
Copyright 2006 Psychonomic Society, Inc. 628

Journal
2006, ?? (?), ???-???

This article describes the architecture of a computer pro-
gram that aims to simulate the process by which humans
comprehend texts—that is, construct a coherent representa-
tion of the meaning of the text by processing all sentences
in turn. This program is based on psycholinguistic theories
about human memory and text comprehension processes—
namely, the construction–integration model (Kintsch,
1998), the latent semantic analysis theory of knowledge
representation (Landauer & Dumais, 1997), and the predi-
cation algorithms (Kintsch, 2001; Lemaire & Bianco,
2003). It is not a natural language processing tool, although
this community may benefit from its ideas. Neither is it the
best program for automatically analyzing texts. Rather, it is
designed to mimic—as closely as possible—human beings
(especially children) reading texts. It was intended to help
psycholinguists implement theories, test ideas, and identify
relevant cognitive variables. For these reasons, this program
is largely modular and parameterizable so that researchers
can use it as a tool for exploring the cognitive processes
underlying human text comprehension.

It is worth noting that, for the sake of comprehension,
we will not present the full architecture at one go; rather,
we will first describe the core of the architecture, then dif-
ferent modules that aim to improve the initial system. The
first module is a model of semantic memory.

LSA: A MODEL OF SEMANTIC MEMORY

Principle
As major models of text comprehension (e.g.,

 construction–integration [Kintsch, 1988], landscape model
[van den Broek, Risden, Fletcher, & Thurlow, 1996], and
resonance model [Gerrig & McKoon, 1998; Myers &
O’Brien, 1998]) have shown, comprehending a text can-
not be done with only the information present in the text
(Caillies, Denhière, & Jhean-Larose, 1999; McNamara &
Kintsch, 1996; Rizzella & O’Brien, 2002). Readers need
to rely on their knowledge of the world. Actually, cognitive
theories of text comprehension assert that readers would au-
tomatically activate concepts while reading (Kintsch, 1998;
van den Broek, Young, Tzeng, & Linderholm, 1999). There-
fore, a simulation has to be based on a computational model
of semantic memory that would be able to provide semantic
associates for any word, thus simulating the automatic acti-
vation of concepts in memory (Caillies & Denhière, 2001;
Tapiero & Denhière, 1995). Associates are obviously not
predefined; rather, they depend on the reader’s knowledge.
In order to simulate text comprehension for different kinds
of readers—expert or novice in a given domain, adults or
children of various ages—we could not rely on a predefined
set of associates for every word (not to mention the fact that
such association norms do not exist for all words) (Cail-
lies, Denhière, & Kintsch, 2002). Ideally, we would need
to construct word similarities from the same kind of stimuli
humans experience. That way, we would get word similari-
ties for medical experts, an average teenager, a 7-year-old
child, and so on. Since the perceptual experience on which

We thank Philippe Dessus for his comments on a previous version of
this article. Address correspondence to B. Lemaire, Laboratoire TIMC-
IMAG (CNRS UMR 5525), Faculté de Médecine, 38706 La Tronche
Cedex, France (e-mail: benoit.lemaire@imag.fr).

A computational model
for simulating text comprehension

BENOÎT LEMAIRE
University of Grenoble, Grenoble, France

GUY DENHIÈRE
 CNRS and University of Provence, Marseille, France

CÉDRICK BELLISSENS
University of Memphis, Memphis, Tennessee

and

SANDRA JHEAN-LAROSE
University of Paris VIII and IUFM, Paris, France

In the present article, we outline the architecture of a computer program for simulating the process
by which humans comprehend texts. The program is based on psycholinguistic theories about human
memory and text comprehension processes, such as the construction–integration model (Kintsch,
1998), the latent semantic analysis theory of knowledge representation (Landauer & Dumais, 1997),
and the predication algorithms (Kintsch, 2001; Lemaire & Bianco, 2003), and it is intended to help psy-
cholinguists investigate the way humans comprehend texts.

Behavior Research Methods
2006, 38 (4), 628-637

A COMPUTATIONAL MODEL FOR SIMULATING TEXT COMPREHENSION 629

humans rely cannot yet be captured by a computational
model, we restricted our input to the linguistic experience,
which, albeit not perfect, appears to play an important role
in the construction of word meaning (Landauer, 2002).

We used latent semantic analysis (LSA; Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer,
1998; Landauer & Dumais, 1997), a computational model
of word similarities that is based on the automatic analysis
of huge corpora and roughly reproduces the kind of text
people have been exposed to. The underlying idea is that
the meaning of words can be inferred from the contexts
in which these words occur in raw texts, provided that
enough data are available (Landauer, 2002). This is simi-
lar to what humans do: It seems that we learn most of the
words we know by reading (Glenberg & Robertson, 2000;
Landauer & Dumais, 1997). This is because most words
appear almost only in written form and because direct in-
struction seems to play a limited role. Therefore, we learn
the meaning of words mainly from raw texts, by mentally
constructing their meaning through repeated exposure to
appropriate contexts (Denhière, Lemaire, Bellissens, &
Jhean-Larose, 2007; Kintsch, 2007).

LSA analyzes the co-occurrence of words in large cor-
pora to draw semantic similarities. In order to facilitate the
measurement of similarities between words, LSA relies
on very simple structures to represent word meanings: All
words are represented as high-dimensional vectors. The
meaning of a word is not defined, per se; rather, it is de-
termined by its relationships with all others. For instance,
instead of defining the meaning of bicycle in an absolute
manner (e.g., by its properties, function, or role, as in se-
mantic networks), it is defined by its degree of association
to other words (e.g., very close to bike, close to pedals,
ride, wheel, but far from duck, eat). Once again, this se-
mantic information can be drawn from raw texts.

The problem is how to go from these raw texts to a for-
mal representation of word meanings. One way to tackle
this would be to rely on direct co-occurrences within a
given unit of context. A usual unit is the paragraph, which
is both computationally easy to identify and of reasonable
size. We would say that

R1: Words are similar if they occur in the same
 paragraphs.
Therefore, we would count the number of occurrences of
each word in each paragraph. Suppose we rely on a 5,000
paragraph corpus. Each word would be represented by
5,000 values—that is, by a 5,000 dimension vector. For
instance,

avalanche: (0,1,0,0,0,0,1,0,2,0,0,0,0,0,0,1,1,0,1,0,1,
0,0,0,0,0,0 . . .)

snow: (0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,1,1,0,1,0,0,
0,0,0,0 . . .)

This means that the word avalanche appears once in the
2nd paragraph, once in the 7th, twice in the 9th, and so on.
One can see that, given the previous rule, both words are
quite similar: They co-occur quite often. A simple cosine
between the two vectors can measure the degree of similar-

ity. However, this rule does not work well (Landauer, 2002;
Perfetti, 1998): Two words could be considered similar even
though they do not co-occur. For instance, Burgess and
Lund (1997) mentioned two words—road and street—that
almost never co-occur in their huge corpus, even though
they are almost synonyms. In a 24 million word French
corpus from the daily newspaper Le Monde in 1999, we
found 131 occurrences of Internet, 94 occurrences of Web,
but no co-occurrences of these two words at all. However,
both words are strongly associated. The reason why two
words are associated in spite of no co-occurrences between
them could be that both co-occur with a third word. For in-
stance, if you mentally construct a new association between
computer and quantum from a set of texts you have read,
you will probably also construct an association between
 microprocessor or quantum—even though they might not
co-occur—because of the existing strong association be-
tween computer and microprocessor. The relationship be-
tween computer and quantum is called a second-order co-
occurrence. Psycholinguistic research on mediated priming
has shown that the association between two words can be
made through a third one (Livesay & Burgess, 1997; Lowe
& McDonald, 2000), even if the explanation for this phe-
nomenon is debatable (Chwilla & Kolk, 2002). Let us go a
little farther. Suppose that the association between computer
and quantum is also a second-order association, because of
another word that co-occurs with both words—for example,
science. In that case, microprocessor and quantum are said
to be third-order co-occurring elements. In the same way,
we can define fourth-order co-occurrences, fifth-order co-
occurrences, and so on. Kontostathis and Pottenger (2002)
analyzed such connectivity paths in several corpora and
found the existence of these high-order co-occurrences.

French and Labiouse (2002) thought that the previous
rule might still have worked for synonyms. This is because
writers tend to use synonyms rather than repeat words.
However, defining semantic similarity only from direct
co-occurrence is probably a serious restriction. Therefore,
another rule would be

R1*: Words are similar if they occur in similar para-
graphs.
This is a much better rule. Consider the following two
paragraphs:

Cycling is a very pleasant sport. It helps maintain
good health.

To keep fit, you could practice biking. It is very pleas-
ant and good for your body.

Here cycling and biking appear in similar paragraphs. If
these words are then repeated over a large corpus, it would
be reasonable to consider them similar, even if they never
co-occurred within a paragraph. Now we need to define
paragraph similarity. We could say that two paragraphs
would be similar if they shared words, but that would be
restrictive. As illustrated in the previous example, two
paragraphs should be considered similar even though they
do not have words in common (functional words are usu-
ally not taken into account). Therefore, the rule is

630 LEMAIRE, DENHIÈRE, BELLISSENS, AND JHEAN-LAROSE

R2: Paragraphs are similar if they contain similar
words.
Rules 1* and 2 constitute a circularity, but this can be solved
by a specific mathematical procedure called singular value
decomposition, which is applied to the occurrence matrix.
This is exactly what LSA does. LSA consists in reducing
the huge dimensionality of direct word co-occurrences to
its best N dimensions. All words are then represented as
N-dimensional vectors. Empirical tests have shown that per-
formances are maximal for N around 300 for the whole gen-
eral English language (Bellegarda, 2000; Landauer, Foltz,
& Laham, 1998), but this value can be smaller for specific
domains (Dumais, 2003). We will not describe the math-
ematical procedure, which is presented in detail elsewhere
(Deerwester et al., 1990; Landauer, 1998). The fact that word
meanings are represented as vectors has two consequences.
First, it is straightforward to compute the semantic similar-
ity between words—usually the cosine between the corre-
sponding vectors, although other similarity measures can
be used. Examples of semantic similarities between words
from a 12.6 million word corpus are (Landauer, 2002):

cosine (doctor, physician) .61
cosine (red, orange) .64

As has been done in many other studies in the literature,
we checked whether LSA can be considered as a good
model of semantic memory. We wanted LSA to provide
good associates for any given word, in order to simulate
the mental activation of concepts that occurs in humans
when they process a word. Because of its vector repre-
sentation, LSA can easily return the closest neighbors of
a given word.

Corpus
Actually, LSA by itself is useless. It must be applied to

a corpus. We have several corpora, but our most elaborate
one is a child corpus that we carefully designed in order
to reproduce—as closely as possible—the kinds of texts
children are exposed to (Denhière & Lemaire, 2004). We
controlled the amount and nature of texts, leading to a
3.2 million word corpus that was composed of stories and
tales for children (~1.6 million words), child productions
(~800,000 words), reading textbooks (~400,000 words),
and a child encyclopedia (~400,000 words).

We tested whether the closest neighbors of a given word
would correspond to the words that were activated in mem-
ory by children. We relied on verbal association norms (de
la Haye, 2003) that were defined in the following way:
Two hundred inducing words (144 nouns, 28 verbs, and
28 adjectives) were proposed to children from the ages
of 9 to 11. For each word, participants had to provide the
first corresponding word that came to their minds. This re-
sulted in a list of words ranked by frequency. For instance,
given the word cartable (satchel), 9-year-old children had
the following results:

Three best-ranked words:

 école (school): 51%
 sac (bag): 12%
 affaires (stuff): 6%

Three worst-ranked words:

 classe (class): 1%
 sacoche (satchel): 1%
 vieux (old): 1%

This means that 51% of the children responded with
the word école (school) when given the word cartable
(satchel). The two words are therefore strongly associated
for 9-year-old children. These association values were
compared with the LSA cosine between word vectors. We
selected the three best-ranked words, as well as the three
worst-ranked words (as we did in the previous example).
We then measured the cosines between the inducing word
and the first-ranked association, the second-ranked asso-
ciation, and the third-ranked association, as well as the
mean cosine between the inducing word and the 3 worst-
ranked associations. Results are presented in Table 1.

Student tests showed that all differences were signifi-
cant (p .03). This means that our semantic space was not
only able to distinguish between the strong and weak asso-
ciations, but could also discriminate the first ranked from
the second ranked and the latter from the third ranked.

The measure of correlation with human data was also
significant [r(1184) .39, p .001]. Actually, two fac-
tors may have reduced this correlation. First, although
we tried to mimic what a child had been exposed to, we
could not control all word frequencies within the corpus.
Therefore, some words might have occurred with a low
frequency in the corpus, leading to an inaccurate semantic
representation. When the previous comparison was per-
formed on the 20% most frequent words, the correlation
was much higher [r(234) .57, p .001].

The second notable factor is the participant agreement.
When most children provided the same answer to an induc-
ing word, there was a high agreement, which means that both
words were strongly associated. However, there were cases
when there was almost no agreement. For instance, the three
first responses to the word bruit (noise) were crier (to shout)
(9%), entendre (to hear) (7%), and silence (silence) (6%).
It is not surprising that the model corresponded better to the
children’s data in the case of a high agreement, since this
denotes a strong association that should be reflected in the
corpus. In order to select answers with stronger agreement,
we measured their entropy using the following formula:

entropy(item) freq(answer) · log[1/freq(answer)].

A low entropy corresponds to a high agreement, and vice
versa. When we selected the 20% of items with the low-

Table 1
Mean Cosine Between Inducing Word and

Various Associated Words for 9-Year-Old Children

Mean Cosine
 Word Ranking With Inducing Word

Best first .26
second .23
third .19

 Worst third .11

A COMPUTATIONAL MODEL FOR SIMULATING TEXT COMPREHENSION 631

est entropy, the correlation also increased [r(234) .48,
p .001].

All these results show that the degree of association be-
tween words that were defined by the cosine measure within
the semantic space seemed to correspond quite well with the
children’s judgments of association. LSA—applied to our
child corpus—is an acceptable model of semantic memory.

In order to simulate adult comprehension, we built an-
other semantic space based on the previous child corpus,
as well as a newspaper corpus and a literature corpus. This
adult corpus, therefore, is composed of about 13 million
words: A 3 million word children’s corpus, a 5 million word
corpus from the French daily newspaper Le Monde, plus a 5
million word corpus composed of French novels. This cor-
pus was processed using LSA, and a 300-dimension seman-
tic space was built. This semantic space was used to analyze
the example test that will be discussed in a later section.

A MODEL OF TEXT COMPREHENSION

Now that we have a good model of semantic memory,
we need a model of text comprehension as well. That
model should describe the process by which a set of sen-
tences is transformed into a coherent representation of
the overall meaning of the text. The theoretical model we
are using is the construction–integration model (Kintsch,
1998). Discourse comprehension is viewed as an itera-
tive two-step process. First, the current proposition (or
set of propositions) leads to the construction of a network
of concepts that either belong to the proposition or are
activated from semantic memory. This network is added to
another network called the macrostructure, which results
from the analysis of the prior part of the text and repre-
sents the main information so far. Second, the integration
step selects the relevant concepts from this network by
means of a spreading activation mechanism, leading to
the new macrostructure. The process is repeated until the
whole text is processed.

We will now present our operationalization of that
model in a computer program. Consider a text composed
of these two sentences:

The bee is sucking nectar from a flower. Then it brings
the nectar back to the hive to be turned into honey.

The main process of text comprehension occurs within the
specific component called working memory.1 This com-
ponent contains key elements of the sentences that have
previously been processed, as well as the elements of the
current sentence. As we mentioned previously, the reader
would also activate concepts from semantic memory.
For instance, the word bee would activate words such as
honey, hive, or sting. Three kinds of elements, therefore,
are gathered in working memory: the previous ones, the
current ones, and a set of associates. Since not all of these
are coherent with the context, the integration step selects
the most relevant ones—that is, those that are loosely con-
nected to the others. For instance, sting is not strongly as-
sociated to most of the other words and must be dismissed.
This integration step is performed by means of a spread-

ing activation mechanism, which is run until the system
becomes stable.

Working memory is thus continuously updated as the
text is processed, while containing the main information
from what has already been processed. It is worth not-
ing that some of these words are not part of the text; like
honey, they are inferences of a sort that readers make by
means of their semantic memory.

What is true for words is also true for propositions, or
subsets of sentences. For instance, the previous text con-
tains the following propositions:

 P1: sucking (bee, nectar, flower)
 P2: bring (bee, nectar, hive)
 P3: turn (nectar, honey)
 P4: for (P2, P3)

A proposition may also activate associates, can be propa-
gated as a key feature of the overall meaning, and can oc-
casionally be ruled out if it becomes secondary.

To summarize, each proposition is processed in turn.
Inferences are gathered from semantic memory. An inte-
gration of this new information and previous information
is realized in order to reach a new state of working mem-
ory. Figure 1 displays the flow of information for each
proposition (episodic memory will be presented later).

A French translation of the previous example was sim-
ulated by our program (without taking into account the
predication algorithm and the episodic memory, which
will be presented in the next sections), using the previ-
ous French model of semantic memory. We now present
the English translation. The first proposition was sucking
(bee, nectar, flower). It activated the following elements:

insect, larva, fly, hive, honey, wasp, buzz, bouquet,
violet, petal, gather, blossom

Semantic similarities between all pairs of words were then
computed, leading to a large semantic network. The most
relevant elements (those that were the most coherent with
all others) were selected by the integration step. The work-
ing memory then contained the following elements (as
well as their activation values):

 sucking (bee, nectar, flower) 1.000
 bee .903
 flower .852
 hive .778
 bouquet .677
 buzz .634
 honey .615
 petal .607
 wasp .606
 violet .605

The second group of propositions was then added to
working memory. It was bring (bee, nectar, hive) and
turn (nectar, honey). Semantic similarities between all of
these words and propositions were computed. Since both
propositions occurred in the same input stream, a 1.0 link
was created between the last two propositions to represent

632 LEMAIRE, DENHIÈRE, BELLISSENS, AND JHEAN-LAROSE

their strong connection in the text. The first one activated
the following elements:

worker, hive, honey, wasp, buzz, fly

The second one activated

take, mineral, meaning, sugar, living, hive, bee, bear,
bear cub, pheasant

Together with the previously activated elements, this led
to the following set of elements:

sucking (bee, nectar, flower), bee, flower, hive, bou-
quet, buzz, honey, petal, wasp, violet, bring (bee,
nectar, hive), worker, fly, turn (nectar, honey), take,
mineral, meaning, sugar, living, bear, bear cub,
pheasant

The most activated elements from this set were selected.
The working memory was then as follows:

 sucking (bee, nectar, flower) 1.000
 bring (bee, nectar, hive) .997
 bee .949
 hive .868
 turn (nectar, honey) .813
 honey .805
 buzz .612

The next set of propositions was considered, and its el-
ements and associates were added to working memory.
After each new set of propositions was analyzed, working
memory represented a sort of synthesis of the information
processed so far.

EPISODIC MEMORY

We now present a new structure, episodic memory.
Prior elements removed from working memory are meant

to be no longer necessary; however, they are still kept in
a specific memory that keeps track of all the elements
that have appeared in working memory. These can even
be retrieved from working memory in case they become
relevant with respect to the text content. The elements are
stored with an activation value, which may vary over time,
depending on whether or not they appear again in working
memory. A decay function tends to lower these values over
time, thus simulating a sort of forgetting mechanism.

From Working Memory to Episodic Memory
Episodic memory is defined by means of three func-

tions that have the goal of determining the activation
values (from 0 to 1). These functions are applied every
time an element of working memory is stored in episodic
memory, and are as follows.

The first function indicates the new value of a concept
that did not previously exist in episodic memory. By de-
fault, the new value is the activation value of the concept
in the working memory.

The second function defines the new value of a concept
that was already in episodic memory. In that case, the new
value should be higher than both existing values, because
of the conjunction of the two memory traces. By default,
the new value is valueWM valueEM (1 valueWM).

The third one is a decay function that indicates how to
lower all activation values over time. By default, all val-
ues are changed to 90% of their original values after each
construction–integration cycle.

From Episodic Memory to Working Memory
During the construction phase, episodic memory can

also provide elements that are added to working memory
if they are close to the text elements being processed. This
is similar to the inference mechanism that gathered ele-
ments from semantic memory.

Next proposition

Select
associates

SEMANTIC
MEMORY

WORKING
MEMORY

EPISODIC
MEMORY

Integration

Store

Decay
Huge

corpus

Retrieve
previous
elements

Figure 1: Information flow of the comprehension model.

A COMPUTATIONAL MODEL FOR SIMULATING TEXT COMPREHENSION 633

The idea is that all episodic memory elements that are
similar enough to a concept of the current proposition—
and that have a high enough activation value—are copied
back into working memory. The two thresholds that gov-
ern this collection of elements are obviously parameteriz-
able. This would be the case of a text that would present
a topic X, then shift to topic Y—leading to the removal of
concepts related to X in working memory—then go back
to topic X. The current mechanism would then retrieve
X-related concepts from episodic memory in order to
simulate the fact that concepts can be linked in a text even
though they do not necessarily follow each other.

At the end of the text processing, episodic memory con-
tains all the propositions from the text and has an indica-
tion of their importance. This model of the way in which
the main information has been cognitively selected can
be tested and compared with human data. In addition,
since every state of episodic memory is memorized by the
program, the evolution of activation values can be traced.
The decay function tends to decrease activation values of
unused elements over time; however, when an element ap-
pears once again in working memory—whether because
it occurs in the text or because it has been called back by
a similar element—its activation value rises. Evolution
of activation values in episodic memory is not linear and
depends on the propositions being processed. Once again,
the fact that this structure is automatically produced for
any kind of text is valuable for researchers willing to test
and refine the model. Episodic memory is presented in
Figure 1.

A MODEL OF PREDICATION

We now present an improvement on the previous mod-
els. When a word is processed, its neighbors are activated
from semantic memory, as we mentioned earlier. The
same occurs for propositions: Neighbors of all words of
the proposition should be activated. For instance, when
you read the sentence the plane flies to Paris, you men-
tally gather associates for plane, flies, and Paris. However,
only the neighbors of the predicate that are associated to
the context need to be considered: You select associates
such as airport or sky, but not escape or fear, because—
although they are close neighbors of fly—they are not
related to the arguments. Kintsch (2001) has shown that
the LSA model can be used to provide a good semantic
representation of a predicate–argument expression, if the
specific role of the predicate is taken into account.

The basic LSA representation does not make any distinc-
tion between A(B) and B(A), because the compositionality
consists only of adding vectors: The vector representing a
set of words is just the sum of the vectors of all words. This
child is a sportsman has the exact same representation
as does This sportsman is a child, which is particularly a
problem for dealing with metaphors (Kintsch, 2000). To
solve that problem, Kintsch suggested constructing a net-
work composed of the predicate, the argument, and a fixed
number of neighbors of the predicate, and applying the
integration method to select only the neighbors that are

associated with the predicate. Kintsch (2007) provided a
little illustrative example with only three neighbors. Sup-
pose there are three neighbors of run: come, hopped, and
down. The sentence the horse runs will lead to a network
composed of horse, run, come, hopped, and down. Come
will be the only neighbor activated, because it is similar
to both horse and run. On the contrary, in the sentence the
color runs, only the neighbor down will be selected.

The representation of the predicate–argument expres-
sion, therefore, is not just predicate argument but is
predicate argument neighbor1 . . . neighborn.
We are not interested in the vector representation, but in the
neighbors. Kintsch’s (2007) algorithm can be a good start-
ing point for our purpose. The problem is that this algo-
rithm requires a number of neighbors to be set beforehand:
20 for usual predicate–argument relations, but up to 500
for some metaphors, according to Kintsch’s experiments.
Since the nature of the predicate–argument relation can-
not be stated automatically, we had to modify this predica-
tion algorithm to make it incremental (Lemaire & Bianco,
2003). This modified version is included in the present
comprehension program. Basically, if the input indicates
which word is the predicate and which words are the argu-
ments, the predication algorithm is used. It scans all neigh-
bors of the predicate (using the model of semantic memory
described earlier) until it finds three (or any other value of
that parameter) of them that are similar enough (above a
parameterizable threshold) to any of the arguments.

For instance, in our favorite French semantic space, the
closest neighbors of the predicate voler (to fly) are the
following:

 ailes (wings)
 oiseau (bird)
 vole (flies)
 plumes (feather)
 oiseaux (birds)
 aigle (eagle)
 vol (flight)
 . . .

When the input is voler (avion) [fly (plane)], the fol-
lowing words are selected because they are also similar to
plane: ailes (wings), vole (flies), and vol (flight). How-
ever, when the input is voler (oiseau) [fly (bird)], the se-
lected words are ailes (wings), vole (flies), and plumes
(feathers).2 The last version of the system includes this
algorithm.

The associates of a proposition, therefore, are the as-
sociates of the predicate according to this algorithm, as
well as the associates for all arguments. For instance, the
proposition fly (plane) would activate not only wings,
flies, and flight, but also pilot, take off, and passengers.
The proposition fly (bird), rather, would activate wings,
flies, and feather as well as wings, bill, and plumage.

A FULL EXAMPLE

We now present a full example. Suppose we want to
simulate the comprehension of the following text:

634 LEMAIRE, DENHIÈRE, BELLISSENS, AND JHEAN-LAROSE

Un bûcheron se promenait dans la forêt lorsqu’il
vit une lumière. Des arbres brûlaient. Le bûcheron
but l’eau de sa gourde et la cracha sur le feu. Le feu
s’éteignit.

—which translates to

A woodcutter was walking in the forest when he no-
ticed a light. Trees were burning. The woodcutter
drank water from his flask and spit on the fire. The
fire went out.

Since we intend to illustrate the predication algorithm
in this example, we need to split the sentences into prop-
ositions and indicate which word in each proposition is
the predicate. This cannot be done automatically for the
moment (however, the model can be run automatically if
the predication algorithm is not used). Propositions are
represented as sequences of words whose predicate is in
the first position. Inputs are therefore:

1. walk/woodcutter/forest; notice/woodcutter/light
2. burn/trees
3. drink/woodcutter/water/flask; spit/woodcutter/fire
4. go out/fire (go out is only one word in French)

A translation of the output of the program is shown in
the shaded box at the top right of this page.

Words such as stroll, oak, or glade are now part of
working memory, although they have not explicitly been
mentioned in the sentence. Unrelated words such as ob-
jects or shine are ruled out from working memory, since
their activation values are below the threshold.

The second sentence is analyzed next. As the reader
will notice in the shaded box at the bottom right of this
page, episodic memory elements close to the current input
can be retrieved.

Only two propositions are kept in working memory;
the second one (notice/woodcutter/light) disappears. The
third sentence is analyzed next in the shaded box at the top
left of the next page.

Four propositions and several related words (that are
either part of the text, such as forest, or not part of the text,
such as trees or flames) are in working memory. The last
sentence is analyzed next in the shaded box at the bottom
right of the next page.

At the end of the text, working memory contains the
five main propositions and several related words. The
model works fairly well, since all related words are really
coherent with the context. This is due to two factors: the
semantic memory model (LSA), which mostly retrieves
relevant words, and the integration module, which rules
out the possible remaining irrelevant words.

In addition to the last state of the working memory, our
program provides the activation values of all words and
propositions for each cycle (Table 2). For instance, the ac-
tivation value of the proposition notice/woodcutter/light is
.693 at the end of Cycle 1. It increases to .750 at the end of
Cycle 2 and then decreases afterward. This data compares
to the output of the landscape model (Linderholm, Virtue,
Tzeng, & van den Broek, 2004), in which the activation

value of concepts can be traced from proposition to propo-
sition. The main difference, however, is that our system is
based on a knowledge model (semantic memory): It can
retrieve concepts that are not in the text and can automati-

*** SIMULATION OF TEXT COMPREHENSION (version 1.6.2) ***
Input? walk/woodcutter/forest notice/woodcutter/light

“walk/woodcutter/forest” added to working memory.
Looking for neighbors of walk:
 1. stroll (0.68) close to woodcutter and forest
 2. meet (0.60) close to woodcutter and forest
 3. pick (0.60) close to woodcutter and forest
woodcutter added to working memory. Looking for neighbors:
 1. ax (0.57)
 2. forest (0.53)

firewood: too rare (.77 .72)
 3. cottage (0.51)
forest added to working memory. Looking for neighbors:
 1. glade (0.77)
 2. oak (0.75)
 3. wood (0.74)

“notice/woodcutter/light” added to working memory.
Looking for neighbors of notice:
 1. objects (0.61) close to light
 2. watch (0.57) close to light

commonly: too far from woodcutter and light
 3. area (0.56) close to light
woodcutter added to working memory. Looking for neighbors:
 previously done
light added to working memory. Looking for neighbors:
 1. luminous (0.80)
 2. rays (0.78)
 3. shine (0.69)

Constructing the 21x21 matrix...
Integrating... (9 cycles)
Activated nodes: walk/woodcutter/forest(1.00) forest(.891)
stroll(.887) oak(.868) glade(.837) woodcutter(.816) wood(.772)
notice/woodcutter/light (.770) pick(.748)

Input? burn/trees
“burn/trees” added to working memory.
 “rays” recoverable from episodic memory but too low (.450 .75)
 “light” recoverable from episodic memory but too low (.500 .75)
 “ax” recoverable from episodic memory but too low (.533 .75)
 “walk” recovered from episodic memory by “trees”. Added to WM.
 “oak” recovered from episodic memory by “trees”. Added to WM.
Looking for neighbors of burn:
 1. burns: too far from trees

fire: too far from trees
burning: too far from trees

 1. heat (0.56) close to trees
extinguish: too far from trees
steam: too far from trees

 2. flames (0.54) close to trees
 3. burned (0.53) close to trees
trees added to working memory. Looking for neighbors:
 1. branches (0.90)
 2. trunks (0.87)
 3. leaves (0.82)

Constructing the 22x22 matrix...
Integrating... (6 cycles)
Activated nodes: burn/trees(1.00) walk/woodcutter/forest(.981)
trees(.920) forest(.900) trunks(.898) branches(.893) oak(.868)
wood(.806) glade(.791) pick(.766) leaves(.752)

A COMPUTATIONAL MODEL FOR SIMULATING TEXT COMPREHENSION 635

cally draw connections between concepts on the basis of
their semantic similarities.

PARAMETERS

The program relies on 19 parameters, but many simula-
tions have allowed us to identify good default values for
most of them. This section describes the most important
parameters.

Word Relevance
In LSA, weights are attached to words in order to in-

dicate the knowledge that LSA has about words. This
knowledge is dependent on the word frequency (LSA has
better knowledge of words that occurred frequently in the
corpus) and the context variability (LSA has better knowl-
edge of words that occur in limited contexts than of words
that appear in a large variety of contexts). Two parameters
are used to rule out words that have high frequency but
occur in a large number of contexts (like the or and), as
well as words that are too rare.

Construction Phase
The number of neighbors is a parameter. The semantic

memory model can also be modified. LSA is the default
model, but others—like ICAN (Lemaire & Denhière,
2004)—can be tested.

Concept Selection in Working Memory
The selection of elements in working memory that oc-

curs right after the integration phase can be made in three
ways: (1) by selecting elements with an activation value
over a given value, (2) by selecting the best N elements, N
being a parameter, and (3) by selecting the best elements
with activation values that add up to a given quantity of
activation.

Episodic Memory
The functionality of episodic memory is controlled by

two parameters: (1) the minimum association value for
items being retrieved from episodic memory, and (2) the

Input? go out/fire
“go out/fire” added to working memory.
 “burn” recoverable from episodic memory but too low (.611 .75)
 “shine” recoverable from episodic memory but too low (.311 .75)
 “fire” recoverable from episodic memory but too low (.613 .75)
 “burned” recoverable from episodic memory but too low (.370 .75)
 “heat” recoverable from episodic memory but too low (.262 .75)
 “warm” recoverable from episodic memory but too low (.546 .75)
 “light” recoverable from episodic memory but too low (.405 .75)
 “watch” recoverable from episodic memory but too low (.375 .75)
 “spit” recoverable from episodic memory but too low (.617 .75)
 “rays” recoverable from episodic memory but too low (.365 .75)
 “notice” recoverable from episodic memory but too low (.483 .75)
 “ax” recovered from episodic memory. Added to WM.
Looking for neighbors of go out:
 1. light (0.64) close to fire

fire: this word is already part of the proposition
 2. went out (0.56) close to fire
 3. flames (0.56) close to fire
fire added to working memory. Looking for neighbors:
 1. flames (0.71)
 2. burn (0.69)
 3. warm (0.65)

Constructing the 29x29 matrix...
Integrating... (7 cycles)
Activated nodes: walk/woodcutter/forest(1.00) spit/woodcutter/fire(.867)
burn/trees(.866) wood(.830) forest(.813) go out/fire(.807) oak(.803)
woodcutter(.749) trunks(.748) drink/woodcutter/water/flask(.740)
glade(.727) branches(.703) fire(.702)

Input? drink/woodcutter/water/flask spit/woodcutter/fire
“drink/woodcutter/water/flask” added to working memory.
 “walk” recovered from episodic memory by “drink”. Added to WM.
 “stroll” recoverable from episodic memory but too low (.539 .75)
 “ax” recoverable from episodic memory but too low (.480 .75)
 “cottage” recoverable from episodic memory but too low (.474 .75)
 “woodcutter” recovered from episodic memory by “flask”. Added

to WM.
 “flames” recoverable from episodic memory but too low (.374 .75)
Looking for neighbors of drink:
 1. drinks (0.74) close to water and flask
 2. hot (0.74) close to water and flask
 3. drank (0.68) close to water and flask
woodcutter added to working memory. Looking for neighbors:
 1. ax (0.57)
 2. forest (0.53)

firewood: too rare (.77 .72)
 3. cottage (0.51)
water added to working memory. Looking for neighbors:
 shore: too rare (.94 .72)
 1. drinkable (0.88)

rat: too rare (.72 .72)
 2. faucet (0.84)
 3. bucket (0.79)
flask added to working memory. Looking for neighbors:
 1. nibbling: too rare (.90 .72)
 1. left (0.49)
 2. witch (0.49)
 3. potion (0.49)

“spit/woodcutter/fire” added to working memory.
 “burn” recoverable from episodic memory but too low (.424 .75)
 “heat” recoverable from episodic memory but too low (.291 .75)
 “flames” recoverable from episodic memory but too low (.374 .75)
 “walk” recovered from episodic memory by “woodcutter”. Added

to WM.
 “ax” recoverable from episodic memory but too low (.480 .75)
 “burned” recoverable from episodic memory but too low (.411 .75)
 “burn” recoverable from episodic memory but too low (.424 .75)
Looking for neighbors of spit:
 1. inhale (0.65) close to fire
 2. lukewarm (0.63) close to fire

bleed: too far from woodcutter and fire
 3. spits (0.59) close to fire
woodcutter added to working memory. Looking for neighbors:
 previously done
fire added to working memory. Looking for neighbors:
 1. flames (0.71)
 2. burn (0.69)
 3. warm (0.65)

Constructing the 37x37 matrix...
Integrating... (8 cycles)
A c t i v a t e d n o d e s : w a l k / w o o d c u t t e r / f o r e s t (1 . 0 0)
drink/woodcutter/water/flask(.956) forest(.908) wood(.903) oak(.887)
drink(.876) woodcutter(.855) trunks(.855) pick(.853) flask(.847)
burn/trees(.840) spit/woodcutter/fire(.834) glade(.834) branches(.796)
trees(.789) walk(.789) bucket(.770) hot(.754) drinks(.711) potion(.710)
flames(.704)

636 LEMAIRE, DENHIÈRE, BELLISSENS, AND JHEAN-LAROSE

minimum semantic similarity with the cue word for items
being retrieved from episodic memory.

User Selection, Tracing
A parameter can be set for researchers who are willing

to trace the program step by step. Another parameter can
be used to control the selection of neighbors by hand and

to rule out possible irrelevant items. This can be used for
simulating comprehension of a given text for which the
researcher already knows some associated words.

CONCLUSION

This computer program is intended to help psycholin-
guists investigate the way in which humans comprehend
texts in relation to their level of prior relevant knowledge,
the situation models used, and the structure of texts pro-
cessed (Baudet & Denhière, 1991; Cook & Myers, 2004;
Denhière et al., 2007; McNamara, Kintsch, Songer, &
Kintsch, 1996; Voss & Silfies, 1996; Zwaan & Radvansky,
1998). Researchers who are willing to explore the assets
and limitations of the construction–integration model, or
to compare its performance with other models—such as
the landscape model (Linderholm et al., 2004) or the reso-
nance model (O’Brien, Rizzella, Albrecht, & Halleran,
1998)—can test it on various texts quite easily.

One main interest of this program is its exhaustive
model of semantic memory, which can provide associates
for any word in the language. Because of the lack of such
a model, previous simulations could only be run on a very
limited number of texts. Researchers had to guess a few
words that could be associated with all text words, result-
ing in small and subjective results. Kintsch (2000) and
Bellissens and Denhière (2003) proposed the connection
between CI and LSA; however, they did not link them in
an automatic manner.

The main limitation of our model is its lack of a propo-
sitional parser that would allow free text inputs. To date,
propositions have to be extracted by hand. However, the
model does not need an exact description of propositions;
rather, the text merely needs to be split into predicate–
 argument items. If the splitting is not correct, some irrel-
evant words could be retrieved, but they will probably be
ruled out by the robust integration step. We are, however,
in the process of designing a rough propositional parser,
which would give us the missing link.

This program is freely available from B. Lemaire for re-
searchers who are willing to use it for academic purposes.

REFERENCES

Baudet, S., & Denhière, G. (1991). Mental models and acquisition of
knowledge from text: Representation and acquisition of functional
systems. In G. Denhière & J. P. Rossi (Eds.), Text and text processing
(Advances in Psychology, Vol. 79, pp. 155-188). Amsterdam: North-
Holland.

Bellegarda, J. R. (2000). Exploiting latent semantic information in
statistical language modeling. Proceedings of the IEEE, 88, 1279-
1296.

Bellissens, C., & Denhière, G. (2003). Retrieval from long-term
working memory: A skilled use of semantic memory. Issues in Psy-
cholinguistics, 2, 145-165.

Burgess, C., & Lund, K. (1997). Modeling parsing constraints with
high-dimensional context space. Language & Cognitive Processes,
12, 177-210.

Caillies, S., & Denhière, G. (2001). The interaction between textual
structures and prior knowledge: Hypotheses, data and simulation. Eu-
ropean Journal of Psychology of Education, 16, 17-31.

Caillies, S., Denhière, G., & Jhean-Larose, S. (1999). The inter-
mediate effect: Interaction between prior knowledge and text struc-

Table 2
Activation Values of All Words and Propositions

Cycle

Words 1 2 3 4

go out .000 .000 .000 .536
go out/fire .000 .000 .000 .726
burned .000 .000 .000 .397
area .288 .259 .234 .210
light .000 .000 .000 .559
notice .596 .536 .483 .434
notice/woodcutter/light .693 .750 .675 .608
trees .000 .828 .867 .863
inhale .000 .000 .543 .488
woodcutter .735 .806 .875 .872
drink .000 .000 .789 .815
drink/woodcutter/water/flask .000 .000 .860 .867
wood .695 .847 .887 .883
drinks .000 .000 .640 .715
burned .000 .411 .370 .333
burns .000 .000 .611 .778
burn .000 .424 .381 .343
burn/trees .000 .900 .886 .886
branches .000 .804 .864 .864
shine .384 .346 .311 .280
drank .000 .000 .577 .519
oak .781 .874 .887 .880
heat .000 .291 .262 .236
hot .000 .000 .679 .747
cottage .527 .474 .681 .612
glade .754 .854 .878 .870
spits .000 .000 .401 .361
spit .000 .000 .617 .555
spit/woodcutter/fire .000 .000 .750 .870
pick .674 .831 .878 .865
water .000 .000 .616 .555
fire .000 .000 .613 .796
leaves .000 .677 .799 .719
flames .000 .374 .733 .819
forest .802 .882 .890 .882
flask .000 .000 .762 .829
ax .533 .480 .754 .809
light .500 .450 .405 .365
luminous .402 .362 .325 .293
objects .317 .285 .257 .231
left .000 .000 .562 .505
potable .000 .000 .472 .425
potion .000 .000 .639 .732
stroll .599 .539 .485 .437
walk .798 .835 .869 .857
walk/woodcutter/forest .900 .898 .900 .900
warm .000 .000 .546 .711
rays .450 .405 .365 .328
watch .463 .416 .375 .337
meet .502 .452 .407 .366
faucet .000 .000 .562 .506
bucket .000 .000 .693 .758
witch .000 .000 .548 .494
lukewarm .000 .000 .594 .534
trunks .000 .808 .875 .872

A COMPUTATIONAL MODEL FOR SIMULATING TEXT COMPREHENSION 637

ture. In H. van Oostendorp & S. Goldman (Eds.), The construction
of mental representations during reading (pp. 151-168). Mahwah,
NJ: Erlbaum.

Caillies, S., Denhière, G., & Kintsch, W. (2002). The effect of prior
knowledge on understanding from text: Evidence from primed recog-
nition. European Journal of Cognitive Psychology, 14, 267-286.

Chwilla, D. J., & Kolk, H. H. J. (2002). Three-step priming in lexical
decision. Memory & Cognition, 30, 217-225.

Cook, A. E., & Myers, J. L. (2004). Processing discourse roles in
scripted narratives: The influences of context and world knowledge.
Journal of Memory & Language, 50, 268-288.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., &
Harshman, R. (1990). Indexing by latent semantic analysis. Journal
of the American Society for Information Science, 41, 391-407.

de la Haye, F. (2003). Normes d’associations verbales chez des enfants
de 9, 10 et 11 ans et des adultes [Word association norms for 9-, 10-,
and 11-year-old children and adults]. L’Année Psychologique, 103,
109-130.

Denhière, G., & Lemaire, B. (2004). A computational model of chil-
dren’s semantic memory. In K. Forbus, D. Gentner, & T. Regier (Eds.),
Proceedings of the 26th Annual Meeting of the Cognitive Science So-
ciety (pp. 297-302). Mahwah, NJ: Erlbaum.

Denhière, G., Lemaire, B., Bellissens, C., & Jhean-Larose, S.
(2007). A semantic space for modeling children’s semantic memory.
In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.),
Handbook of latent semantic analysis (pp. 143-165). Mahwah, NJ:
Erlbaum.

Dumais, S. T. (2003). Data-driven approaches to information access.
Cognitive Science, 27, 491-524.

French, R. M., & Labiouse, C. (2002). Four problems with extract-
ing human semantics from large text corpora. In W. D. Gray & C. D.
 Schunn (Eds.), Proceedings of the Twenty-fourth Annual Conference of
the Cognitive Science Society (pp. 316-322). Mahwah, NJ: Erlbaum.

Gerrig, R. J., & McKoon, G. (1998). The readiness is all: The func-
tionality of memory-based text processing. Discourse Processes, 26,
67-86.

Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and
meaning: A comparison of high-dimensional and embodied theories
of meaning. Journal of Memory & Language, 43, 379-401.

Kintsch, W. (1988). The role of knowledge in discourse comprehen-
sion: A construction integration model. Psychological Review, 95,
163-182.

Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cam-
bridge: Cambridge University Press.

Kintsch, W. (2000). Metaphor comprehension: A computational theory.
Psychonomic Bulletin & Review, 7, 257-266.

Kintsch, W. (2001). Predication. Cognitive Science, 25, 173-202.
Kintsch, W. (2007). Meaning in context. In T. K. Landauer, D. S. Mc-

Namara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic
analysis (pp. 89-105). Mahwah, NJ: Erlbaum.

Kontostathis, A., & Pottenger, W. M. (2002, December). Detecting
Patterns in the LSI Term-Term Matrix. Workshop on the Foundation of
Data Mining and Discovery, IEEE International Conference on Data
Mining, Maebashi City, Japan.

Landauer, T. K. (1998). Learning and representing verbal meaning:
Latent semantic analysis. Current Directions in Psychological Sci-
ence, 7, 161-164.

Landauer, T. K. (2002). On the computational basis of learning and
cognition: Arguments from LSA. In B. H. Ross (Ed.), The psychology
of learning and motivation: Advances in research and theory (Vol. 41,
pp. 43-84). San Diego: Academic Press.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to
latent semantic analysis. Discourse Processes, 25, 259-284.

Lemaire, B., & Bianco, M. (2003). Contextual effects on metaphor
comprehension: Experiment and simulation. In F. Detje, D. Dörner,
& H. Schaub (Eds.), Proceedings of the 5th International Conference

on Cognitive Modelling (ICCM) (pp. 153-158). Bamberg, Germany:
 Universitäts-Verlag.

Lemaire, B., & Denhière, G. (2004). Incremental construction of
an associative network from a corpus. In K. Forbus, D. Gentner, &
T. Regier (Eds.), Proceedings of the 26th Annual Meeting of the Cog-
nitive Science Society (pp. 825-830). Mahwah, NJ: Erlbaum.

Linderholm, T., Virtue, S., Tzeng, Y., & van den Broek, P. (2004).
Fluctuations in the availability of information during reading: Captur-
ing cognitive processes using the landscape model. Discourse Pro-
cesses, 37, 165-186.

Livesay, K., & Burgess, C. (1997). Mediated priming in high-dimensional
meaning space: What is “mediated” in mediated priming? In M. G.
Shafto & P. Langley (Eds.), Proceedings of the 19th Annual Meeting of
the Cognitive Science Society (pp. 436-441). Mahwah, NJ: Erlbaum.

Lowe, W., & McDonald, S. (2000). The direct route: Mediated priming
in semantic space. In M. A. Gernsbacher & S. D. Derry (Eds.), Pro-
ceedings of the 22nd Annual Meeting of the Cognitive Science Society
(pp. 675-680). Mahwah, NJ: Erlbaum.

McNamara, D. S., Kintsch, E., Songer, N. B., & Kintsch, W. (1996).
Are good texts always better? Interactions of text coherence, back-
ground knowledge, and levels of understanding in learning from text.
Cognition & Instruction, 14, 1-43.

McNamara, D. S., & Kintsch, W. (1996). Learning from texts: Ef-
fects of prior knowledge and text coherence. Discourse Processes,
22, 247-288.

Myers, J. L., & O’Brien, E. J. (1998). Accessing the discourse repre-
sentation during reading. Discourse Processes, 26, 131-157.

O’Brien, E. J., Rizzella, M. L., Albrecht, J. E., & Halleran, J. G.
(1998). Updating a situation model: A memory-based text process-
ing view. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 24, 1200-1210.

Perfetti, C. A. (1998). The limits of co-occurrence: Tools and theories
in language research. Discourse Processes, 25, 363-377.

Rizzella, M. L., & O’Brien, E. J. (2002). Retrieval of concepts in
script-based texts and narratives: The influence of general world
knowledge. Journal of Experimental Psychology: Learning, Memory,
& Cognition, 28, 780-790.

Tapiero, I., & Denhière, G. (1995). Simulating recall and recognition
by using Kintsch’s construction-integration model. In C. A. Weaver III,
S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension: Essays
in honor of Walter Kintsch (pp. 211-232). Hillsdale, NJ: Erlbaum.

van den Broek, P., Risden, K., Fletcher, C. R., & Thurlow, R.
(1996). A “landscape” view of reading: Fluctuating patterns of ac-
tivation and the construction of a stable memory representation. In
B. K. Britton & A. C. Graesser (Eds.), Models of understanding text
(pp. 165-187). Mahwah, NJ: Erlbaum.

van den Broek, P., Young, M., Tzeng, Y., & Linderholm, T. (1999).
The landscape model of reading: Inferences and the on-line construc-
tion of a memory representation. In R. F. Lorch, Jr. & E. J. O’Brien
(Eds.), Sources of coherence in text comprehension (pp. 353-373).
Mahwah, NJ: Erlbaum.

Voss, J. F., & Silfies, L. N. (1996). Learning from history text: The
interaction of knowledge and comprehension skill with text structure.
Cognition & Instruction, 14, 45-68.

Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language
comprehension and memory. Psychological Bulletin, 123, 162-185.

NOTES

1. For the sake of readability, we are using the notions of working
memory or episodic memory, but we do not claim to cover exactly the
meaning of these concepts in the psycholinguistic literature. Because of
computational requirements, these notions are simplified in comparison
with their theoretical counterparts.

2. Oiseau (bird) is not considered, because it is already part of the
proposition.

(Manuscript received May 4, 2005;
revision accepted for publication August 31, 2005.)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

