
Copyright 2006 Psychonomic Society, Inc. 628

Journal
2006, ?? (?), ???-???

This article describes the architecture of a computer pro-
gram that aims to simulate the process by which humans 
comprehend texts—that is, construct a coherent representa-
tion of the meaning of the text by processing all sentences 
in turn. This program is based on psycholinguistic theories 
about human memory and text comprehension processes—
namely, the construction–integration model (Kintsch, 
1998), the latent semantic analysis theory of knowledge 
representation (Landauer & Dumais, 1997), and the predi-
cation algorithms (Kintsch, 2001; Lemaire & Bianco, 
2003). It is not a natural language processing tool, although 
this community may benefit from its ideas. Neither is it the 
best program for automatically analyzing texts. Rather, it is 
designed to mimic—as closely as possible—human beings 
(especially children) reading texts. It was intended to help 
psycholinguists implement theories, test ideas, and identify 
relevant cognitive variables. For these reasons, this program 
is largely modular and parameterizable so that researchers 
can use it as a tool for exploring the cognitive processes 
underlying human text comprehension.

It is worth noting that, for the sake of comprehension, 
we will not present the full architecture at one go; rather, 
we will first describe the core of the architecture, then dif-
ferent modules that aim to improve the initial system. The 
first module is a model of semantic memory.

LSA: A MODEL OF SEMANTIC MEMORY

Principle
As major models of text comprehension (e.g., 

 construction–integration [Kintsch, 1988], landscape model 
[van den Broek, Risden, Fletcher, & Thurlow, 1996], and 
resonance model [Gerrig & McKoon, 1998; Myers & 
O’Brien, 1998]) have shown, comprehending a text can-
not be done with only the information present in the text 
(Caillies, Denhière, & Jhean-Larose, 1999; McNamara & 
Kintsch, 1996; Rizzella & O’Brien, 2002). Readers need 
to rely on their knowledge of the world. Actually, cognitive 
theories of text comprehension assert that readers would au-
tomatically activate concepts while reading (Kintsch, 1998; 
van den Broek, Young, Tzeng, & Linderholm, 1999). There-
fore, a simulation has to be based on a computational model 
of semantic memory that would be able to provide semantic 
associates for any word, thus simulating the automatic acti-
vation of concepts in memory (Caillies & Denhière, 2001; 
Tapiero & Denhière, 1995). Associates are obviously not 
predefined; rather, they depend on the reader’s knowledge. 
In order to simulate text comprehension for different kinds 
of readers—expert or novice in a given domain, adults or 
children of various ages—we could not rely on a predefined 
set of associates for every word (not to mention the fact that 
such association norms do not exist for all words) (Cail-
lies, Denhière, & Kintsch, 2002). Ideally, we would need 
to construct word similarities from the same kind of stimuli 
humans experience. That way, we would get word similari-
ties for medical experts, an average teenager, a 7-year-old 
child, and so on. Since the perceptual experience on which 
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humans rely cannot yet be captured by a computational 
model, we restricted our input to the linguistic experience, 
which, albeit not perfect, appears to play an important role 
in the construction of word meaning (Landauer, 2002).

We used latent semantic analysis (LSA; Deerwester, 
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer, 
1998; Landauer & Dumais, 1997), a computational model 
of word similarities that is based on the automatic analysis 
of huge corpora and roughly reproduces the kind of text 
people have been exposed to. The underlying idea is that 
the meaning of words can be inferred from the contexts 
in which these words occur in raw texts, provided that 
enough data are available (Landauer, 2002). This is simi-
lar to what humans do: It seems that we learn most of the 
words we know by reading (Glenberg & Robertson, 2000; 
Landauer & Dumais, 1997). This is because most words 
appear almost only in written form and because direct in-
struction seems to play a limited role. Therefore, we learn 
the meaning of words mainly from raw texts, by mentally 
constructing their meaning through repeated exposure to 
appropriate contexts (Denhière, Lemaire, Bellissens, & 
Jhean-Larose, 2007; Kintsch, 2007).

LSA analyzes the co-occurrence of words in large cor-
pora to draw semantic similarities. In order to facilitate the 
measurement of similarities between words, LSA relies 
on very simple structures to represent word meanings: All 
words are represented as high-dimensional vectors. The 
meaning of a word is not defined, per se; rather, it is de-
termined by its relationships with all others. For instance, 
instead of defining the meaning of bicycle in an absolute 
manner (e.g., by its properties, function, or role, as in se-
mantic networks), it is defined by its degree of association 
to other words (e.g., very close to bike, close to pedals, 
ride, wheel, but far from duck, eat). Once again, this se-
mantic information can be drawn from raw texts.

The problem is how to go from these raw texts to a for-
mal representation of word meanings. One way to tackle 
this would be to rely on direct co-occurrences within a 
given unit of context. A usual unit is the paragraph, which 
is both computationally easy to identify and of reasonable 
size. We would say that

R1: Words are similar if they occur in the same 
 paragraphs.
Therefore, we would count the number of occurrences of 
each word in each paragraph. Suppose we rely on a 5,000 
paragraph corpus. Each word would be represented by 
5,000 values—that is, by a 5,000 dimension vector. For 
instance,

avalanche: (0,1,0,0,0,0,1,0,2,0,0,0,0,0,0,1,1,0,1,0,1, 
0,0,0,0,0,0 . . .)

snow: (0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,1,1,0,1,0,0,
0,0,0,0 . . .)

This means that the word avalanche appears once in the 
2nd paragraph, once in the 7th, twice in the 9th, and so on. 
One can see that, given the previous rule, both words are 
quite similar: They co-occur quite often. A simple cosine 
between the two vectors can measure the degree of similar-

ity. However, this rule does not work well (Landauer, 2002; 
Perfetti, 1998): Two words could be considered similar even 
though they do not co-occur. For instance, Burgess and 
Lund (1997) mentioned two words—road and street—that 
almost never co-occur in their huge corpus, even though 
they are almost synonyms. In a 24 million word French 
corpus from the daily newspaper Le Monde in 1999, we 
found 131 occurrences of Internet, 94 occurrences of Web, 
but no co-occurrences of these two words at all. However, 
both words are strongly associated. The reason why two 
words are associated in spite of no co-occurrences between 
them could be that both co-occur with a third word. For in-
stance, if you mentally construct a new association between 
computer and quantum from a set of texts you have read, 
you will probably also construct an association between 
 microprocessor or quantum—even though they might not 
co-occur—because of the existing strong association be-
tween computer and microprocessor. The relationship be-
tween computer and quantum is called a second-order co-
occurrence. Psycholinguistic research on mediated priming 
has shown that the association between two words can be 
made through a third one (Livesay & Burgess, 1997; Lowe 
& McDonald, 2000), even if the explanation for this phe-
nomenon is debatable (Chwilla & Kolk, 2002). Let us go a 
little farther. Suppose that the association between computer 
and quantum is also a second-order association, because of 
another word that co-occurs with both words—for example, 
science. In that case, microprocessor and quantum are said 
to be third-order co-occurring elements. In the same way, 
we can define fourth-order co-occurrences, fifth-order co-
occurrences, and so on. Kontostathis and Pottenger (2002) 
analyzed such connectivity paths in several corpora and 
found the existence of these high-order co-occurrences.

French and Labiouse (2002) thought that the previous 
rule might still have worked for synonyms. This is because 
writers tend to use synonyms rather than repeat words. 
However, defining semantic similarity only from direct 
co-occurrence is probably a serious restriction. Therefore, 
another rule would be

R1*: Words are similar if they occur in similar para-
graphs.
This is a much better rule. Consider the following two 
paragraphs:

Cycling is a very pleasant sport. It helps maintain 
good health.

To keep fit, you could practice biking. It is very pleas-
ant and good for your body.

Here cycling and biking appear in similar paragraphs. If 
these words are then repeated over a large corpus, it would 
be reasonable to consider them similar, even if they never 
co-occurred within a paragraph. Now we need to define 
paragraph similarity. We could say that two paragraphs 
would be similar if they shared words, but that would be 
restrictive. As illustrated in the previous example, two 
paragraphs should be considered similar even though they 
do not have words in common (functional words are usu-
ally not taken into account). Therefore, the rule is
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R2: Paragraphs are similar if they contain similar 
words.
Rules 1* and 2 constitute a circularity, but this can be solved 
by a specific mathematical procedure called singular value 
decomposition, which is applied to the occurrence matrix. 
This is exactly what LSA does. LSA consists in reducing 
the huge dimensionality of direct word co-occurrences to 
its best N dimensions. All words are then represented as 
N-dimensional vectors. Empirical tests have shown that per-
formances are maximal for N around 300 for the whole gen-
eral English language (Bellegarda, 2000; Landauer, Foltz, 
& Laham, 1998), but this value can be smaller for specific 
domains (Dumais, 2003). We will not describe the math-
ematical procedure, which is presented in detail elsewhere 
(Deerwester et al., 1990; Landauer, 1998). The fact that word 
meanings are represented as vectors has two consequences. 
First, it is straightforward to compute the semantic similar-
ity between words—usually the cosine between the corre-
sponding vectors, although other similarity measures can 
be used. Examples of semantic similarities between words 
from a 12.6 million word corpus are (Landauer, 2002):

cosine (doctor, physician)  .61
cosine (red, orange)  .64

As has been done in many other studies in the literature, 
we checked whether LSA can be considered as a good 
model of semantic memory. We wanted LSA to provide 
good associates for any given word, in order to simulate 
the mental activation of concepts that occurs in humans 
when they process a word. Because of its vector repre-
sentation, LSA can easily return the closest neighbors of 
a given word.

Corpus
Actually, LSA by itself is useless. It must be applied to 

a corpus. We have several corpora, but our most elaborate 
one is a child corpus that we carefully designed in order 
to reproduce—as closely as possible—the kinds of texts 
children are exposed to (Denhière & Lemaire, 2004). We 
controlled the amount and nature of texts, leading to a 
3.2 million word corpus that was composed of stories and 
tales for children (~1.6 million words), child productions 
(~800,000 words), reading textbooks (~400,000 words), 
and a child encyclopedia (~400,000 words).

We tested whether the closest neighbors of a given word 
would correspond to the words that were activated in mem-
ory by children. We relied on verbal association norms (de 
la Haye, 2003) that were defined in the following way: 
Two hundred inducing words (144 nouns, 28 verbs, and 
28 adjectives) were proposed to children from the ages 
of 9 to 11. For each word, participants had to provide the 
first corresponding word that came to their minds. This re-
sulted in a list of words ranked by frequency. For instance, 
given the word cartable (satchel ), 9-year-old children had 
the following results:

Three best-ranked words:

 école (school ): 51%
 sac (bag): 12%
 affaires (stuff ): 6%

Three worst-ranked words:

 classe (class): 1%
 sacoche (satchel ): 1%
 vieux (old ): 1%

This means that 51% of the children responded with 
the word école (school ) when given the word cartable 
(satchel ). The two words are therefore strongly associated 
for 9-year-old children. These association values were 
compared with the LSA cosine between word vectors. We 
selected the three best-ranked words, as well as the three 
worst-ranked words (as we did in the previous example). 
We then measured the cosines between the inducing word 
and the first-ranked association, the second-ranked asso-
ciation, and the third-ranked association, as well as the 
mean cosine between the inducing word and the 3 worst-
ranked associations. Results are presented in Table 1.

Student tests showed that all differences were signifi-
cant ( p  .03). This means that our semantic space was not 
only able to distinguish between the strong and weak asso-
ciations, but could also discriminate the first ranked from 
the second ranked and the latter from the third ranked.

The measure of correlation with human data was also 
significant [r(1184)  .39, p  .001]. Actually, two fac-
tors may have reduced this correlation. First, although 
we tried to mimic what a child had been exposed to, we 
could not control all word frequencies within the corpus. 
Therefore, some words might have occurred with a low 
frequency in the corpus, leading to an inaccurate semantic 
representation. When the previous comparison was per-
formed on the 20% most frequent words, the correlation 
was much higher [r(234)  .57, p  .001].

The second notable factor is the participant agreement. 
When most children provided the same answer to an induc-
ing word, there was a high agreement, which means that both 
words were strongly associated. However, there were cases 
when there was almost no agreement. For instance, the three 
first responses to the word bruit (noise) were crier (to shout) 
(9%), entendre (to hear) (7%), and silence (silence) (6%). 
It is not surprising that the model corresponded better to the 
children’s data in the case of a high agreement, since this 
denotes a strong association that should be reflected in the 
corpus. In order to select answers with stronger agreement, 
we measured their entropy using the following formula:

entropy(item)   freq(answer) · log[1/freq(answer)].

A low entropy corresponds to a high agreement, and vice 
versa. When we selected the 20% of items with the low-

Table 1 
Mean Cosine Between Inducing Word and  

Various Associated Words for 9-Year-Old Children

Mean Cosine
   Word Ranking  With Inducing Word  

Best first .26
second .23
third .19

 Worst  third  .11  
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est entropy, the correlation also increased [r(234)  .48, 
p  .001].

All these results show that the degree of association be-
tween words that were defined by the cosine measure within 
the semantic space seemed to correspond quite well with the 
children’s judgments of association. LSA—applied to our 
child corpus—is an acceptable model of semantic memory.

In order to simulate adult comprehension, we built an-
other semantic space based on the previous child corpus, 
as well as a newspaper corpus and a literature corpus. This 
adult corpus, therefore, is composed of about 13 million 
words: A 3 million word children’s corpus, a 5 million word 
corpus from the French daily newspaper Le Monde, plus a 5 
million word corpus composed of French novels. This cor-
pus was processed using LSA, and a 300-dimension seman-
tic space was built. This semantic space was used to analyze 
the example test that will be discussed in a later section.

A MODEL OF TEXT COMPREHENSION

Now that we have a good model of semantic memory, 
we need a model of text comprehension as well. That 
model should describe the process by which a set of sen-
tences is transformed into a coherent representation of 
the overall meaning of the text. The theoretical model we 
are using is the construction–integration model (Kintsch, 
1998). Discourse comprehension is viewed as an itera-
tive two-step process. First, the current proposition (or 
set of propositions) leads to the construction of a network 
of concepts that either belong to the proposition or are 
activated from semantic memory. This network is added to 
another network called the macrostructure, which results 
from the analysis of the prior part of the text and repre-
sents the main information so far. Second, the integration 
step selects the relevant concepts from this network by 
means of a spreading activation mechanism, leading to 
the new macrostructure. The process is repeated until the 
whole text is processed.

We will now present our operationalization of that 
model in a computer program. Consider a text composed 
of these two sentences:

The bee is sucking nectar from a flower. Then it brings 
the nectar back to the hive to be turned into honey.

The main process of text comprehension occurs within the 
specific component called working memory.1 This com-
ponent contains key elements of the sentences that have 
previously been processed, as well as the elements of the 
current sentence. As we mentioned previously, the reader 
would also activate concepts from semantic memory. 
For instance, the word bee would activate words such as 
honey, hive, or sting. Three kinds of elements, therefore, 
are gathered in working memory: the previous ones, the 
current ones, and a set of associates. Since not all of these 
are coherent with the context, the integration step selects 
the most relevant ones—that is, those that are loosely con-
nected to the others. For instance, sting is not strongly as-
sociated to most of the other words and must be dismissed. 
This integration step is performed by means of a spread-

ing activation mechanism, which is run until the system 
becomes stable.

Working memory is thus continuously updated as the 
text is processed, while containing the main information 
from what has already been processed. It is worth not-
ing that some of these words are not part of the text; like 
honey, they are inferences of a sort that readers make by 
means of their semantic memory.

What is true for words is also true for propositions, or 
subsets of sentences. For instance, the previous text con-
tains the following propositions:

 P1: sucking (bee, nectar, flower)
 P2: bring (bee, nectar, hive)
 P3: turn (nectar, honey)
 P4: for (P2, P3)

A proposition may also activate associates, can be propa-
gated as a key feature of the overall meaning, and can oc-
casionally be ruled out if it becomes secondary.

To summarize, each proposition is processed in turn. 
Inferences are gathered from semantic memory. An inte-
gration of this new information and previous information 
is realized in order to reach a new state of working mem-
ory. Figure 1 displays the flow of information for each 
proposition (episodic memory will be presented later).

A French translation of the previous example was sim-
ulated by our program (without taking into account the 
predication algorithm and the episodic memory, which 
will be presented in the next sections), using the previ-
ous French model of semantic memory. We now present 
the English translation. The first proposition was sucking 
(bee, nectar, flower). It activated the following elements:

insect, larva, fly, hive, honey, wasp, buzz, bouquet, 
violet, petal, gather, blossom

Semantic similarities between all pairs of words were then 
computed, leading to a large semantic network. The most 
relevant elements (those that were the most coherent with 
all others) were selected by the integration step. The work-
ing memory then contained the following elements (as 
well as their activation values):

 sucking (bee, nectar, flower) 1.000
 bee .903
 flower .852
 hive .778
 bouquet .677
 buzz .634
 honey .615
 petal .607
 wasp .606
 violet .605

The second group of propositions was then added to 
working memory. It was bring (bee, nectar, hive) and 
turn (nectar, honey). Semantic similarities between all of 
these words and propositions were computed. Since both 
propositions occurred in the same input stream, a 1.0 link 
was created between the last two propositions to represent 
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their strong connection in the text. The first one activated 
the following elements:

worker, hive, honey, wasp, buzz, fly

The second one activated

take, mineral, meaning, sugar, living, hive, bee, bear, 
bear cub, pheasant

Together with the previously activated elements, this led 
to the following set of elements:

sucking (bee, nectar, flower), bee, flower, hive, bou-
quet, buzz, honey, petal, wasp, violet, bring (bee, 
nectar, hive), worker, fly, turn (nectar, honey), take, 
mineral, meaning, sugar, living, bear, bear cub, 
pheasant

The most activated elements from this set were selected. 
The working memory was then as follows:

 sucking (bee, nectar, flower) 1.000
 bring (bee, nectar, hive) .997
 bee .949
 hive .868
 turn (nectar, honey) .813
 honey .805
 buzz .612

The next set of propositions was considered, and its el-
ements and associates were added to working memory. 
After each new set of propositions was analyzed, working 
memory represented a sort of synthesis of the information 
processed so far.

EPISODIC MEMORY

We now present a new structure, episodic memory. 
Prior elements removed from working memory are meant 

to be no longer necessary; however, they are still kept in 
a specific memory that keeps track of all the elements 
that have appeared in working memory. These can even 
be retrieved from working memory in case they become 
relevant with respect to the text content. The elements are 
stored with an activation value, which may vary over time, 
depending on whether or not they appear again in working 
memory. A decay function tends to lower these values over 
time, thus simulating a sort of forgetting mechanism.

From Working Memory to Episodic Memory
Episodic memory is defined by means of three func-

tions that have the goal of determining the activation 
values (from 0 to 1). These functions are applied every 
time an element of working memory is stored in episodic 
memory, and are as follows.

The first function indicates the new value of a concept 
that did not previously exist in episodic memory. By de-
fault, the new value is the activation value of the concept 
in the working memory.

The second function defines the new value of a concept 
that was already in episodic memory. In that case, the new 
value should be higher than both existing values, because 
of the conjunction of the two memory traces. By default, 
the new value is valueWM  valueEM (1  valueWM).

The third one is a decay function that indicates how to 
lower all activation values over time. By default, all val-
ues are changed to 90% of their original values after each 
construction–integration cycle.

From Episodic Memory to Working Memory
During the construction phase, episodic memory can 

also provide elements that are added to working memory 
if they are close to the text elements being processed. This 
is similar to the inference mechanism that gathered ele-
ments from semantic memory.

Next proposition

Select
associates

SEMANTIC
MEMORY

WORKING
MEMORY

EPISODIC
MEMORY

Integration

Store

Decay
Huge

corpus

Retrieve
previous
elements

Figure 1: Information flow of the comprehension model.
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The idea is that all episodic memory elements that are 
similar enough to a concept of the current proposition—
and that have a high enough activation value—are copied 
back into working memory. The two thresholds that gov-
ern this collection of elements are obviously parameteriz-
able. This would be the case of a text that would present 
a topic X, then shift to topic Y—leading to the removal of 
concepts related to X in working memory—then go back 
to topic X. The current mechanism would then retrieve 
X-related concepts from episodic memory in order to 
simulate the fact that concepts can be linked in a text even 
though they do not necessarily follow each other.

At the end of the text processing, episodic memory con-
tains all the propositions from the text and has an indica-
tion of their importance. This model of the way in which 
the main information has been cognitively selected can 
be tested and compared with human data. In addition, 
since every state of episodic memory is memorized by the 
program, the evolution of activation values can be traced. 
The decay function tends to decrease activation values of 
unused elements over time; however, when an element ap-
pears once again in working memory—whether because 
it occurs in the text or because it has been called back by 
a similar element—its activation value rises. Evolution 
of activation values in episodic memory is not linear and 
depends on the propositions being processed. Once again, 
the fact that this structure is automatically produced for 
any kind of text is valuable for researchers willing to test 
and refine the model. Episodic memory is presented in 
Figure 1.

A MODEL OF PREDICATION

We now present an improvement on the previous mod-
els. When a word is processed, its neighbors are activated 
from semantic memory, as we mentioned earlier. The 
same occurs for propositions: Neighbors of all words of 
the proposition should be activated. For instance, when 
you read the sentence the plane flies to Paris, you men-
tally gather associates for plane, flies, and Paris. However, 
only the neighbors of the predicate that are associated to 
the context need to be considered: You select associates 
such as airport or sky, but not escape or fear, because—
although they are close neighbors of fly—they are not 
related to the arguments. Kintsch (2001) has shown that 
the LSA model can be used to provide a good semantic 
representation of a predicate–argument expression, if the 
specific role of the predicate is taken into account.

The basic LSA representation does not make any distinc-
tion between A(B) and B(A), because the compositionality 
consists only of adding vectors: The vector representing a 
set of words is just the sum of the vectors of all words. This 
child is a sportsman has the exact same representation 
as does This sportsman is a child, which is particularly a 
problem for dealing with metaphors (Kintsch, 2000). To 
solve that problem, Kintsch suggested constructing a net-
work composed of the predicate, the argument, and a fixed 
number of neighbors of the predicate, and applying the 
integration method to select only the neighbors that are 

associated with the predicate. Kintsch (2007) provided a 
little illustrative example with only three neighbors. Sup-
pose there are three neighbors of run: come, hopped, and 
down. The sentence the horse runs will lead to a network 
composed of horse, run, come, hopped, and down. Come 
will be the only neighbor activated, because it is similar 
to both horse and run. On the contrary, in the sentence the 
color runs, only the neighbor down will be selected.

The representation of the predicate–argument expres-
sion, therefore, is not just predicate  argument but is 
predicate  argument  neighbor1  . . .  neighborn. 
We are not interested in the vector representation, but in the 
neighbors. Kintsch’s (2007) algorithm can be a good start-
ing point for our purpose. The problem is that this algo-
rithm requires a number of neighbors to be set beforehand: 
20 for usual predicate–argument relations, but up to 500 
for some metaphors, according to Kintsch’s experiments. 
Since the nature of the predicate–argument relation can-
not be stated automatically, we had to modify this predica-
tion algorithm to make it incremental (Lemaire & Bianco, 
2003). This modified version is included in the present 
comprehension program. Basically, if the input indicates 
which word is the predicate and which words are the argu-
ments, the predication algorithm is used. It scans all neigh-
bors of the predicate (using the model of semantic memory 
described earlier) until it finds three (or any other value of 
that parameter) of them that are similar enough (above a 
parameterizable threshold) to any of the arguments.

For instance, in our favorite French semantic space, the 
closest neighbors of the predicate voler (to fly) are the 
following:

 ailes (wings)
 oiseau (bird )
 vole ( flies)
 plumes ( feather)
 oiseaux (birds)
 aigle (eagle)
 vol ( flight)
 . . .

When the input is voler (avion) [ fly ( plane)], the fol-
lowing words are selected because they are also similar to 
plane: ailes (wings), vole ( flies), and vol ( flight). How-
ever, when the input is voler (oiseau) [ fly (bird )], the se-
lected words are ailes (wings), vole ( flies), and plumes 
( feathers).2 The last version of the system includes this 
algorithm.

The associates of a proposition, therefore, are the as-
sociates of the predicate according to this algorithm, as 
well as the associates for all arguments. For instance, the 
proposition fly ( plane) would activate not only wings, 
flies, and flight, but also pilot, take off, and passengers. 
The proposition fly (bird ), rather, would activate wings, 
flies, and feather as well as wings, bill, and plumage.

A FULL EXAMPLE

We now present a full example. Suppose we want to 
simulate the comprehension of the following text:
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Un bûcheron se promenait dans la forêt lorsqu’il 
vit une lumière. Des arbres brûlaient. Le bûcheron 
but l’eau de sa gourde et la cracha sur le feu. Le feu 
s’éteignit.

—which translates to

A woodcutter was walking in the forest when he no-
ticed a light. Trees were burning. The woodcutter 
drank water from his flask and spit on the fire. The 
fire went out.

Since we intend to illustrate the predication algorithm 
in this example, we need to split the sentences into prop-
ositions and indicate which word in each proposition is 
the predicate. This cannot be done automatically for the 
moment (however, the model can be run automatically if 
the predication algorithm is not used). Propositions are 
represented as sequences of words whose predicate is in 
the first position. Inputs are therefore:

1. walk/woodcutter/forest; notice/woodcutter/light
2. burn/trees
3. drink/woodcutter/water/flask; spit/woodcutter/fire
4. go out/fire (go out is only one word in French)

A translation of the output of the program is shown in 
the shaded box at the top right of this page.

Words such as stroll, oak, or glade are now part of 
working memory, although they have not explicitly been 
mentioned in the sentence. Unrelated words such as ob-
jects or shine are ruled out from working memory, since 
their activation values are below the threshold.

The second sentence is analyzed next. As the reader 
will notice in the shaded box at the bottom right of this 
page, episodic memory elements close to the current input 
can be retrieved.

Only two propositions are kept in working memory; 
the second one (notice/woodcutter/light) disappears. The 
third sentence is analyzed next in the shaded box at the top 
left of the next page.

Four propositions and several related words (that are 
either part of the text, such as forest, or not part of the text, 
such as trees or flames) are in working memory. The last 
sentence is analyzed next in the shaded box at the bottom 
right of the next page.

At the end of the text, working memory contains the 
five main propositions and several related words. The 
model works fairly well, since all related words are really 
coherent with the context. This is due to two factors: the 
semantic memory model (LSA), which mostly retrieves 
relevant words, and the integration module, which rules 
out the possible remaining irrelevant words.

In addition to the last state of the working memory, our 
program provides the activation values of all words and 
propositions for each cycle (Table 2). For instance, the ac-
tivation value of the proposition notice/woodcutter/light is 
.693 at the end of Cycle 1. It increases to .750 at the end of 
Cycle 2 and then decreases afterward. This data compares 
to the output of the landscape model (Linderholm, Virtue, 
Tzeng, & van den Broek, 2004), in which the activation 

value of concepts can be traced from proposition to propo-
sition. The main difference, however, is that our system is 
based on a knowledge model (semantic memory): It can 
retrieve concepts that are not in the text and can automati-

*** SIMULATION OF TEXT COMPREHENSION (version 1.6.2) ***
Input? walk/woodcutter/forest notice/woodcutter/light
--------------------------
“walk/woodcutter/forest” added to working memory.
Looking for neighbors of walk:
 1. stroll (0.68) close to woodcutter and forest
 2. meet (0.60) close to woodcutter and forest
 3. pick (0.60) close to woodcutter and forest
woodcutter added to working memory. Looking for neighbors:
 1. ax (0.57)
 2.  forest (0.53) 

firewood: too rare (.77  .72)
 3. cottage (0.51)
forest added to working memory. Looking for neighbors:
 1. glade (0.77)
 2. oak (0.75)
 3. wood (0.74)
--------------------------
“notice/woodcutter/light” added to working memory.
Looking for neighbors of notice:
 1. objects (0.61) close to light
 2.  watch (0.57) close to light 

commonly: too far from woodcutter and light
 3. area (0.56) close to light
woodcutter added to working memory. Looking for neighbors:
 previously done
light added to working memory. Looking for neighbors:
 1. luminous (0.80)
 2. rays (0.78)
 3. shine (0.69)
--------------------------
Constructing the 21x21 matrix...
Integrating... (9 cycles)
Activated nodes: walk/woodcutter/forest(1.00) forest(.891)  
stroll(.887) oak(.868) glade(.837) woodcutter(.816) wood(.772)  
notice/woodcutter/light (.770) pick(.748)

Input? burn/trees
“burn/trees” added to working memory.
 “rays” recoverable from episodic memory but too low (.450  .75)
 “light” recoverable from episodic memory but too low (.500  .75)
 “ax” recoverable from episodic memory but too low (.533  .75)
 “walk” recovered from episodic memory by “trees”. Added to WM.
 “oak” recovered from episodic memory by “trees”. Added to WM.
Looking for neighbors of burn:
 1.  burns: too far from trees 

fire: too far from trees 
burning: too far from trees

 1.  heat (0.56) close to trees 
extinguish: too far from trees 
steam: too far from trees

 2. flames (0.54) close to trees
 3. burned (0.53) close to trees
trees added to working memory. Looking for neighbors:
 1. branches (0.90)
 2. trunks (0.87)
 3. leaves (0.82)
--------------------------
Constructing the 22x22 matrix...
Integrating... (6 cycles)
Activated nodes: burn/trees(1.00) walk/woodcutter/forest(.981) 
trees(.920) forest(.900) trunks(.898) branches(.893) oak(.868) 
wood(.806)   glade(.791)   pick(.766)   leaves(.752)
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cally draw connections between concepts on the basis of 
their semantic similarities.

PARAMETERS

The program relies on 19 parameters, but many simula-
tions have allowed us to identify good default values for 
most of them. This section describes the most important 
parameters.

Word Relevance
In LSA, weights are attached to words in order to in-

dicate the knowledge that LSA has about words. This 
knowledge is dependent on the word frequency (LSA has 
better knowledge of words that occurred frequently in the 
corpus) and the context variability (LSA has better knowl-
edge of words that occur in limited contexts than of words 
that appear in a large variety of contexts). Two parameters 
are used to rule out words that have high frequency but 
occur in a large number of contexts (like the or and ), as 
well as words that are too rare.

Construction Phase
The number of neighbors is a parameter. The semantic 

memory model can also be modified. LSA is the default 
model, but others—like ICAN (Lemaire & Denhière, 
2004)—can be tested.

Concept Selection in Working Memory
The selection of elements in working memory that oc-

curs right after the integration phase can be made in three 
ways: (1) by selecting elements with an activation value 
over a given value, (2) by selecting the best N elements, N 
being a parameter, and (3) by selecting the best elements 
with activation values that add up to a given quantity of 
activation.

Episodic Memory
The functionality of episodic memory is controlled by 

two parameters: (1) the minimum association value for 
items being retrieved from episodic memory, and (2) the 

Input? go out/fire
“go out/fire” added to working memory.
 “burn” recoverable from episodic memory but too low (.611  .75)
 “shine” recoverable from episodic memory but too low (.311  .75)
 “fire” recoverable from episodic memory but too low (.613  .75)
 “burned” recoverable from episodic memory but too low (.370  .75)
 “heat” recoverable from episodic memory but too low (.262  .75)
 “warm” recoverable from episodic memory but too low (.546  .75)
 “light” recoverable from episodic memory but too low (.405  .75)
 “watch” recoverable from episodic memory but too low (.375  .75)
 “spit” recoverable from episodic memory but too low (.617  .75)
 “rays” recoverable from episodic memory but too low (.365  .75)
 “notice” recoverable from episodic memory but too low (.483  .75)
 “ax” recovered from episodic memory. Added to WM.
Looking for neighbors of go out:
 1.  light (0.64) close to fire 

fire: this word is already part of the proposition
 2. went out (0.56) close to fire
 3. flames (0.56) close to fire
fire added to working memory. Looking for neighbors:
 1. flames (0.71)
 2. burn (0.69)
 3. warm (0.65)
--------------------------
Constructing the 29x29 matrix...
Integrating... (7 cycles)
Activated nodes: walk/woodcutter/forest(1.00) spit/woodcutter/fire(.867) 
burn/trees(.866) wood(.830) forest(.813) go out/fire(.807) oak(.803) 
woodcutter(.749) trunks(.748) drink/woodcutter/water/flask(.740)  
glade(.727) branches(.703) fire(.702)

Input? drink/woodcutter/water/flask spit/woodcutter/fire
“drink/woodcutter/water/flask” added to working memory.
 “walk” recovered from episodic memory by “drink”. Added to WM.
 “stroll” recoverable from episodic memory but too low (.539  .75)
 “ax” recoverable from episodic memory but too low (.480  .75)
 “cottage” recoverable from episodic memory but too low (.474  .75)
  “woodcutter” recovered from episodic memory by “flask”. Added 

to WM.
 “flames” recoverable from episodic memory but too low (.374  .75)
Looking for neighbors of drink:
 1. drinks (0.74) close to water and flask
 2. hot (0.74) close to water and flask
 3. drank (0.68) close to water and flask
woodcutter added to working memory. Looking for neighbors:
 1. ax (0.57)
 2.  forest (0.53) 

firewood: too rare (.77  .72)
 3. cottage (0.51)
water added to working memory. Looking for neighbors:
 shore: too rare (.94  .72)
 1.  drinkable (0.88) 

rat: too rare (.72  .72)
 2. faucet (0.84)
 3. bucket (0.79)
flask added to working memory. Looking for neighbors:
 1. nibbling: too rare (.90  .72)
 1. left (0.49)
 2. witch (0.49)
 3. potion (0.49)
--------------------------
“spit/woodcutter/fire” added to working memory.
 “burn” recoverable from episodic memory but too low (.424  .75)
 “heat” recoverable from episodic memory but too low (.291  .75)
 “flames” recoverable from episodic memory but too low (.374  .75)
  “walk” recovered from episodic memory by “woodcutter”. Added 

to WM.
 “ax” recoverable from episodic memory but too low (.480  .75)
 “burned” recoverable from episodic memory but too low (.411  .75)
 “burn” recoverable from episodic memory but too low (.424  .75)
Looking for neighbors of spit:
 1. inhale (0.65) close to fire
 2.  lukewarm (0.63) close to fire 

bleed: too far from woodcutter and fire
 3. spits (0.59) close to fire
woodcutter added to working memory. Looking for neighbors:
    previously done
fire added to working memory. Looking for neighbors:
 1. flames (0.71)
 2. burn (0.69)
 3. warm (0.65)
--------------------------
Constructing the 37x37 matrix...
Integrating... (8 cycles)
A c t i v a t e d  n o d e s :  w a l k / w o o d c u t t e r / f o r e s t ( 1 . 0 0 ) 
drink/woodcutter/water/flask(.956) forest(.908) wood(.903) oak(.887) 
drink(.876) woodcutter(.855) trunks(.855) pick(.853) flask(.847) 
burn/trees(.840) spit/woodcutter/fire(.834) glade(.834) branches(.796) 
trees(.789) walk(.789) bucket(.770) hot(.754) drinks(.711) potion(.710) 
flames(.704)
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minimum semantic similarity with the cue word for items 
being retrieved from episodic memory.

User Selection, Tracing
A parameter can be set for researchers who are willing 

to trace the program step by step. Another parameter can 
be used to control the selection of neighbors by hand and 

to rule out possible irrelevant items. This can be used for 
simulating comprehension of a given text for which the 
researcher already knows some associated words.

CONCLUSION

This computer program is intended to help psycholin-
guists investigate the way in which humans comprehend 
texts in relation to their level of prior relevant knowledge, 
the situation models used, and the structure of texts pro-
cessed (Baudet & Denhière, 1991; Cook & Myers, 2004; 
Denhière et al., 2007; McNamara, Kintsch, Songer, & 
Kintsch, 1996; Voss & Silfies, 1996; Zwaan & Radvansky, 
1998). Researchers who are willing to explore the assets 
and limitations of the construction–integration model, or 
to compare its performance with other models—such as 
the landscape model (Linderholm et al., 2004) or the reso-
nance model (O’Brien, Rizzella, Albrecht, & Halleran, 
1998)—can test it on various texts quite easily.

One main interest of this program is its exhaustive 
model of semantic memory, which can provide associates 
for any word in the language. Because of the lack of such 
a model, previous simulations could only be run on a very 
limited number of texts. Researchers had to guess a few 
words that could be associated with all text words, result-
ing in small and subjective results. Kintsch (2000) and 
Bellissens and Denhière (2003) proposed the connection 
between CI and LSA; however, they did not link them in 
an automatic manner.

The main limitation of our model is its lack of a propo-
sitional parser that would allow free text inputs. To date, 
propositions have to be extracted by hand. However, the 
model does not need an exact description of propositions; 
rather, the text merely needs to be split into predicate–
 argument items. If the splitting is not correct, some irrel-
evant words could be retrieved, but they will probably be 
ruled out by the robust integration step. We are, however, 
in the process of designing a rough propositional parser, 
which would give us the missing link.

This program is freely available from B. Lemaire for re-
searchers who are willing to use it for academic purposes.
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NOTES

1. For the sake of readability, we are using the notions of working 
memory or episodic memory, but we do not claim to cover exactly the 
meaning of these concepts in the psycholinguistic literature. Because of 
computational requirements, these notions are simplified in comparison 
with their theoretical counterparts.

2. Oiseau (bird ) is not considered, because it is already part of the 
proposition.

(Manuscript received May 4, 2005; 
revision accepted for publication August 31, 2005.)
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