in which be-
havior depends on the nonverbal representation and combi-
nation of abstract quantities like number and duration, and 
to constrain models of the relation between the objective 
and subjective magnitudes of these variables. If our sub-
jects did use time as their basis for responding, as opposed 
to number, then the conclusions we draw apply to the rep-
resentation of duration by means of mental magnitudes.

CONCLUSIONS

Our results imply that the primary source of variability 
in the behavioral consequences of mental arithmetic with 
nonverbal analog representations of number is variability 
(noise or uncertainty) in the subjective magnitudes enter-
ing into the arithmetic composition—not in the compari-
son process. However, some of the variability depends on 
the magnitude of the resultant. This is not surprising, given 
that subjects indicated the magnitude of the resultant by 
making a proportionate number of buttonpresses. The de-
partures from additive operand variability in our arithme-
tic data can be explained by a combination of two things: 
(1) Additional noise was accumulated (scalar with respect 
to answer magnitude) once the answers were computed, in 
the process of responding, and (2) there was some covar- 
iance in the magnitudes representing the operands. The 
covariance increased variability in the addition condition 
and decreased variability it in the subtraction condition.

In addition, our study is the first to examine the influ-
ences of nonscalar noise sources on nonverbal counting 
data. Although, as previously assumed, scalar variability 
appears to be the most prominent characteristic of the 
data, our results suggest that the contribution of these bi-
nomial and additive sources are robust and should not be 
ignored (as evidenced in Figures 5, 7, and 8).

Importantly, the variability in the results of mental sub-
traction remains roughly constant as the difference passes 
through 0 and its sign reverses. This presents a challenge 
to models in which the mental magnitudes representing 
number are assumed to be proportional to the logarithm of 
the number they represent, which assumption requires that 
addition and subtraction be implemented by table look-up. 
The problem arises from the fact that the logarithms of 0 
and negative quantities do not exist.

Our approach provides a general strategy for the behav-
ioral analysis of the nonverbal mental arithmetic that medi-
ates the extraction of descriptive statistics from quantitative 
experience. Analyses of the variability in responding sheds 
light on basic combinatorial mental capacities—a feat that 
mean response data cannot begin to tackle. In the present 
study, these variability analyses have illuminated not only 

hand, their ability to extract the numerosity of the display. 
The experimenter in the testing room could also verify that 
subjects did not vocalize count words. The expected dura-
tions of both the dot flashes and interflash intervals were 
very short—100 msec each (resulting in a flash  inter-
flash interval duration expectation of 200 msec). Previous 
work in our lab (Cordes et al., 2001) revealed that subjects 
are able to verbally count events at a maximum rate of 
about 5.7 items/sec (which corresponds to 175 msec per 
item). This is longer than the median flash–flash interval, 
which was about 160 msec. Thus, the majority of flashes 
(approximately 60%) occurred less than 175 msec apart.

Although it is clear that subjects were unable to verbally 
count the flashes presented to them on the screen, it is 
possible that once they obtained a nonverbal estimate of 
the number of flashes in each sequence in the arithmetic 
tasks, this nonverbal estimate was converted to a verbal/
symbolic representation on which the arithmetic operation 
was performed. That is, subjects may have seen a sequence 
of flashes and thought “that was about 6,” the second se-
quence and thought “that was about 15,” and computed 
the difference of these verbal symbols, “15  6  9,” and 
then estimated nine buttonpresses accordingly. Although 
this is a possibility, none of the subjects reported engaging 
in such a strategy, and the conflicting articulatory suppres-
sion task made this an unlikely approach. Unfortunately, 
however, this possibility cannot be ruled out in the present 
experiments or in any other study addressing nonverbal 
arithmetic in numerically fluent individuals.

Did subjects verbally count their presses? Subject 
reports also suggested that subjects did not verbally count 
their presses. All subjects claimed they did not, and that 
they had no idea how accurate their responses were. This 
corroborates previous research using similar articulatory 
suppression techniques. While tapping their responses, 
subjects verbally repeated “the” with each tap. This tech-
nique, first employed by Logie and Baddeley (1987), has 
since been used in nonverbal counting tasks, and evidence 
suggests it is successful in preventing articulation of the 
verbal count words (Cordes et al., 2001).

Analysis of interresponse intervals [the amount of time 
between the nth and (n 1)th presses] also suggests that 
subjects did not verbally count their responses. Interre-
sponse intervals were reasonably flat and unremarkable, 
which would not be expected if “chunking” strategies 
were employed when responding. The interresponse in-
tervals were also very short, generally shorter than the 
previously mentioned 175-msec verbal counting criterion, 
again suggesting the unlikelihood of verbal counting.5

Were subjects timing rather than counting? In an 
attempt to partially deconfound time and number, the 
flashes in this study were presented arrhythmically. Thus, 
it would be an inefficient strategy for subjects to base re-
sponding on flash sequence durations, as the duration of a 
five-flash sequence occasionally lasted the same amount 
of time as a ten-flash sequence.

Sequence number and duration were, nonetheless, highly 
correlated. Our subjects could have timed the duration of 
the flash sequences to estimate the number of flashes in 
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1. One subject (Subject 11) was asked to participate in the baseline 
condition a second time. Therefore, this subject participated in a total 
of six sessions.

the quality of nonverbal magnitude representations but 
also on the processes involved in nonverbal arithmetic.
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4. It was assumed that the binomial coefficients obtained in the pa-
rameter searches of the baseline data described the binomial variability 
due to error in the counting of the flashes and in the counting of the but-
ton presses. Thus, this coefficient was double the variability of a single 
count. So, for the computation of the baseline predictions, the binomial 
term (B  in Equation 6) was divided in half.

5. Toward the end of some of the longer responses, there did appear 
to be a tendency either to slow down the rate of responding (e.g., S11 
addition) or to produce buttonpresses at a more variable rate (e.g., S10 
addition). Both of these trends were most likely an artifact of fatigue and 
do not implicate verbal counting.

2. This was initially not the case for Subject 11’s baseline data. It was 
statistically confirmed that this subject’s data were significantly different 
from the other subjects’ baseline data. Given that the anomalous nature 
of this data set was attributed to task variables, as opposed to uncharac-
teristic magnitude representations, this subject participated in the base-
line condition a second time. All results reported here are from Subject 
11’s second run in the baseline condition. (See Appendix A for the initial 
baseline data obtained from this subject.)

3. These weights were chosen because, under purely scalar conditions, 
the variance in the arithmetic data was expected to be a function of the 
magnitude of the operands.

APPENDIX A 
Subject 11’s Initial Baseline Data

The initial baseline data from Subject 11 appeared somewhat curvilinear, as though the subject became fatigued when pressing 
the button more than around 30 times, or anchoring effects influenced responding. Due to the asymptotic behavior of this data set, 
we were unable to obtain a satisfactory linear fit of the data using both weighted and unweighted linear regressions, as evidenced 
in Figure A1 (panel A).

Plots of the z scores of this data as a function of the number of flashes (Figure A1, panel B) revealed an inordinate amount of 
variability throughout (as compared with the other subjects), and especially when presented large flash sequences—both reflecting 
an imperfect fit of the linear regression. Further analyses using a series of two sample Kolmogorov–Smirnov tests of the z scores 
revealed that the baseline data for this subject reflected significantly more variability than baseline data for the other 3 subjects 
( p  .001).

Due to the anomalous nature of Subject 11’s initial baseline data, this subject participated a second time in the baseline condition. 
Data obtained from this second run were not significantly different from the other subjects’ baseline data, and thus were considered 
a more accurate measure of this subject’s internal representation of number. The data reported in the body of this article are from 
Subject 11’s second baseline condition.
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Figure A1. (A) Subject 11’s original baseline data and regression line plotted as a function of the number of flashes presented. Note 
the curvilinear nature of the data toward the larger flash range. (B) The z scores from Subject 11’s original baseline data plotted as a 
function of the number of flashes presented. Compared with the baseline z scores from other subjects (Figure 2), these data are notably 
more variable, especially in the larger flash range.
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APPENDIX B

Model 1: Baseline Condition
To find the parameters of the weighted regression, we assume that the mean of the dependent variable (the 

number of counts) is a linear function of the true number of counts, and that the noise around that mean is Gauss-
ian. Formally we write this as
 zi  axi  b  i, (B1)

where zi is the number of counts for trial i, xi is the true number of counts, and i is a zero-mean Gaussian ran-
dom variable. In this section, we consider the baseline condition, for which the variance of the noise is given by 
Equation 4 of the main text,

 
Var i i iAx Bx C2 .

 
(B2)

What Equations B1 and B2 tell us is that the probability of observing a particular zi given xi and the parameters 
of the model is

 

P z x a b A B C
z ax b Ax

i i

i i i
| , , , , ,

exp ( / )1 2
2 2 Bx C

Ax Bx C

i

i i2 2 1 2/
.

 
Since the samples are drawn independently, the probability of observing a whole set of zs given a set of xs is

 

P a b A B C
z ax b Ax Bi i i

z x| , , , , ,
exp ( / )1 2

2 2 xx C

Ax Bx C

i

i i
i

N

2 2 1 2
1

/
,

 

(B3)

where N is the number of observed (xi, zi) pairs, x  (x1, x2, . . . , xN) denotes the set of xs, and z  (z1, z2, . . . , 
zN) denotes the set of zs.

We now come to the key step, which is the use of Bayes’s theorem to turn Equation B3 into a probability 
distribution over the parameters. Applying Bayes’s theorem and performing a few lines of algebra, we find 
that the probability distribution of the parameters given x and z (that is, given all the observations) denoted 
P(a, b, A, B, C | x, z) is given by

 P(a, b, A, B, C | x, z) P(z | x, a, b, A, B, C)P(a, b, A, B, C), (B4)

where P(a, b, A, B, C) is the prior probability distribution over the parameters and we have ignored the constant 
of proportionality, as it is independent of the parameters.

Assuming uniform priors (except that A, B, and C must be nonnegative) and using Equation B3 for the first 
term on the right-hand side of Equation B4, we have

 

P a b A B C
z ax b Ax Bi i i
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x z
1 2
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.

 
It is convenient to write this as

 P(a, b, A, B, C | x, z)  e L(a,b,A,B,C), (B5)

where L(a, b, A, B, C), the loss function, is given by

 

L a b A B C
z ax b

Ax Bx C
Axi i

i i
i( , , , , ) log1

2

2

2
22

1
Bx Ci

i

N

.

 

(B6)

The first term in the loss function is the familiar one from linear least-squares regression. The second one 
penalizes large variance (without it, the loss function could be made arbitrarily small by making the variance 
arbitrarily large).

Given Equations B5 and B6, there are two natural ways to proceed. The more intuitive is to choose parameters 
that maximize the loss function; this is the maximum-likelihood approach (so called because we used uniform 
priors, so e L is the likelihood of the data). This is the approach we took here. An alternative is to compute the 
mean value of the parameters. In the limit of a large amount of data, the two approaches yield the same answer.

Models 2 and 3: Addition and Subtraction
Models 2 and 3 differ from Model 1 in two ways: There is a slightly more complicated dependence on the true 

counts (since there are two true counts instead of one) and the variance is different. However, the formalism is 
very similar. In particular, the regression equations for the two models are written

 
z a x y bi i i i  

(B7a)

and

  z a x y bi i i i ,
 

(B7b)



NONVERBAL ARITHMETIC IN HUMANS    1203

APPENDIX B (Continued)

where Equations B7a and B7b refer to Models 2 and 3, respectively; zi  is the dependent variable for addition; 
and zi  is the dependent variable for subtraction. The variances of i  and i , denoted  and , respectively, 
are given by

 
2 2 2 2A x y B x y Ci i i i  

and

 
2 2 2 3A x y B x y C A x yi i i i i i

2
B x yi i .

 
(See Equation 5 for variance of Model 2 and Equation 6 for variance of Model 3.)

The derivation of the loss function for Models 2 and 3 proceeds exactly as it did for Model 1: Write down an 
expression of P(z | x, y, parameters), use Bayes’s theorem to derive an expression for P(parameters | x, y, z), then 
assume uniform priors. Carrying out these steps, we find that

 

L a b A B C
z a x y bi i i( , , , , ) 1

2

2

i
i

i

N

2
2

1
log

 
and

 

L a b A B C
z a x yi i i( , , , , ) 1

2

b

i
i

i

N
2

2
2

1
log .

 
As in Model 1, the probability distribution for the parameters is proportional by e L  for Model 2 and e L  

for Model 3. The regression parameters were taken to be the most likely ones; that is, the ones that maximized 
e L  and e L .

(Manuscript received April 10, 2006; 
revision accepted for publication April 2, 2007.)
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