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We describe a system that uses a pair of calibrated digi-
tal cameras to obtain the three-dimensional (3-D) trajec-
tory of rhesus monkeys (Macaca mulatta) performing a 
spatial navigation and memory task in an outdoor setting 
at Yerkes National Primate Research Center Field Station 
in Lawrenceville, GA (see Figure 1). The monkeys search 
a 4.74 � 4.74 � 2.11 m area in once-daily trials. Twelve 
goalboxes are attached in stable locations to three walls of 
the area, and a subset of these goalboxes are baited with 
food items on each trial. By manipulating the consistency 
of the baited locations and the availability of landmark 
cues in the area, we can note the ability of the animals to 
remember locations and their tendency to rely upon spe-

cific strategies to solve spatial problems. The addition of 
3-D tracking in this spatial navigation and memory task 
will provide trajectories, path length, speed, and other 
variables impossible for an unaided human observer to 
note.

The 3-D tracking system addresses the challenges of 
outdoor tracking by leveraging an algorithm that adapts 
to lighting changes, whereas automated tracking in water 
mazes has been limited to 2-D tracking in a laboratory 
setting (Hval, Barrett, Wilcox, & Bailey, 2004; Mukhina, 
Bachurin, Lermontova, & Zefirov, 2001; Noldus, Spink, 
& Tegelenbosch, 2001). The outdoor setting presents sub-
stantial challenges due to natural variations in lighting, 
reflections, and shadows.

Previous studies of navigation in nonhuman primates 
have largely been limited to what could be described by 
a human observer with a pen and paper. The tendency for 
animals to follow an efficient pathway when visiting nu-
merous target locations (the “traveling salesman” prob-
lem) has been found in a number of nonhuman primate 
species, including chimpanzees (Menzel, 1973), ver-
vet monkeys (Cramer & Gallistel, 1997), yellow-nosed 
monkeys (MacDonald & Wilkie, 1990), and marmosets 
(MacDonald, Pang, & Gibeault, 1994). Recent progress 
in computerized testing of nonhuman primates has al-
lowed for measurement of navigational abilities in virtual 
mazes (Sandstrom, Kaufman, & Huettel, 1998; Washburn 
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& Astur, 2003). However, the relationship between vir-
tual navigation and real navigation is unknown, and the 
virtual system requires intensive training, which limits 
its utility.

Multicamera and single video camera 3-D tracking 
methods have been used primarily in indoor studies with 
controlled-lighting situations. Single-camera tracking 
methods that use a mirror have been used to compute the 
3-D position of a single fish in an aquarium (Pereira & 
Oliveira, 1994) and have been automated in subsequent 
studies to obtain complete 3-D trajectories (Derry & El-
liott, 1997). A two-camera system for 3-D visual tracking 
of multiple fish in an aquarium has been used in a detailed 
study of schooling behavior (Viscido, Parrish, & Grün-
baum, 2004). Unlike the 3-D tracking system described 

here, that system uses an observer in a postprocessing 
step, instead of during tracking, to correct trajectories.

Other technologies exist for 3-D sensing (reviewed in 
Parrish & Hamner, 1997). Their utility varies on the basis 
of the nature of the experiment, and few such technologies 
have been applied to obtaining 3-D trajectories. Sonar has 
been used in marine studies in the field to study fish ag-
gregations. Radio receiver and transmitting collars have 
been successfully applied in field studies where position 
measurements are made over large distances (Richard-
Hansen, Vié, & de Thoisy, 2000). Radar technology has 
been used primarily to collect 2-D trajectories of animals 
with bearing and range measurements (Capaldi et al., 
2000). Many of these technologies require attaching some 
kind of device to the animals, which is either invasive, 
uncomfortable, and/or easily destroyed by the animal, its 
peers, or the environment.

Outdoor multicamera visual tracking remains an active 
area of research in computer science (see Collins, Lipton, 
Fujiyoshi, & Kanade, 2001, for a review of recent ad-
vances). Perfect error-free visual tracking systems do not 
exist. In this article, we show how some of the advances 
in this field can be utilized to collect data in a behavioral 
study conducted in a challenging outdoor environment. 
We allow an observer to interact with the tracking system 
to correct tracking failures when they occur, thus allowing 
the collection of complete, accurate trajectories.

3-D VISUAL TRACKING

Reconstruction of the 3-D trajectory of an animal from 
a pair of cameras would present a substantial challenge for 
a human observer. At each time step, the observer would 
have to track the position of the animal from two vantage 
points and attempt to triangulate the actual 3-D location 
of the animal in the facility. Markers at known positions 
may assist in the processes of trajectory construction, but 
they can be prone to error. The visual tracking system de-
scribed here automates both the process of tracking and 
triangulation, thus enabling a researcher to automatically 
collect complete 3-D trajectories.

Video Capture and Calibration
Digital video is captured on MiniDV tapes with two 

Sony VX-2000 cameras in progressive scan mode posi-
tioned so that accurate 2-D measurements can be obtained 
for a pair of axes (see Figure 1). The video data are trans-
ferred from tape to a hard disk with Linux-based DVCAM 
capture software. Every 6th frame from a 30-frames/sec 
sequence is recorded to disk, providing 5 frames every 
second of the trial. Since camera clocks are difficult to 
synchronize at frame resolution, the digital videos are 
synchronized manually on the basis of the frame number 
in the video when the animal enters the facility.

Next, the cameras are calibrated. Because we use a 
simple pinhole model for the cameras, the quality of the 
calibration is related to the quality of the camera. Camera 
imperfections such as radial distortion must be minimized 
to obtain good estimates of camera calibration parameters, 

Figure 1. (A) A monkey conducting a spatial navigation task 
in which it visits goalboxes containing food is tracked with two 
digital video cameras. (B) On the basis of the 2-D measurements 
obtained from each camera, the 3-D location of the animal is es-
timated at a rate of 5 measurements per second. From the 3-D 
points and corresponding time stamp, the 3-D trajectory of the 
animal can be reconstructed and analyzed. The positions of Cam-
eras 1 and 2 are indicated by the triangle and square, respectively. 
The numbers 1–12 indicate the locations of the goalboxes.
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which justified our selection of high-quality Sony VX-
2000 cameras. An observer uses a calibration program 
that loads a sample image from each camera, then clicks 
in 2-D the location x̂c,i of i � 1 . . . N 3-D corners of the 
facility Xi where they appear in each image from camera 
c � {1, 2}. The 2-D and 3-D points are represented by 
homogeneous coordinates where an additional coordinate 
is appended to the point. Hence, 2-D points are 3-D vec-
tors, and 3-D points are 4-D vectors. The principal point 
( px, py), or origin of the camera-imaging plane, was set to 
the center of the image (e.g., px � 360, and py � 240 for 
a 720 � 480 pixel image). The orientation of the camera 
is captured by a pan angle pc, a tilt angle tc, a roll angle rc, 
and 3-D position Xc � (xc, yc, zc)T. Internally, the camera 
is parameterized by the focal lengths fc, x and fc, y, which ac-
count for nonsquare pixels. Hence, the projection matrix of 
the cth camera can be obtained by a matrix multiplication
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where cp � cos p, sp � sin p, ct � cos t, st � sin t, cr � 
cos r, and sr � sin r.

We used the Levenberg–Marquardt algorithm, a non-
linear numerical minimization algorithm, to correct the 
camera position and parameter estimates to minimize the 
errors between the clicked points and 2-D projections of 
the 3-D points onto the cameras (Hartley & Zisserman, 
2000). Mathematically, the error function we minimize 
can be written as
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The term Pc Xi projects the ith known 3-D point onto the 
2-D image plane of the cth camera and then computes the 
distance of that projected point with the point  x̂c,i that the 
user clicked. The algorithm was initialized with a rough 
estimate of the 3-D position of each camera and focal 
lengths. The calibration projection matrices P1 and P2 for 
Camera 1 and Camera 2 are subsequently used to triangu-
late the position of the animal.

Tracking and Triangulation
The tracker finds regions of movement by detecting 

pixels that are significantly different from the stationary 
background. First, the 720 � 480 pixel images obtained 
from the digital video are incrementally rescaled to a 

90 � 60 pixel image. At each step, the width and height of 
the image is reduced by half by removing pixels, and the 
resulting image is blurred with a small Gaussian kernel. 
The small images are subsequently converted to the LUV 
color space where perceptually different colors are speci-
fied by dissimilar 3-D values. The L denotes the lumi-
nance coordinate, and U and V are coordinates that define 
the chromaticity of a pixel. The combination of down-
sampling and blurring removes high-frequency camera 
noise, minor variations in lighting, or insignificant move-
ment such as rain. Although some accuracy is lost in deter-
mining the exact center of the tracked subject, the proce-
dure greatly reduces noise in the background subtraction 
algorithm. Specifically, we used the adaptive background 
subtraction technique of Stauffer and Grimson (1999) to 
locate regions of movement near the animal’s expected 
location in these down-sampled images. The background 
subtraction technique models the color of a pixel as a 
mixture of Gaussian distributions that indicate which col-
ors are likely when a pixel is part of the stationary back-
ground and account for noise in the camera images. In 
addition, the procedure gradually adjusts the distributions 
to account for slow changes in color that might be caused 
by passing clouds or changing weather conditions. We 
also use the cylinder model extension of Magee (2004) 
in which we consider pixels as background when pixel 
variation occurs mostly in brightness and not color. We 
found that the LUV color space was best suited for this 
background subtraction algorithm. The final result of the 
background subtraction procedure is a binary image that 
indicates regions of significant movement (Figures 2A 
and 2B).

To locate the animal in 3-D, the tracker finds the 2-D 
centers of regions of movement in both of the cameras and 
uses the measurements to triangulate an estimated 3-D 
position. The 2-D positions of the centers of foreground 
regions are obtained with the connected-components pro-
cedure described in Bruce, Balch, and Veloso (2000; see 
Figures 2C and 2D). Next, the centers of the largest move-
ment region from each frame that are within a reasonable 
distance of the previously detected region of movement 
are used to obtain the estimated 3-D position of the ani-
mal with the inhomogeneous linear method described in 
Hartley and Zisserman (2000). For the convenience of 
the reader, we provide the detailed steps of the algorithm 
below: (1) Obtain the 2-D center (x, y) of the foreground 
region in the image obtained by Camera 1 and the 2-D 
center (x′, y′) from Camera 2. (2) Compute the 4 � 4 ma-
trix A by stacking the rows of the projection matrices of 
each camera as follows: 
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pi denotes the ith row of the projection matrix of Cam-
era 1, and p′i is the ith row of the projection matrix of 
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Camera 2. (3) Extract a 4 � 3 submatrix from the four 
rows and first three columns of A and store in C. (4) Store 
the fourth column of A in b. (5) Compute the pseudoin-
verse of C, a 3 � 4 matrix, and store in C� (using, for 
example, the pinv function in MATLAB). (6) Compute 
the triangulated point X � C�b. In summary, the method 
finds the least squares solution to a system of linear equa-
tions and estimates the 3-D point nearest to two rays ema-
nating from both of the cameras.

Pereira and Oliveira (1994) detailed a triangulation al-
gorithm that relies on a mirror, which enabled them to 
mathematically include a second virtual camera in their 
calculations. Consequently, they could triangulate an 
animal by measuring angles in the field of view and the 
reflection with a single camera. Since a large mirror is 
impractical outdoors, the virtual camera used by Pereira 
and Oliveira can be replaced by a second camera in an 
outdoor application. Even though the same calculations 
can be used to triangulate an animal, one would be forced 
to assume that the positions are precisely determined for 
both cameras. Moreover, the cameras themselves would 
need to be angled such that they are level with the ground, 
positioned at the same elevation with respect to each 
other, and parallel to the facility, since the method does 
not account for camera pan, tilt, or roll. This presents a 
problem because precise measurement and positioning 
of cameras is difficult outdoors and would substantially 
reduce the amount of behavioral data that could be col-

lected with such a system. In addition, this method does 
not account for nonsquare pixels of a CCD camera. The 
calibration and triangulation method described here ac-
counts for these variables, allowing efficient outdoor data 
collection.

The tracking program runs interactively, thereby en-
abling an observer to correct failures as they occur, to 
provide uninterrupted trajectories. Failures are primarily 
caused by the following factors: changes in overall light-
ing due to passing clouds; movements of the shadows of 
trees near the facility; long periods of time during which 
the animal remains perfectly stationary (in these cases, 
the animal is considered background, and the tracker be-
comes prone to considering noise as movement, leading 
to tracking failure); passing vehicles or people in the far 
background of the facility; and movements of the observer. 
Consequently, an observer assists the tracking procedure 
by occasionally providing the correct position of the ani-
mal in the two camera images when a tracking failure oc-
curs, as is shown in Figure 3. During interactive tracking, 
videos collected at 5 Hz can be played back at 30 Hz, so a 
5-min trial can be observed in about 50 sec. The observer 
can rapidly track an animal, intervening as necessary, to 
obtain a complete trajectory. A single 5-min trial can be 
processed in 1–2 min. In a postprocessing step, the 3-D 
trajectories are smoothed with the robust local regression 
smoothing procedures provided in the MATLAB curve-
 toolbox.

Figure 2. Background subtraction is used to locate regions of movement in Cameras 1 and 2 (A and B, re-
spectively). Next, a connected-components procedure finds the center of the largest region within a reasonable 
distance from the previous 2-D position of the animal in each camera (C and D). Each 2-D measurement is used 
to triangulate the 3-D position of the animal.

(A) (B)

(C) (D)
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The sequence of operations performed by the track-
ing system is summarized as follows. (1) Capture: Record 
digital video data to a computer hard disk. (2) Calibration: 
Enter measurements and obtain estimates of camera cali-
bration parameters. (3) Synchronization: Enter the frame 
number for each camera in which the animal enters the 
facility. (4) Load frame: Get a frame of the video, rescale 
the image, and convert to the LUV color space. (5) Back-
ground subtraction: Find regions of movement in both of 
the cameras and adapt the background model. (6) Trian-
gulation: Estimate the 3-D position of the animal, correct-
ing the position as necessary. (7) Go to step 4 until the end 
of the video. (8) Smoothing: Smooth 3-D trajectory and 
record to a data file. When tracking is complete, the final 
trajectory data consist of a sequence of time stamps and 
3-D measurements.

TRAJECTORY ANALYSIS

A 3-D plot of the monkey’s trajectory can be used to 
evaluate qualitative differences between paths selected by 
the animal in the spatial navigation and memory task. The 
plot provides only limited information. However, more 
substantial benefits arise from quantitative measures that 
are derived from the trajectory. Global features such as 

path length allow assessment of the overall navigation 
abilities of the animal. A time series of trajectory features 
derived from a small window in time allows a researcher 
to evaluate the dynamics of the animal’s movement. More-
over, the same features enable the automatic detection of 
behavior, such as a goalbox visit.

Path Length
Path length is a global feature of the monkey’s trajec-

tory that measures its navigation abilities. Animals that 
remember which goalboxes hold food are expected to 
take a shorter, more efficient path to find and visit correct 
goalboxes. From the trajectory data, path length was com-
puted by summing the distance traveled between each pair 
of successive 3-D measurements. In Figure 4, we compare 
three trajectories of increasing efficiency and decreasing 
length. The animal in panel A made four incorrect visits 
to goalboxes that did not contain food and utilized a path 
that explored most of the facility. In panel B, the animal 
made three incorrect visits, but utilized a shorter, more 
efficient path between goalboxes. In panel C, the animal 
made one incorrect visit and utilized the shortest, most 
efficient path of the animals compared.

To determine the accuracy of the path-length estima-
tion, we used the system to track a human walking a tra-

Figure 3. The tracking procedure is interactive. An observer can intervene when the tracker fails because of 
adverse lighting conditions such as moving shadows. In panels A and B, the tracker has wrongly detected a mov-
ing shadow of trees waving in the wind behind the cameras as the current location of the animal. The observer 
correctly locates the position of the animal, as is shown in panels C and D, and resumes tracking.

(A) (B)

(C) (D)
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jectory of known length. Eight points at known locations 
were marked on the floor of the facility. Next, a trajec-
tory was created by randomly picking neighboring points 
until a trajectory was compiled where the human walked 

along 8 segments of known length starting from a fixed 
initial location. Figure 5 shows one such trajectory and 
the path computed by the tracking system. In total, 5 tra-
jectories were compiled, providing 40 short trajectory 
segments of known length. The average absolute differ-
ence between the real and estimated segment lengths was 
2.03 � 7.14%.

Deviations from the designated trajectory primarily oc-
curred in situations where the human was asked to turn. 
The dynamics of the movement shifted the tracker from 
the individual’s center to the individual’s side. Yet, in all 
cases, the 3-D position reported by the tracker remained 
within the tracked individual’s body.

Features
Time series of local trajectory features derived from a 

small window in time provide useful information on the 
dynamics of the animal’s movement. Such features are 
intrinsic or extrinsic. The intrinsic features are character-
istics of the animal’s path, whereas the extrinsic features 
are computed relative to objects in known 3-D locations. 
In Figure 6B, we compute the instantaneous speed of the 
animal in meters per second between successive time 
steps and plot the time of goalbox visits. The speed in-
creases as the animal maneuvers toward the goalbox and 
drops to zero as it pauses, visits the goalbox, and con-
sumes a food item. In addition, we observed a smaller 
peak in speed prior to the incorrect goalbox visit, which 
suggests that the maximum instantaneous speed prior to 
a visit could be a measure of the animal’s confidence in 
its memory (Hampton, 2001). In Figure 6C, we also plot 
the distance to the nearest goalbox over time, an extrinsic 
feature of the trajectory. As was expected, the distance to 
the goalbox dropped just before a visit. Before several 
of the visits, a sharp peak was observed, which occurred 
because the nearest goalbox changed as the animal moved 
toward the destination goalbox.

Goalbox Visits
Local trajectory features can enable a researcher to 

define criteria for identifying behaviors that are easy to 
replicate. In the spatial navigation task, a human observer 
records visits when an animal reaches into a goalbox or 
clearly looks into the opening of a goalbox. However, the 
observer may encounter ambiguous situations where it 
is unclear whether the animal is examining the goalbox 
or another object in its field of view. An observer must 
attempt to judge when the animal is visiting the box, a 
process that may introduce bias into the collected data. 
Consequently, we examined how effectively both distance 
to goalbox and instantaneous speed can be used to auto-
matically identify goalbox visits from the trajectory.

As a first step, we utilized a single feature—distance to 
goalbox—to identify visits. We assigned a 3-D measure-
ment to a goalbox number when the animal was found 
to be within a specified distance, measured in meters, to 
the goalbox (see Figure 7). Initially, we used the time the 
animal entered the goalbox region as the time of the visit. 

Figure 4. Trajectory length is a simple measure of how effi-
ciently the animal searched for and found goalboxes containing 
food. Panels A, B, and C show three trajectories of increasing ef-
ficiency and decreasing length. In panel C, the animal made only 
one incorrect goalbox visit.
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However, this approach recorded visits well before the 
human-recorded visits. By examining the trajectories, we 
noticed that the animal had a tendency to maneuver within 
the detection region before and after visiting a goalbox. 
Consequently, we computed visits by selecting the mid-
point between start and end times of successive measure-
ments that were labeled with the same goalbox number. 
Unfortunately, this strategy fails when the animal remains 
stationary near a goalbox for an extended period of time. 
We found that this was a relatively rare occurrence, how-
ever, and the midpoint provided a better estimate of visit 
time. After visit times were determined, visits to the same 
goalbox within 15 sec of each other were combined into 
a single visit by averaging all of the visit times. This 
compensated for situations where the animal may have 
maneuvered near a goalbox, briefly exiting the detection 
region and reentering prior to the actual visitation.

We compared the automatically identified visits with 
those recorded by a trained observer. In our analysis, we 
assume that the visits recorded by the observer provide 
ground-truth. In reality, trained observers can make er-
rors, which we assume to be extremely rare. Since camera 
clocks and the observer’s clock were not perfectly syn-
chronized, we considered a visit to be correctly identified 
by the computer when the goalbox number was correctly 
assigned and the visit was within 15 sec of the time re-
corded by the observer. In Table 1, we show visit times 
determined for the trajectory in Figure 7. All visits except 
that to Goalbox 10 were within 15 sec of the observer-
recorded visits. After the visit to Goalbox 10, the animal 

remained stationary near the goalbox for several seconds. 
The error recorded both a missed detection and a false 
positive.

We used this approach to analyze thirty-one 5-min trials 
where the observer found 205 goalbox visits. By adjusting 
the size of the detection region around the goalbox from 
0.0 to 0.7 m, we examined the trade-off between detection 
rate, percent of correctly identified visits, and false posi-
tive rate, detections not recorded by the observer per sec-
ond of video. We plotted the data in a receiver operating 
characteristic (ROC) curve in Figure 8 and found that 
the best trade-off between false positives and true posi-
tives was achieved when the detection region was set to 
0.325 m. The system correctly found 131 of the observer-
identified visits. However, it reported 65 false positives, 
visits that were not recorded by the observer.

By introducing a second trajectory feature—instantaneous 
speed—we were able to reduce the number of false posi-
tives. Instead of assigning a 3-D measurement to a goal-
box number when it was found to be within a specified 
distance from a box, we considered the speed of the ani-
mal. A goalbox number was assigned a 3-D measurement 
only when the instantaneous speed was found to be under 
a specified threshold. In Figure 8, we plot the ROC curves 
for a threshold of 0.3 m/sec and 0.05 m/sec. At detection 
rates below 73% and above 10%, using both features to 
identify goalbox visits generated fewer false positives 
than using the distance to goalbox alone. To correctly 
identify 131 visits, which is the best detection rate for the 
single feature approach, the false positives were reduced 

Figure 5. We measured the accuracy of the trajectory length calculation by 
comparing the length of a randomly selected trajectory taken by a human walk-
ing between known points. The trajectory was recorded by the cameras and 
then evaluated by the visual tracking system. The solid line shows the randomly 
selected trajectory that sequentially visits Points 1, 5, 6, 2, 4, 7, 8, 5, and 2, each 
designated by �. The dotted solid line shows the trajectory recorded by the 
visual tracking system.
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to 59 visits when the detection region was set to 0.345 m 
and the speed threshold to 0.3 m/sec. We could further 
reduce the false positives to 46 visits by setting the detec-
tion region to 0.4 m and the speed threshold to 0.05 m/
sec. These results suggest that approaches that utilize sev-
eral trajectory features will detect behavior more accu-
rately than approaches that use only a single trajectory 
feature.

Goalbox visit detection remains an area for future de-
velopment. The specific criteria we selected do not ac-
count for dynamics of the animal’s movement before 
and after a goalbox visit, which could be used to better 

identify visits. In addition, features of the environment 
such as the configuration of the walls of the facility near 
a goalbox could contribute to more accurate detections. 
Consequently, we are currently investigating pattern rec-
ognition and machine learning techniques that combine 
multiple features of the trajectory and environment to ro-
bustly identify behavior (Duda, Hart, & Stork, 2000).

DISCUSSION

Multicamera visual tracking allows collection of move-
ment data in a spatial navigation and memory task in 

Figure 6. In panel B, we show the speed, an intrinsic feature of the trajectory in panel A, in meters 
per second. Panel C shows an extrinsic feature, the distance in meters to the nearest goalbox. The 
solid ticks show a correct goalbox visit. The bold ticks show an incorrect visit to a goalbox without a 
food item, and the dashed ticks show a return visit to a previously visited goalbox.
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Figure 7. Goalbox visits can be automatically identified by measuring the spatial relationship of the 
trajectory to the known 3-D positions of the goalboxes. By finding the time the animal enters and leaves a 
region around a goalbox, visits can be automatically identified. The regions indicated by solid lines high-
light visits to Goalboxes 3, 5, 6, 8, 9, 10, 11, and 12. The dashed-line boxes indicate goalboxes that were not 
visited by the animal.

Figure 8. By varying the size of the goalbox visit detection region, we obtain a receiver operating charac-
teristic (ROC) curve that shows the trade-off between detection rate and false positive rate. Better goalbox 
visit detection approaches generate ROC curves that approach the optimal curve, shown as a thin dashed 
line. Perfect detection with zero false positives is indicated by the circle on the dashed line. Using open 
squares, we plot the ROC curve for detection approach that uses only distance to goalbox to identify visits. 
Using � and �, we plot detection approaches that limit an additional trajectory feature—instantaneous 
speed—at 0.3 m/sec and 0.05 m/sec, respectively, to reduce false positives. The bold square shows the best 
trade-off between detection rate and false positive rate for the single-feature detection approach. Using two 
features, we can achieve this same detection rate with fewer false positives, as shown by the bold � and �.
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which an animal navigates in three dimensions. Visual 
tracking is an area of active research in computer science. 
Although a perfect outdoor visual tracking system does 
not exist, we can obtain practical data for a behavioral ex-
periment in a challenging outdoor environment by using 
adaptive algorithms and designing the system so that ob-
servers can correct errors when they occur. The system 
we describe here enables an observer to collect accurate 
trajectory data in substantially less time than what was 
required to collect the video.

A 3-D plot of an animal’s trajectory allows an observer 
to easily see qualitative differences between paths and 
movement, but the plot provides only limited information. 
Quantitative measures derived from the trajectory, which 
will vary on the basis of the design of the experiment, are 
essential for analyzing the trajectory data set. Unlike be-
havioral observations, a trajectory can be analyzed using 
different quantitative measures without requiring a re-
searcher to conduct the experimental trial a second time. 
For instance, in this task we selected path length, a global 
feature of a monkey’s trajectory, to assess its navigation 
abilities. But, path length is limited in that it does not mea-
sure motivation. An animal may have a shorter trajectory 
simply because it is not motivated to visit goalboxes. To 
address this limitation, we intend to examine quantitative 
measures of motivation, such as average change in speed, 
in addition to path length. The trajectory data allows us 
to examine this second component without significant 
change to the experiment.

A human observer can be easily trained to collect ex-
perimental measures that require gestalt judgments such 
as highly accurate recognition of a behavior. Precise 
quantitative determinations, such as the animal’s trajec-
tory and path length, are difficult for a human observer 
to collect, whereas computers are exactly the opposite. 
Thus, the goalbox detection results we have presented il-
lustrate the current limitations of using a computer. Tasks 
that require modeling the effect of context on perception, 
like automated behavior recognition, rapidly lead to com-
plex inference and learning problems. Solutions to these 
problems are an active area of research in computer sci-

ence (see Forsyth & Ponce, 2002, and Russell & Norvig, 
2003, for reviews).

The 3-D visual tracking system described here is cur-
rently being used to examine the sex differences in spa-
tial navigation of rhesus monkeys. In this study, we have 
derived quantitative measures such as path length, by 
using a computer to obtain trajectory data, and we had 
a human observer to record visits to goalboxes and ad-
ditional behavior of the animals. Our approach combines 
the strengths of both computer and human. We expect that 
measures derived from the trajectory data, combined with 
human observations, will reveal strategies used by the ani-
mals to solve spatial problems.
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