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Discrimination tasks are often used to explore behav-
ioral and psychological phenomena. In these tasks, mea-
sures of performance are typically based on transforming 
either the proportion of correct responses or the ratio of 
correct to incorrect responses. A common problem with 
such measures is that they tend not to yield accurate es-
timates of high discriminability. When performance is 
extremely accurate, there are instances of no errors. This 
results in an indeterminate measurement of performance. 
In this article, we briefly review the major techniques that 
others have used to deal with such problem cases. Then we 
evaluate the mathematical procedures for dealing with ex-
treme estimates of discriminability. Our conclusion is that 
when it is not possible or practical to use nonmathematical 
means of avoiding indeterminate measurements, it is best 
to add a constant from 0.25 to 0.5 to all response counts.

The Yes–No Task
The present article applies principally to data obtained 

from yes–no tasks, described comprehensively by Mac-
millan and Creelman (1991), and conceptually similar 
tasks, such as symbolic matching-to-sample (see, e.g., 
Alsop, Rowley, & Fon, 1995) and delayed matching-to-
sample (see, e.g., White, 1985) tasks. These tasks involve 
a sequence of many discrete trials. In each trial, subjects 

experience one of two stimuli (S1 or S2). As an example, 
for word recognition, S1 and S2 might be distractor and 
target words.

For the present purposes, the type of stimulus is not im-
portant. Instead, the important point is that each stimulus 
has a correct response (B, for behavior) associated with it: 
B1 is correct when S1 is presented, and B2 is correct when 
S2 is presented. In each trial, subjects choose between B1 
and B2 once S1 or S2 has been presented. In a word recogni-
tion test, for example, B1 and B2 are no and yes responses. 
This procedure gives rise to four types of response: cor-
rect and incorrect responses on either S1 or S2 trials. In the 
terminology of signal detection theory (Green & Swets, 
1966), these correspond, respectively, to the four cells of 
a signal detection matrix: correct rejections, false alarms, 
hits, and misses (nominating S2 as the signal stimulus).

Performance Measures
To measure performance in yes–no tasks, researchers 

often count the frequency of each of the four response 
types. From here, one of the simplest measures is percent 
correct (the proportion of all correct responses—i.e., of 
hits plus correct rejections). Percent correct has the ad-
vantage that it is never infinite, but it is disadvantaged 
by ceiling effects. Specifically, when performance is very 
accurate, percent correct asymptotically increases to its 
ceiling of 100%. Because of this fact, percent correct 
does not vary on an equal-interval scale; as the ratio of 
correct to incorrect responses gets larger and larger, the 
change that it produces in percent correct gets smaller and 
smaller, making interactions between conditions difficult 
to interpret (Loftus, 1978; Wixted, 1990). Another disad-
vantage of percent correct is that it can be “contaminated” 
by response bias. Response bias is a general preference for 
one choice (B1 or B2) over the other, regardless of which 
stimulus was presented. When there is response bias, per-
cent correct drops even though the subject is no less able 
to discriminate the sample stimuli.

The present research was presented to the Society for Quantitative 
Analyses of Behavior, New Orleans, May 2001, and was supported by a 
Claude McCarthy Fellowship to G.S.B. This research was also supported 
in part by a University of Otago Postgraduate Scholarship to G.S.B. We 
thank Jonathan Vaughan, Tony Nevin, and an anonymous reviewer for 
their helpful comments. Reprints and copies of Visual Basic programs 
used to conduct the analyses may be requested from K. G. White, De-
partment of Psychology, University of Otago, Dunedin, New Zealand 
(e-mail: kgwhite@otago.ac.nz).

Note—This article was accepted by the previous editor,
Jonathan Vaughan.

The optimal correction for estimating extreme 
discriminability

GLENN S. BROWN and K. GEOFFREY WHITE
University of Otago, Dunedin, New Zealand

Discriminability measures such as d′ and log d become infinite when performance is extremely 
accurate and no errors are recorded. Different arbitrary corrections can be applied to produce finite 
values, but how well do these values estimate true performance? To answer this question, we directly 
calculated the effects of a range of different corrections on the sampling distributions of  d̂′ and log  d̂. 
Many arbitrary corrections produced better estimates of discriminability than did the intuitively plau-
sible technique of rerunning problem conditions. We concluded that when it is not possible to run more 
trials and when other techniques are not appropriate, the best correction overall is to add a correction 
constant between 0.25 and 0.5 to all response counts, regardless of their value.
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Other common measures of performance are the dis-
criminability measures d′, log d, and ln α (see Macmillan 
& Creelman, 1991, for a comprehensive account of d′ and 
ln α). Their respective equations are
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d′ was derived from signal detection theory (Green 
& Swets, 1966), log d from behavioral detection theory 
(Davison & Tustin, 1978), and ln α from Luce’s (1963) 
choice theory (by McNicol, 1972). As Equations 1, 2, and 
3 reveal, these measures are based on transformations of 
the same four values: frequencies of hits, misses, correct 
rejections, and false alarms. In theory, they cannot be 
contaminated by response bias (Davison & Tustin, 1978; 
Macmillan & Creelman, 1991), and since their scales 
are not bounded, they do not suffer from ceiling effects. 
They also share the advantage of varying on an equal-
interval scale—that is, when scores increase or decrease, 
the change is directly proportional to a change in the as-
sumed underlying psychological process (Wixted, 1990), 
making it is easier to interpret differences between con-
ditions, especially with interactions (Loftus, 1978). The 
common problem of these measures, however, is that if 

any of the four values of hits, misses, correct rejections, or 
false alarms are zero, the discriminability estimate is un-
defined. This problem is the focus of the present article.

Before progressing, it is important to point out other 
similarities between the three measures. First, d′ and log d 
have a roughly linear relationship (Figure 1). Second, the 
formulae for log d (Equation 2) and ln α (Equation 3) are 
identical in all but the base values of their logarithms. 
Specifically, log d uses a base-10 logarithm, whereas ln α 
uses a base-e logarithm, so ln α is always 2.303 times 
greater than log d. For this reason, we shall ignore ln α 
from here on. It should be kept in mind, though, that our 
conclusions about log d apply equally to ln α.

The Problem of Infinite Estimates
of Discriminability

In theory, d′ and log d may take on any value without 
being restricted by a ceiling. In practice, however, ex-
perimental estimates of these parameters may not do so. 
Because experiments always arrange a finite number of 
trials, estimated values of d̂′ or log d̂ may only take on 
a finite number of discretely distributed values (Miller, 
1996).1 This also means that there is a maximum finite 
value that the estimates can assume, the maximum obtain-
able value (MOV), even if the theoretical d′ or log d pa-
rameter that it estimates is much greater. Unless data are 
adjusted, the MOV is determined entirely by the number 
of trials. Figure 2 shows that when the number of trials 
increases, the MOVs of d̂′ and log d̂ rise accordingly. Es-
timates more extreme than the MOV are infinite.

Infinite estimates of discriminability are awkward to 
deal with. For one thing, they cannot be plotted meaning-
fully on a graph. Also, if an infinite value is used when 

Figure 1. Log d (or, equally, ln α) as a function of d′. The horizontal 
axis is a logarithmic scale. The function is plotted for three different 
levels of bias. Bias is measured by log b, the logarithm of the geometric 
mean of the ratio of B1 to B2 responses in S1 and S2 trials (Davison & 
Tustin, 1978)—see Equation 4 in text. No bias (log b � 0) is shown by 
the solid line. Strong (log b � 1) and very strong (log b � 2) biases are 
shown by the long- and medium-dashed lines, respectively. Negative bi-
ases produce exactly the same functions as positive biases of the same 
magnitudes.
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calculating a mean, that mean will also be infinite, and 
this is true regardless of the number and size of the other 
data. Similarly, if mathematical fits are being applied to 
several related data points and one of those values is infi-
nite, the fit will not accurately represent the number and 
magnitude of the other data points.

Methods of Dealing With Problem Cases
Run more trials. Sampling error dictates that, from 

time to time, infinite d̂′ and log d̂ estimates will occur. 
One of the most obvious solutions to this problem is to 
run more trials, as Figure 2 shows clearly. Because the 
MOV increases when more trials are added, infinite es-
timates must accordingly become less likely. This solu-
tion is almost always the best. It is only limited if there 
are practical reasons that no more trials can be run (for 
example, because of time constraints in running the ex-
periment). Happily, only a few trials need to be added 
in order to increase a small MOV noticeably. On the flip 
side, though, a massive number of trials must be added 
to noticeably increase a large one. Figure 2 demonstrates 
this fact also, because the MOV increases almost linearly 
with the logarithm of trial number, not simply with trial 
number untransformed.

Rerun problem conditions. Another way to deal with 
infinite measurements is to rerun problem conditions if a 
zero occurs. Response counts from the problem condition 
are then either discarded or added to response counts from 
the condition’s nonproblematic repetition. Either method 
is intuitively appealing, because response frequencies 
remain untransformed. In practice, though, problems 
arise either way. Inserting another condition can disrupt 
the order of conditions in an experiment, and, at the very 
least, it generates an unbalanced design in which expo-
sure to the repeated conditions is greater than exposure to 
other conditions. If instead the problem data are combined 
with rerun data, however, that condition contains more tri-

als than the other conditions. Miller (1996) showed that 
this is undesirable, since obtained discriminability esti-
mates depend on the number of trials in these situations. 
Besides, pooling by addition is inappropriate unless the 
underlying discriminability and bias parameters remain 
almost exactly the same. (Bias deflates measurements of 
percent correct for similar reasons.) If the problem data 
are discarded, estimates of discriminability are mathemat-
ically biased toward lower values, as was demonstrated by 
Miller and is also shown in the present article.

Discard problem data points. Another way to deal 
with infinite discriminability estimates is to discard the 
problem data point. This strategy causes other problems, 
however. For example, when curves are fitted to discrim-
inability values in memory procedures such as the delayed 
matching-to-sample task (see, e.g., White, 1985, 2001), 
the curve fit is more unreliable when a data point is re-
moved. This is especially true when the data point is at the 
shortest delay, where discriminability tends to be high-
est. Ignoring the data point also produces problems when 
averaging performance across subjects or conditions. For 
example, in a situation of four perfect performances and 
one poor performance, the “average” measurement would 
indicate poor performance. Clearly, this does not summa-
rize performance accurately.

Make the task more difficult. One can also avoid 
infinite discriminability estimates by making sure that 
the task is difficult. In that case, errors will be common, 
discriminability estimates will be low, and infinite esti-
mates of discriminability will therefore be unlikely. Un-
fortunately, such a situation is sometimes not desirable. 
First, if a task were to be difficult for everybody, variation 
between subjects would dictate that the task could become 
virtually impossible for many subjects. Second, there are 
sometimes good reasons for wanting to investigate a range 
of discriminability values. For example, the effects of bias 
tend to be different when discriminability is high versus 
when it is low (White & Wixted, 1999). Nevertheless, if 
the experiment and its subjects permit, making the task 
more difficult is one of the preferred solutions.

Pool S1 and S2 data. McNicol (1972) suggested that 
problem cases can be dealt with by pooling data from 
S1 and S2 trials, which is possible if 0 errors occur for 
one type of trial but not for the other. By summing the 
response frequencies from S1 and S2 trials, the resulting 
measurement of discriminability is finite and is based 
purely on empirical data. This solution does pose two 
problems, however. First, it allows a greater range of dis-
criminability values than do unpooled data; to treat all 
conditions fairly, response counts must be pooled in every 
condition and for every subject. Second, if response bias 
exists, this bias contaminates and thus lowers estimates 
of discriminability (Brown, 2003). When 0 errors occur 
on only one type of trial, performance on S1 trials differs 
from that on S2 trials, and response bias exists (at least 
empirically). If this asymmetry is due to sampling error 
alone, it is quite valid to use the pooled data. If, on the 
other hand, the asymmetry is due to true response bias, 

Figure 2. The maximum obtainable value (MOV) of log d̂ (solid 
line) and  ̂d� (dashed line) as approximately linear functions of the 
logarithm of trial number. The MOV is the highest finite value 
possible.
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the pooled data can noticeably underestimate the value of 
d′ or log d, particularly when there is a large difference 
between S1 and S2 trials. Since the source of asymmetry 
is generally unknown, it is perhaps prudent to assume 
that any pooled estimates are contaminated by bias and 
hence risk underestimating the true values of d′ and log d. 
Pooling, therefore, is only acceptable if it is performed on 
every subject in every condition and if there is little dif-
ference between S1 and S2 trials.

Pool data across subjects. To avoid response counts 
of 0, it is also possible to pool data across subjects if sub-
jects participate in the same conditions (see, e.g., White, 
1985). Arguments similar to those for pooling across S1 
and S2 trials apply: By pooling, the likelihood of a re-
sponse count of 0 decreases, but if different subjects ex-
hibit different levels of response bias, the pooled estimates 
underestimate both discriminability and response bias. 
Furthermore, it is difficult to submit pooled estimates to 
later analyses, because between-subjects variability can-
not be calculated.

Mathematical Corrections of Extreme 
Measurements of Performance

When none of the above methods of dealing with in-
finite discriminability values are appropriate, different 
mathematical corrections can be used. In describing these 
corrections, we assume that adjustments are made to fre-
quencies (not proportions) in cells of a signal detection 
matrix. We also assume that Equations 1, 2, and 3—which 
only use cell frequencies and not marginal totals—are 
used to calculate discriminability.

One of the simplest corrections is to replace any val-
ues of 0 in the signal detection matrix with the constant 
1.0 (see, e.g., Jones & White, 1992; Watson & Blampied, 
1988). For example, if there are 100 hits and 0 misses, 
using this correction results in 100 hits and 1 miss. A very 
similar rule is the �0.5 rule proposed by Murdock and 
Ogilvie (1968), which replaces counts of 0 with 0.5 rather 
than 1.0. At the same time, however, it reduces response 
counts equal to N by 0.5 (N refers to the number of trials 
of a particular type). Thus, it would convert 100 hits and 
0 misses to 99.5 hits and 0.5 misses. This is mathemati-
cally equivalent to Macmillan and Kaplan’s (1985) 1/(2N) 
rule for proportions, which adds 1/(2N ) to proportions 
of 0 and subtracts 1/(2N ) from proportions of 1. If the 
proportion of responses is adjusted by 1/(2N ), the cor-
responding frequency of responses is adjusted by N � 
1/(2N ) � 0.5—that is, the �0.5 rule. For the remainder 
of this article, we treat these two together as the �0.5 
rule. For log-linear models, Goodman (1970) also used a 
constant of 0.5, but he added it to all values in the matrix, 
regardless of their content and regardless of whether any 
cells contained 0. This correction converts 100 hits and 0 
misses to 100.5 hits and 0.5 misses.

We categorize the above correction methods into two 
styles. The first adds a constant to all cells, regardless of 
content, as in Goodman’s (1970) technique. The second, 
exemplified by all the other rules, adds a constant only 

to cells containing 0. Some rules in this category also 
reduce response counts equal to N in order to leave the 
marginal totals unchanged. In practice, however, this has 
virtually no effect on d̂′ or log d̂ unless there are very few 
trials indeed.2 Thus, the �0.5 rule is almost identical to 
simply replacing counts of 0 with 0.5. Beyond the two 
categories, the only other difference between correction 
methods is the constant used in the correction. All but 
one of the above techniques uses a constant of 0.5. This 
choice of constant is largely arbitrary, although Kadlec 
(1999) argues that because response counts are whole 
numbers, a count of 0 represents any real value up to 0.5. 
To date, however, there has been no systematic examina-
tion of whether other constants produce better estimates 
of performance.

Previous Comparisons of Correction Procedures
Using a series of Monte Carlo simulations, Hautus 

(1995) compared the effects of the �0.5 and the Good-
man (1970) rules on estimates of d′ (see also Hautus, 
1997; Hautus & Lee, 1998). He found that both tech-
niques estimated d′ poorly when there were very few tri-
als. He also demonstrated that the Goodman rule usually 
produced better estimates of d′ than the �0.5 rule. The 
Goodman rule was also more conservative, in that it con-
sistently underestimated d′, whereas the �0.5 rule often 
overestimated it.

Kadlec (1999) also used Monte Carlo simulations to 
examine four different correction procedures: the �0.5 
rule, the Goodman (1970) rule, a Murdock and Ogilvie 
(1968) rule in which 0.0001 was the correction constant 
(after Miller, 1996, who used this rule to show the effects 
of arbitrary constants), and discarding problem conditions 
(which is analogous to rerunning and replacing problem 
conditions). Kadlec found that the �0.0001 correction 
often overestimated d′ massively. Discarding problem 
conditions, on the other hand, tended to underestimate d′ 
the most. The �0.5 rule and the Goodman rule performed 
similarly and estimated d′ the best.

Miller (1996) used a different technique to demonstrate 
how the different corrections affect estimates of d′. Rather 
than conducting simulations, he directly computed sampling 
distributions of d̂′. This is a simple but computationally in-
tensive technique based on the idea that the numbers of 
correct and incorrect responses for S1 and S2 trials follow 
a binomial distribution. If the true underlying proportions 
of correct S1 and S2 trials are known, as well as the number 
of trials of each type, then it is possible to calculate the 
likelihood of obtaining a given measurement of  d̂′. As a 
consequence, the full sampling distribution of  ˆ̂d′ and its 
mean and variance can be determined.

Miller (1996) fully explained how to directly com-
pute the sampling distribution of  d̂′. In demonstrating 
this technique, he also investigated three different cor-
rection procedures: the �0.5 rule, the �0.0001 rule, and 
discarding problem conditions. Like Hautus (1995) and 
Kadlec (1999), Miller found that all techniques estimated 
d′ poorly when there were very few trials. Miller also 
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showed that the �0.5 rule often overestimated d′, just as 
Hautus and Kadlec had. Furthermore, like Kadlec, Miller 
showed that the �0.0001 rule tended to markedly over-
estimate d′. Thus, both Miller’s computational technique 
and the Monte Carlo simulations of Kadlec and Hautus 
reached similar conclusions.

An important finding from these studies was that re-
running problem conditions produced worse estimates of 
d′ than did the �0.5 rule (Kadlec, 1999; Miller, 1996). An 
arbitrary mathematical correction therefore outperformed 
an intuitively plausible correction procedure that did not 
transform response counts. This suggests that an in-depth 
investigation of different mathematical correction proce-
dures could be worthwhile. Even taken together, though, 
Hautus’s (1995), Kadlec’s, and Miller’s analyses do not 
represent a comprehensive comparison of the different 
correction procedures. We attempt to perform such a com-
parison here.

COMPARISONS OF CORRECTION 
PROCEDURES

Method and Rationale
Our comparisons of the different correction procedures 

were based on Miller’s (1996) technique for directly com-
puting the sampling distribution of d̂′. Using the same 
logic, we were able to modify Miller’s equations to also 
compute the sampling distribution of log d̂. These equa-
tions are shown in the Appendix. It is useful to examine 
estimations of log d because, although it is not as popular 
as d′, log d is much easier to calculate, and its underlying 
theory (Davison & Tustin, 1978) treats bias more real-
istically. Log d divides bias into different components: 
inherent bias (a general preference for one choice over 
another) and bias generated by response payoffs (McCar-
thy & Davison, 1981). Another reason to examine log d 
is that, as shown earlier, its calculation is almost identical 
to that of ln α.

To calculate a sampling distribution of either d̂′ or log d̂, 
we began by assuming an underlying probability of hits 
(B2 on S2 trials) and false alarms (B2 on S1 trials). These 
probabilities are jointly determined by underlying dis-
criminability and bias parameters. High discriminability 
produces more hits but fewer false alarms, and bias to-
ward B2 (for instance) inflates both hits and false alarms. 
Although the hit and false alarm probabilities are stable 
(in theory), chance alone dictates that the obtained num-
ber of hits and false alarms will vary. In fact, because the 
choice between B1 and B2 is binary, the obtained values 
vary according to a binomial distribution. It is thus pos-
sible to calculate the likelihood of obtaining a particular 
number of hits or false alarms. To find the probability of 
obtaining a specific combination of these values, their 
independent probabilities are multiplied together, and this 
can be done for each possible combination of hits and 
false alarms. Because each combination has an associ-
ated d̂′ or log d̂ value, the resulting table of combinations 

and probabilities defines the sampling distribution of d̂′ 
or log d̂.

To determine how well a given correction procedure 
works, we compared the means of sampling distribu-
tions of d̂′ and log d̂ to their true values. The mean of 
the sampling distribution (i.e., its expected value) is use-
ful because this measure takes into account not only each 
possible measured value, but also that value’s likelihood. 
When a specific measurement of extreme discriminability 
is both probable and substantially different from true dis-
criminability because of the correction procedure used, 
the mean of the sampling distribution clearly misestimates 
the true value of d′ or log d. This misestimation represents 
the amount of statistical bias—that is, the expected differ-
ence between measured and true discriminability.

The sampling distributions of d̂′ and log d̂ rely on many 
factors. These include the true underlying d′ or log d, the 
level of response bias, the number of trials, the correc-
tion technique used, and the correction constant used. We 
varied all of these factors systematically to determine how 
they influence the sampling distributions of d̂′ and log d̂, 
and hence the estimates of discriminability.

Effects of Different Correction Procedures on 
Estimates of Discriminability

Figure 3 contains nine graphs that all compare the 
mean of the sampling distribution of d̂′ to its true underly-
ing value for three different levels of bias. Bias was mea-
sured by the response criterion c (Macmillan & Creelman, 
1991). We refer to the mean of the sampling distribution 
as expected d̂′ and the true underlying value as true d′. In 
each graph in Figure 3, true d′ is shown on the horizontal 
axis. For each true d′, the corresponding expected d̂′ is 
plotted on the vertical axis. To make it easier to compare 
the two, true d′ is also plotted on both axes, and thus ap-
pears as a straight diagonal line. In each graph, the ex-
pected  d̂′ closely matches true d′ when true d′ is low. 
As it nears the MOV (represented by the horizontal line), 
expected  d̂′ underestimates the true value more and more. 
This underestimation is more pronounced, and begins at 
lower values of true d′, when there is more bias.

The nine graphs in Figure 3 are separated into three 
rows and three columns. The three different rows are for 
three different numbers of trials. Here, S1 and S2 trials 
each number 32, 128, and 512. The three different col-
umns represent three different conventions for dealing 
with problem cases (i.e., cases in which one or more cells 
in the signal detection matrix contain 0). In the first col-
umn, the Goodman (1970) rule is applied: 0.5 was added 
to all cells in the signal detection matrix, regardless of 
their content. In the second column, 0.5 is added only 
to cells containing 0, but response counts equal to N are 
never adjusted. This has effects virtually identical to those 
of the �0.5 rule, but if anything this correction has a tiny 
advantage in that it very slightly increases the MOV. It 
is also simpler. We will therefore dispense with analyses 
of the pure �0.5 rule for reasons of economy, but identi-
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cal conclusions will apply. In the third column, problem 
cases are excluded. This is analogous to discarding data 
from problem conditions and rerunning those conditions 
(Miller, 1996).

For the different conventions, response bias produces 
about the same underestimation of d′, regardless of the 
correction procedure used. Also, the MOV is almost ex-
actly the same whether the Goodman method is used or 
0.5 is added only to cells that contain 0. This is not sur-
prising, since the lowest value in the signal detection ma-
trix is 0.5 for both corrections. There is a tiny difference 

between the two simply because of the difference in the 
number of cells in the signal detection matrix to which 
the two methods add 0.5. In comparison with these two 
methods, rerunning problem conditions always yields a 
lower MOV, simply because the lowest possible value in 
the signal detection matrix, and hence the lowest possible 
denominator in a ratio, is 1.0 rather than 0.5.

Figure 3 reveals an important difference between the 
Goodman convention and the other two methods. With the 
Goodman convention, expected d̂′ exclusively underesti-
mates true d′. Reassuringly, this is consistent with Hau-

Figure 3. Comparisons of expected  d̂� (the mean of the sampling distribution of  d̂�) with 
the true underlying value of d�. Functions are shown for 32 trials (top row), 128 trials (middle 
row), and 512 trials (bottom row) of each type. Functions are also differentiated according to 
whether the correction procedure added 0.5 to all cells (left column), added 0.5 only to cells 
containing 0 (middle column), or excluded problem conditions (right column). Functions are 
plotted for three different levels of bias, as measured by response criterion c: no bias (c � 
0, solid lines), moderate bias (c � 0.6, long-dashed lines), and strong bias (c � 1.2, medium-
dashed lines). The horizontal line on each graph represents the maximum value of  d̂�. The 
dotted diagonal line represents equality between expected  d̂� and true d�.
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tus’s (1995) results based on Monte Carlo simulations. In 
contrast, the other two conventions tend to slightly over-
estimate true d′ in many instances (at least when bias is 
negligible). The overestimation is most pronounced when 
the values of true d′ begin to approach the MOV. The con-
clusion is that the correction rule is less likely to over-
estimate true d′ when it adds a constant to all cells than 
when it adds a constant only to cells containing 0 or when 
it requires problem conditions to be rerun. Another key 

observation in Figure 3 is that the relationship between 
the correction procedures remains the same regardless of 
the number of trials.

Figure 4 plots information similar to that found in Fig-
ure 3. The main difference is that it represents log d rather 
than d′. Also, it measures response bias in terms of log b 
(Davison & Tustin, 1978; see Equation 4 below) rather 
than the response criterion, c. The level of bias is roughly 
equivalent, however. Log b is symmetrical with log d in 

Figure 4. Comparisons of expected log  d̂ (the mean of the sampling distribution of log  d̂ ) 
with the true underlying value of log d. Functions are shown for 32 trials (top row), 128 tri-
als (middle row), and 512 trials (bottom row) of each type. Functions are also differentiated 
according to whether the correction procedure added 0.5 to all cells (left column), added 0.5 
only to cells containing 0 (middle column), or excluded problem conditions (right column). 
Functions are plotted for three different levels of bias, as measured by log b: no bias (log b � 
0, solid lines), moderate bias (log b � 0.5, long-dashed lines), and strong bias (log b � 1.0, 
medium-dashed lines). The horizontal line on each graph represents the maximum value of 
log  d̂. The dotted diagonal line represents equality between expected log  d̂ and true log d.
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Equation 2 and is identical to the measure of bias derived 
from Luce’s (1963) choice theory, except that it uses a 
base-10 logarithm rather than the natural logarithm.

 
log logb = ⋅ ⋅1

2 10
Hits

Misses
False Alarms

Correct Rejections
⎛
⎝⎜

⎞
⎠⎟

.
 

(4)

The relationships shown for log d in Figure 4 are al-
most exactly the same as those shown for d′ in Figure 3. 

This is not surprising, given the roughly linear relation-
ship between d′ and log d shown in Figure 1. The main 
point of Figure 4 is to show that when investigating the 
different conventions, it matters little whether d′ or log d 
is used. Because of this, we simplify the remainder of the 
present article by concentrating mostly on only one mea-
sure, d′. We further simplify matters by presenting results 
only for 128 trials apiece for S1 and S2. In Figures 3 and 4, 

Figure 5. Comparisons of mean expected  d̂� with true d� for different correction proce-
dures, correction constants, and levels of bias, for 128 trials of each type. Functions are shown 
for adding correction constants to all cells (left column) or only to cells containing 0 (right 
column). Functions are also differentiated according to correction constant: 1.0 (top row), 
0.5 (second row), 0.25 (middle row), 0.125 (next-to-bottom row), and 0.0625 (bottom row). 
Functions are plotted for three different levels of bias, as measured by response criterion c: 
no bias (c � 0, solid lines), moderate bias (c � 0.6, long-dashed lines), and strong bias (c � 1.2, 
medium-dashed lines). The horizontal line on each graph represents the maximum value of
 d̂�. The dotted diagonal line represents equality between expected  d̂� and true d�.
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comparisons between the conventions produced the same 
conclusions, regardless of the number of trials (see also 
Figure 7).

Effects of Different Constants on Estimates
of Discriminability

Figures 3 and 4 show that the MOV is determined by 
the number of trials and by the size of the smallest value 
in the signal detection matrix. For most corrections, the 
smallest value is the constant added to cells containing 0, 
which is 0.5 in the case of the �0.5 and Goodman rules. 
The choice of 0.5 as a constant is largely arbitrary, al-
though Kadlec (1999) did provide some intuitive justifi-
cation. Nonetheless, the effect of using different constants 
has not been systematically studied. We have done just 
that, however, by testing the effects of different correc-
tion constants on the sampling distribution of d̂′. Figure 5 
contains 10 graphs of the same style as those contained 
in Figure 3. They compare true d′ to expected d̂′ for 128 
trials apiece for S1 and S2. In the left column, correction 
constants were added, Goodman style, to all cells in the 
signal detection matrix, regardless of content. In the right 
column, correction constants were applied only to cells 
containing 0. The five rows of Figure 5 systematically 
vary the constant from a high value of 1.0 to a low value 
of 1/16 (0.0625).

Figure 5 shows that smaller correction constants pro-
duce higher MOVs of d̂′. Taken alone, this gives smaller 
correction constants an advantage: They are less likely 
to underestimate d′ when true d′ is very high. Not sur-
prisingly, however, they also have a disadvantage: At less 
extreme values of true d′, and when bias is small, they 
produce greater overestimation. The overestimation ap-
pears to be slightly more pronounced when the constant is 
added only to cells containing 0 rather than to all cells.

THE OPTIMAL CORRECTION 
PROCEDURE

An optimal correction procedure should balance two 
conflicting goals. The first is to possess a high MOV, 
since doing so permits a broader range of scores. A high 
MOV also means that underestimates of d′ become less 
likely and that an equal-interval scale of discriminability 
is preserved for a wider range of values. The second goal 
is to ensure that d′ values are not greatly overestimated. 
These two goals necessarily oppose each other. Given that 
perfect scores can be difficult to interpret and that lower 
scores are generally more likely, it is perhaps prudent to 
focus first on the latter, more conservative goal.

To decide upon the best correction constant, three ques-
tions must be answered. First, according to the criteria 
above, which is the best style of correction? Our analyses 
show that this is really a choice between a Goodman-style 
method of adding a constant to all cells or, alternatively, 
adding a constant only to cells that contain 0 (much like 
the �0.5 technique). Second, does the number of trials 
influence which is the best correction constant to use? 

Finally, if the number of trials does not matter, which is 
the best choice of correction constant?

Method for Finding the Maximum Mean 
Overestimation

Since it is important to avoid excessive overestimation, 
an important measure of a correction method’s success is 
the maximum mean overestimation that it produces (that 
is, the largest amount by which d′ is overestimated by the 
mean of its sampling distribution, expected  d̂′). We found 
the maximum mean overestimation for each constant and 
correction procedure. To do this, we used a series of recur-
sive numerical searches. Since the largest overestimations 
occur when there is no bias, bias was held at zero. For 
each search, true d′ was increased incrementally and com-
pared with expected d̂′ each time. This eventually revealed 
the two values of true d′ that produced the two largest 
mean overestimations. A search using smaller increments 
of true d′ was then conducted within those two d′ values, 
a search by even smaller increments within the resulting 

Figure 6. For 128 trials of each type, the maximum amount by 
which expected  d̂� (the mean of the sampling distribution of  d̂�) 
overestimates true d� for different correction constants. The over-
estimation is expressed absolutely (top panel) or as a proportion 
of the standard error (bottom panel). Both graphs compare add-
ing the correction constant to all cells (solid lines, filled circles) 
with adding the constant only to cells containing 0 (dashed lines, 
open triangles).
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values, and so on. The recursion continued until the two 
values of true d′ differed from each other by less than 
0.0001. (It should be noted that the search was broadened 
if either the highest or the lowest true d′ within a range 
produced the biggest overestimation.) The resulting value 
represented the true d′ that was most overestimated by the 
mean of its sampling distribution.

The Best Style of Correction
We used the data in Figure 6 to decide which style of 

correction is better: adding a constant to all cells or add-

ing a constant to cells containing 0. The top panel of Fig-
ure 6 shows how the different correction constants and 
correction procedures affect the maximum mean over-
estimation of d′. These calculations are based on 128 tri-
als apiece for S1 and S2, but a similar pattern of results 
applies irrespective of the number of trials. The bottom 
panel of Figure 6 shows these same values expressed as a 
proportion of the standard error of the sampling distribu-
tion of d̂′ at the point of maximum overestimation. These 
proportions are important because they show the size of 
the overestimation relative to the spread of the sampling 

Figure 7. The effect of the number of trials of each type on overestimations of d� (left col-
umn) and log d (right column). The top panels show the maximum amount by which expect-
ed  ̂d� or log  ̂d overestimates true d� or log d for different trial ns. The middle panels show how 
the variance at the point of maximum overestimation varies with trial number. The bottom 
panels illustrate the effect of trial number on the maximum overestimation as a proportion 
of the standard error. Functions are shown for different correction constants: 0.0625 (short-
dashed line), 0.125 (medium-dashed line), 0.25 (long-dashed line), and 0.5 (solid line). These 
correction constants were added to all cells, regardless of their value. When the correction 
constant was 0.5, there was no mean overestimation of d�, so the corresponding functions are 
not shown. With the same correction constant, the maximum mean overestimation of log d 
was almost 0, and is thus almost indistinguishable from the abscissa.
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distribution. Large overestimations are more acceptable 
when estimates vary wildly anyway (i.e., if the sampling 
distribution is well spread and the standard error is large). 
This is because, in context, the overestimation is then very 
difficult to detect and is therefore of little practical signifi-
cance. For similar reasons, a small mean overestimation 
may be unacceptable if the standard error is tiny.

Figure 6 shows that when the smallest correction con-
stants are used, the highest maximum mean overestima-
tion results, and is similar for both styles of correction. 
When larger correction constants are used, less overes-
timation results, and a difference between the correction 
styles becomes clear. Specifically, adding a constant to all 
cells produces less overestimation than does adding a con-
stant only to cells that contain 0. This is because a Good-
man-style procedure moderates not only the most extreme 
measurements of d̂′, but to a lesser extent measurements 
that are not quite as extreme. To avoid overestimation 
while maintaining a high MOV, then, the Goodman-style 
procedure of adding a constant to all cells is superior to 
adding a constant only to cells that contain 0.

Kadlec (1999) did not agree that the Goodman correc-
tion was superior, but concluded that the �0.5 rule out-
performed the Goodman correction. She did not, however, 
analyze the maximum mean overestimation, as we did. Fur-
thermore, her preference arose only because the �0.5 rule 
was slightly better for estimating the likelihood ratio β (see 
Macmillan & Creelman, 1991). Here, our focus is on how 
best to estimate d′, and for this purpose, a Goodman-style 
correction is superior. Two questions remain, however: 
What is the best correction constant to use? And does it 
depend on the number of trials?

Does Trial n Determine the Optimal
Correction Constant?

To help evaluate whether or not the number of trials 
determines the best correction constant to use, Figure 7 
shows how the maximum mean overestimation, its vari-
ance, and its size with respect to the standard error change 
when the number of trials is increased. These values are 
plotted separately for four different correction constants: 
0.5, 0.25, 0.125, and 0.0625. They are also plotted sepa-
rately for d′ and log d. (We show both here because their 
patterns differ slightly.) With log d, for all but the smallest 
number of trials (less than about 20), there is almost no 
influence of trial number on any of the measurements, no 
matter which constant is used. This fact justifies using the 
same constant regardless of the number of trials. (It does 
not, however, suggest that running few trials is as good as 
running many: When few trials are used, the MOV is still 
much lower.)

When d′ is used, the graphs in Figure 7 are a little harder 
to interpret. As long as the trial n is greater than 100, 
maximum mean overestimation—whether expressed ab-
solutely or as a proportion of the standard error—is about 
the same regardless of the number of trials. As trial n drops 
below 100, however, the maximum mean overestimation 
increases substantially for correction constants less than 
0.25. For all correction constants, variance increases con-

siderably with the same drop in trial n. For this reason, 
like Kadlec (1999), we caution against using d′ with fewer 
than 100 trials of each type, especially if a correction con-
stant of less than 0.25 is used. When trial N is necessarily 
small, log d may be a more reliable measure.

The Optimal Correction Constant
To decide on the optimal correction constant is largely 

to decide where to strike the balance between underesti-
mation of the highest discriminability values and overesti-
mation of less extreme values. With little doubt, the upper 
limit for the correction constant should be 0.5. This pro-
duces virtually no mean overestimation and is thus very 
conservative. With smaller correction constants, however, 
there is an increased likelihood of overestimation, and 
hence an increased likelihood of Type I errors. To avoid 
assigning an overly arbitrary lower limit for the correc-
tion constant, it is useful to look at what response counts 
logically represent. Response counts of 1 represent all real 
values between 0.5 and 1.5 as their halfway point, and 
response counts of 0—perhaps counterintuitively—repre-
sent all real values between 0 and 0.5 (Kadlec, 1999). The 
latter range might be better represented by its own halfway 
point, 0.25. It is difficult to find a logical reason for using 
a value lower than 0.25.

Visually, Figure 5 confirms that 0.25 could be a suitable 
correction constant. It maintains an almost linear relation-
ship between expected d̂′ and true d′ for a wide range of 
values. Furthermore, its MOV is higher than that produced 
by a correction constant of 0.5. At the same time, how-
ever, Figure 6 shows that it still produces less overesti-
mation than the widely used �0.5 rule. The same is not 
true when the correction constant is much lower than 0.25, 
however. Further support for a correction constant of 0.25 
is demonstrated in Figure 7, where the maximum mean 
overestimation produced by a correction constant of 0.25 
does not exceed 25% of the standard error. Any overesti-
mation would be very difficult to detect statistically, and 
thus would be of little practical significance. We therefore 
conclude that any correction constant between 0.25 and 
0.5 is acceptable.

SUMMARY AND RECOMMENDATIONS

In yes–no tasks, discriminability can be measured using 
d′, log d, or ln α. When performance is very good or when 
there are very few trials, infinite estimates of discrim-
inability are likely. Such measurements are problematic 
because they cannot easily be plotted on a graph, used in 
calculations of means, or employed in curve-fitting proce-
dures. Moreover, it is theoretically questionable whether 
discriminability can truly be infinite.

Infinite estimates are best avoided by running more tri-
als. If it is not viable to do so, researchers could instead 
make the task more difficult, rerun problem conditions, 
discard problem data points, pool S1 and S2 data, or pool 
data across subjects. Unfortunately, these options are 
sometimes inappropriate and often problematic. In such 
cases, it is best to apply a mathematical correction.
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We compared the different types of mathematical cor-
rection procedures. Our analyses indicated that it is best 
to add a constant to all cells in the signal detection ma-
trix, regardless of their content. The constant used should 
be the same, regardless of the number of trials. However, 
using d′ with fewer than about 100 trials of each type (see 
Kadlec, 1999) is not recommended. If low trial N is un-
avoidable, log d or ln α may be more reliable measures.

We concluded that it is best to use a correction constant 
between 0.25 and 0.5. This will result in less overestima-
tion than is produced by the widely used �0.5 rule [also 
known as the 1/(2N) rule for proportions]. At the same 
time, unavoidable underestimates of discriminability will 
be as small as possible. Any correction constant between 
0.25 and the more commonly used 0.5 produces an accept-
able level of overestimation (Figure 7). A correction con-
stant of 0.5 remains satisfactory, as has been confirmed 
by prior analyses (Hautus, 1995; Kadlec, 1999), but 0.25 
permits a wider range of discriminability estimates.

Typically, experiments have a small number of trials 
and have measured d′ values in the range 0–3.0, such as 
in studies of recognition memory. In these circumstances, 
our suggested correction method produces the best es-
timates of discriminability of all of the techniques ex-
amined and is also the least sensitive to response bias. It 
should be noted, however, that when bias is particularly 
strong (c 	 �0.5, approximately), all correction methods 
tend to underestimate discriminability.

As a final note, caution should be exercised when any 
mathematical correction is used. Although such correc-
tions allow estimates to be finite and as accurate as possi-
ble, they still only represent a “best guess.” If the conclu-
sions of an experiment or analysis depend heavily on the 
mathematical correction used, then using other methods 
to avoid undefined measurements is essential, especially 
when response bias is strong.
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NOTES

1. In this article, symbols with “hats” (e.g., d̂
) are data-based es-
timates of true, underlying parameter values, which are shown with-
out hats (e.g., d
). These “true” underlying parameters are theoretical 
constructs.

2. Even with a mere 10 trials of each type, subtracting 0.5 from val-
ues equal to N has an effect of less than 2% (0.047 for d̂
 and 0.022 for
log d̂). With 100 trials of each type—the minimum recommended by 
Kadlec (1999)—the difference is less than 0.01% (0.0034 for  d̂
 and 
0.0022 for log  d̂). Thus, the 1/(2N) and �0.5 rules are virtually identical 
to adding 0.5 only to cells that contain 0.

(Continued on next page)
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APPENDIX
Computations for the Sampling Distribution of Log d̂

Miller (1996) described how to generate the sampling distribution of d̂′ and calculate its mean and variance. 
We adapted Miller’s equations to enable us to perform analogous calculations for the sampling distribution of 
log  d̂. We have generally retained Miller’s notation and will explain our equations in the same order he used. 
The important assumption is that performance on S1 trials is independent of performance on S2 trials. Given this 
assumption, calculations on S1 and S2 trials can be performed separately. These independent calculations can 
then be combined in order to examine overall performance.

B1 and B2 are alternative responses on each trial. After Miller (1996), we used the binomial distribution to 
calculate how likely it is that NB1|S1

, a particular number of B1 responses on S1 trials (correct rejections), will be 
obtained:
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where pB1|S1
 is the true, underlying probability of obtaining B1 on an S1 trial and NS1

 is the number of S1 trials. Put 
in words, Equation A1 states that the number of obtained B1 responses on S1 trials follows a binomial distribution 
of probability pB1|S1

 and NS1 
observations. The likelihood of obtaining a particular number of B2 responses on S2 

trials (hits) is expressed by a similar equation:
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On S1 trials, the log of correct to incorrect responses can be calculated directly from NB1|S2 
and NS1

, and on 
S2 trials it can be calculated from NB2|S2

 and NS2
. Because of this, Equations A1 and A2 can easily be adapted to 

compute the probability of obtaining a particular log ratio of correct to incorrect responses on S1 or S2 trials. 
The resulting equations are
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and
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where pB1|S1
 is the obtained probability of B1 on S1 trials and pB2|S2

 is the obtained probability of B2 on S2 trials. 
Note that for ln α rather than for log d, base-e rather than base-10 logs would be used in all equations here.

For the purposes of generating a sampling distribution, the true probability of pB1|S1
 and pB2|S2

 can be calculated 
directly from the underlying values of log d and log b. Assuming that log d represents a bias toward correct 
responses and log b represents a bias toward B1 responses, the appropriate equations are
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and
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Equations A5 and A6 are derived from Equations 2 and 4 in the text. Note that if ln α is being used, e rather than 
10 should be raised to the power of the appropriate bias and discriminability terms.

In the present article, the calculation of the mean of the sampling distribution of log  d̂ is very important. To 
compute it, the first step is to calculate the expected value of the log of correct to incorrect responses for S1 and 
S2 trials independently. For each trial type, this is accomplished by multiplying each possible value of the log of 
correct to incorrect responses by its probability. The appropriate equations are
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and
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When calculating these expected values, a suitable correction procedure is applied. If this is not done, the result 
is undefined. Once the independent expected values have been calculated, they can be combined to give us
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APPENDIX (Continued)

E[log  d̂], the expected value of log  d̂. It is represented by the mean of the expected log of correct to incorrect 
responses for S1 and S2 trials.
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It is also important in the present article to calculate the variance of the sampling distribution of log  ̂d. For this 
calculation, it is necessary to compute the second raw moment. This requires a simple adjustment of Equations 
A7 and A8. The resulting equations are
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and
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Equations A8 and A10, and A9 and A11, can then be combined to compute the variance for each type of trial:
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and
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(A13)

To compute Var[log  d̂], the overall variance of the sampling distribution of log  d̂, Equations A12 and A13 are 
simply combined. The resulting equation is
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(A14)

We used Equations A1 through A14 to calculate the characteristics of the sampling distribution of log  d̂. To 
calculate the characteristics of the sampling distribution of  d̂′, we used the analogous equations described by 
Miller (1996). Similar principles can be used to calculate characteristics of the sampling distribution of any of 
the common performance measures used in yes–no tasks. The calculation, however, is somewhat more cumber-
some for measures that additively combine response counts over S1 and S2 trials, such as percent correct. This is 
because distributions for S1 and S2 trials cannot then be calculated independently.
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