Skip to main content
Log in

Laser-Induced Graphitization of Diamond Bulk: The State of the Art (A Review)

  • INTERACTION OF LASER RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The experimental studies of the laser graphitization of diamond bulk, which have been published in the last decade, are reviewed, and the current problems in this field of research are considered. The techniques of laser microstructuring of diamond crystals, which make it possible to form graphitized microstructures of different shapes in their bulk, are described. The phenomenon of laser-induced graphitization wave and physical regularities of its propagation in diamond bulk are considered. The internal structure of laser-graphitized material and the methods for its study are described. The influence of the processing parameters on the internal structure and conductivity of laser-modified material in diamond bulk is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Tapper, “Diamond detectors in particle physics,” Rep. Prog. Phys. 63 (8), 1273–1316 (2000). https://doi.org/10.1088/0034-4885/63/8/203

    Article  ADS  Google Scholar 

  2. R. A. Khmelnitskii, N. K. Talipov, and G. V. Chucheva, Synthetic Diamond for Electronics and Optics (Ikar, Moscow, 2017) [in Russian].

    Google Scholar 

  3. V. I. Konov, “Laser in micro and nanoprocessing of diamond materials,” Laser Photonics Rev. 6 (6), 739–766 (2012). https://doi.org/10.1002/lpor.201100030

    Article  ADS  Google Scholar 

  4. G. B. J. Cadot, K. Thomas, J. P. Best, A. A. Taylor, J. Michler, D. A. Axinte, and J. Billingham, “Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond,” Carbon. 127, 349–365 (2018). https://doi.org/10.1016/j.carbon.2017.10.030

    Article  Google Scholar 

  5. M. De Feudis, A. P. Caricato, G. Chiodini, M. Martino, E. Alemanno, G. Maruccio, A. G. Monteduro, P. M. Ossi, R. Perrino, and S. Spagnolo, “Characterization of surface graphitic electrodes made by excimer laser on CVD diamond,” Diamond Relat. Mater. 65, 137–143 (2016). https://doi.org/10.1016/j.diamond.2016.03.003

    Article  ADS  Google Scholar 

  6. T. V. Kononenko, V. I. Konov, S. V. Garnov, R. Danielius, A. Piskarskas, G. Tamosauskas, and F. Dausinger, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses,” Quantum Electron. 29 (8), 724–728 (1999). https://doi.org/10.1070/QE1999v029n08ABEH001560

    Article  ADS  Google Scholar 

  7. V. V. Kononenko, T. V. Kononenko, S. M. Pimenov, M. N. Sinyavskii, V. I. Konov, and F. Dausinger, “Effect of the pulse duration on graphitisation of diamond during laser ablation,” Quantum Electron. 35 (3), 252–256 (2005). https://doi.org/10.1070/QE2005v035n03ABEH002900

    Article  ADS  Google Scholar 

  8. S. M. Pimenov, A. A. Khomich, B. Neuenschwander, B. Jäggi, and V. Romano, “Picosecond-laser bulk modification induced enhancement of nitrogen-vacancy luminescence in diamond,” J. Opt. Soc. Am. B. 33 (3), B49–B55 (2016). https://doi.org/10.1364/JOSAB.33.000B49

    Article  Google Scholar 

  9. Y.-C. Chen, P. S. Salter, S. Knauer, L. Weng, A. C. Frangeskou, C. J. Stephen, S. N. Ishmael, P. R. Dolan, S. Johnson, B. L. Green, G. W. Morley, M. E. Newton, J. G. Rarity, M. J. Booth, and J. M. Smith, “Laser writing of coherent colour centres in diamond,” Nat. Photonics. 11, 77–81 (2017). https://doi.org/10.1038/nphoton.2016.234

    Article  ADS  Google Scholar 

  10. Y. Rong, Z. Ju, Q. Ma, S. Liu, Ch. Pan, B. Wu, S. Shen, and E. Wu, “Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballs,” New J. Phys. 22, 013006 (2020). https://doi.org/10.1088/1367-2630/ab6351

    Article  ADS  Google Scholar 

  11. V. V. Kononenko, I. I. Vlasov, V. M. Gololobov, T. V. Kononenko, T. A. Semenov, A. A. Khomich, V. A. Shershulin, V. S. Krivobok, and V. I. Konov, “Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique,” Appl. Phys. Lett. 111 (8), 081101 (2017). https://doi.org/10.1063/1.4993751

    Article  ADS  Google Scholar 

  12. T. Kurita, N. Mineyuki, Y. Shimotsuma, M. Fujiwara, N. Mizuochi, M. Shimizu, and K. Miura, “Efficient generation of nitrogen-vacancy center inside diamond with shortening of laser pulse duration,” Appl. Phys. Lett. 113 (21), 211102 (2018). https://doi.org/10.1063/1.5054730

    Article  ADS  Google Scholar 

  13. S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron. 55, 129–165 (2017). https://doi.org/10.1016/j.pquantelec.2017.05.003

    Article  ADS  Google Scholar 

  14. C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nat. Commun. 10, 5625 (2019). https://doi.org/10.1038/s41467-019-13332-w

    Article  ADS  Google Scholar 

  15. Y. Shimotsuma, M. Sakakura, S. Kanehira, J. Qiu, P. G. Kazansky, K. Miura, K. Fujita, and K. Hirao, “Three-dimensional nanostructuring of transparent materials by the femtosecond laser irradiation,” J. Laser Micro/Nanoeng. 1 (3), 181–184 (2006). https://doi.org/10.2961/jlmn.2006.03.0006

    Article  Google Scholar 

  16. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys. A. 90 (4), 645–651 (2008). https://doi.org/10.1007/s00339-007-4350-9

    Article  ADS  Google Scholar 

  17. T. V. Kononenko, M. S. Komlenok, V. P. Pashinin, S. M. Pimenov, V. I. Konov, M. Neff, V. Romano, and W. Lüthy, “Femtosecond laser microstructuring in the bulk of diamond,” Diamond Relat. Mater. 18 (2–3), 196–199 (2009). https://doi.org/10.1016/j.diamond.2008.07.014

  18. M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, and K. Hirao, “Periodic metallo-dielectric structure in diamond,” Opt. Express. 17 (1), 46–54 (2009). https://doi.org/10.1364/OE.17.000046

    Article  ADS  Google Scholar 

  19. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express. 19 (24), 24122–24128 (2011). https://doi.org/10.1364/OE.19.024122

    Article  ADS  Google Scholar 

  20. T. V. Kononenko, V. I. Konov, S. M. Pimenov, N. M. Rossukanyi, A. I. Rukovishnikov, and V. Romano, “Three-dimensional laser writing in diamond bulk,” Diamond Relat. Mater. 20 (2), 264–268 (2011). https://doi.org/10.1016/j.diamond.2010.12.013

    Article  ADS  Google Scholar 

  21. T. V. Kononenko, A. A. Khomich, and V. I. Konov, “Peculiarities of laser-induced material transformation inside diamond bulk,” Diamond Relat. Mater. 37, 50–54 (2013). https://doi.org/10.1016/j.diamond.2013.04.010

    Article  ADS  Google Scholar 

  22. B. Sun, P. S. Salter, and M. J. Booth, “High conductivity micro-wires in diamond following arbitrary paths,” Appl. Phys. Lett. 105 (23), 231105 (2014). https://doi.org/10.1063/1.4902998

    Article  ADS  Google Scholar 

  23. S. Lagomarsino, M. Bellini, C. Corsi, F. Gorelli, G. Parrini, M. Santoro, and S. Sciortino, “Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes,” Appl. Phys. Lett. 103 (23), 233507 (2013). https://doi.org/10.1063/1.4839555

    Article  ADS  Google Scholar 

  24. B. Caylar, M. Pomorski, and P. Bergonzo, “Laser-processed three dimensional graphitic electrodes for diamond radiation detectors,” Appl. Phys. Lett. 103 (4), 043504 (2013). https://doi.org/10.1063/1.4816328

    Article  ADS  Google Scholar 

  25. T. Kononenko, V. Ralchenko, A. Bolshakov, V. Konov, P. Allegrini, M. Pacilli, G. Conte, and E. Spiritti, “All-carbon detector with buried graphite pillars in CVD diamond,” Appl. Phys. A. 114, 297–300 (2014). https://doi.org/10.1007/s00339-013-8091-7

    Article  ADS  Google Scholar 

  26. S. Lagomarsino, M. Bellini, M. Brianzi, R. Carzino, V. Cindro, C. Corsi, A. Morozzi, D. Passeri, S. Sciortino, and L. Servoli, “Polycrystalline diamond detectors with three-dimensional electrodes,” Nucl. Instrum. Methods Phys. Res., Sect. A. 796, 42–46 (2015). https://doi.org/10.1016/j.nima.2015.03.041

    Article  Google Scholar 

  27. A. Oh, B. Caylar, M. Pomorski, and T. A. Wengler, “A novel detector with graphitic electrodes in CVD diamond,” Diamond Relat. Mater. 38, 9–13 (2013). https://doi.org/10.1016/j.diamond.2013.06.003

    Article  ADS  Google Scholar 

  28. G. Conte, P. Allegrini, M. Pacilli, S. Salvatori, T. Kono-nenko, A. Bolshakov, V. Ralchenko, and V. Konov, “Three-dimensional graphite electrodes in CVD single crystal diamond detectors: Charge collection dependence on impinging β-particles geometry,” Nucl. Instrum. Methods Phys. Res., Sect. A. 799, 10–16 (2015). https://doi.org/10.1016/j.nima.2015.07.024

    Article  Google Scholar 

  29. W. Trischuk, “Diamond particle detectors for high energy physics,” Nucl. Part. Phys. Proc. 273275, 1023–1028 (2016). https://doi.org/10.1016/j.nuclphysbps.2015.09.160

  30. S. A. Murphy, M. Booth, L. Li, A. Oh, P. Salter, B. Sun, D. Whitehead, and A. Zadoroshny, “Laser processing in 3D diamond detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A. 845, 136–138 (2017). https://doi.org/10.1016/j.nima.2016.04.052

    Article  Google Scholar 

  31. C. Bloomer, M. E. Newton, G. Rehmb, and P. S. Salter, “A single-crystal diamond X-ray pixel detector with embedded graphitic electrodes,” J. Synchrotron Radiat. 27, 599–607 (2020). https://doi.org/10.1107/S160057752000140X

    Article  Google Scholar 

  32. M. Girolamia, G. Conte, D. M. Trucchi, A. Bellucci, P. Oliva, T. Kononenko, A. Khomich, A. Bolshakov, V. Ralchenko, V. Konov, N. Skukan, M. Jakšić, I. Sudić, W. Kada, and S. Salvatori, “Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond,” Diamond Relat. Mater. 84, 1–10 (2018). https://doi.org/10.1016/j.diamond.2018.02.014

    Article  ADS  Google Scholar 

  33. A. Lai, “Sensors, electronics and algorithms for tracking at the next generation of colliders,” Nucl. Instrum. Methods Phys. Res., Sect. A. 927, 306–312 (2019). https://doi.org/10.1016/j.nima.2019.02.050

    Article  Google Scholar 

  34. K. Kanxheri, D. Aisa, L. A. Solestizi, M. Bellini, M. Caprai, C. Corsi, A. C. Dipilato, M. Iacco, M. Ionica, S. Lagomarsino, A. Morozzi, F. Moscatelli, D. Passeri, S. Sciortino, C. Talamonti, C. Zucchetti, and L. Servoli, “Intercalibration of a polycrystalline 3D diamond detector for small field dosimetry,” Nucl. Instrum. Methods Phys. Res., Sect. A. 958, 162730 (2020). https://doi.org/10.1016/j.nima.2019.162730

    Article  Google Scholar 

  35. T. V. Kononenko, P. N. Dyachenko, and V. I. Konov, “Diamond photonic crystals for the IR spectral range,” Opt. Lett. 39 (24), 6962–6965 (2014). https://doi.org/10.1364/OL.39.006962

    Article  ADS  Google Scholar 

  36. A. Courvoisier, M. J. Booth, and P. S. Salter, “Inscription of 3D waveguides in diamond using an ultrafast laser,” Appl. Phys. Lett. 109 (3), 031109 (2016). https://doi.org/10.1063/1.4959267

    Article  ADS  Google Scholar 

  37. M. Girolami, L. Criante, F. Di Fonzo, S. Lo Turco, A. Mezzetti, A. Notargiacomo, M. Pea, A. Bellucci, P. Calvani, V. Valentini, and D. M. Trucchi, “Graphite distributed electrodes for diamond-based photon-enhanced thermionic emission solar cells,” Carbon. 111, 48–53 (2017). https://doi.org/10.1016/j.carbon.2016.09.061

    Article  Google Scholar 

  38. N. R. Parikh, J. D. Hunn, E. McGucken, M. L. Swanson, C. W. White, R. A. Rudder, D. P. Malta, J. B. Posthill, and R. J. Markunas, “Single-crystal diamond plate lift-off achieved by ion implantation and subsequent annealing,” Appl. Phys. Lett. 61 (26), 3124–3126 (1992). https://doi.org/10.1063/1.107981

    Article  ADS  Google Scholar 

  39. R. A. Khmelnitsky, V. A. Dravin, A. A. Tal, E. V. Zavedeev, A. A. Khomich, A. V. Khomich, A. A. Alekseev, and S. A. Terentiev, “Damage accumulation in diamond during ion implantation,” J. Mater. Res. 30 (9), 1583–1592 (2015). https://doi.org/10.1557/jmr.2015.21

    Article  ADS  Google Scholar 

  40. P. Olivero, G. Amato, F. Bellotti, O. Budnyk, E. Colombo, M. Jakšić, C. Manfredotti, Ž. Pastuović, F. Picollo, N. Skukan, M. Vannoni, and E. Vittone, “Direct fabrication of three-dimensional buried conductive channels in single crystal diamond with ion microbeam induced graphitization,” Diamond Relat. Mater. 18 (5–8), 870–876 (2009). https://doi.org/10.1016/j.diamond.2008.10.068

  41. T. V. Kononenko, E. V. Zavedeev, V. V. Kononenko, K. K. Ashikkalieva, and V. I. Konov, “Graphitization wave in diamond bulk induced by ultrashort laser pulses,” Appl. Phys. A. 119 (2), 405–414 (2015). https://doi.org/10.1007/s00339-015-9109-0

    Article  ADS  Google Scholar 

  42. K. K. Ashikkalieva, V. M. Gololobov, A. A. Mikhutkin, and E. E. Ashkinazi, “Spatial self-organization of laser-induced graphite nanonetwork in diamond,” Phys. Wave Phenom. 28 (4), 375–381 (2020). https://doi.org/10.3103/S1541308X20040020

    Article  ADS  Google Scholar 

  43. S. M. Pimenov, B. Neuenschwander, B. Jäggi, and V. Romano, “Effect of crystal orientation on picosecond-laser bulk microstructuring and Raman lasing in diamond,” Appl. Phys. A. 114 (4), 1309–1319 (2014). https://doi.org/10.1007/s00339-013-7953-3

    Article  ADS  Google Scholar 

  44. S. M. Pimenov, A. A. Khomich, I. I. Vlasov, E. V. Zavedeev, A. V. Khomich, B. Neuenschwander, B. Jäggi, and V. Romano, “Metastable carbon allotropes in picosecond-laser-modified diamond,” Appl. Phys. A. 116 (2), 545–554 (2014). https://doi.org/10.1007/s00339-014-8530-0

    Article  ADS  Google Scholar 

  45. K. K. Ashikkalieva, T. V. Kononenko, and V. I. Konov, “Graphitization wave in diamond induced by uniformly moving laser focus,” Opt. Laser Technol. 107, 204–209 (2018). https://doi.org/10.1016/j.optlastec.2018.05.040

    Article  ADS  Google Scholar 

  46. S. Nemoto, “Waist shift of a Gaussian beam by plane dielectric interfaces,” Appl. Opt. 27 (9), 1833–1839 (1988). https://doi.org/10.1364/AO.27.001833

    Article  ADS  Google Scholar 

  47. K. K. Ashikkalieva, T. V. Kononenko, E. A. Obraztsova, E. V. Zavedeev, E. E. Ashkinazi, A. A. Mikhutkin, A. A. Khomich, and V. I. Konov, “Nanostructured interior of laser-induced wires in diamond,” Diamond Relat. Mater. 91, 183–189 (2019). https://doi.org/10.1016/j.diamond.2018.11.023

    Article  ADS  Google Scholar 

  48. I. Lopez Paz, O. Allegre, Z. Li, A. Oh, A. Porter, and D. Whitehead, “Study of electrode fabrication in diamond with a femto-second laser,” Phys. Status Solidi A. 216 (21), 1900236 (2019). https://doi.org/10.1002/pssa.201900236

    Article  ADS  Google Scholar 

  49. K. K. Ashikkalieva, T. V. Kononenko, E. A. Obraztsova, E. V. Zavedeev, A. A. Khomich, E. E. Ashkinazi, and V. I. Konov, “Direct observation of graphenic nanostructures inside femtosecond-laser modified diamond,” Carbon. 102, 383–389 (2016). https://doi.org/10.1016/j.carbon.2016.02.044

    Article  Google Scholar 

  50. P. S. Salter, M. J. Booth, A. Courvoisier, D. A. J. Moran, and D. A. MacLaren, “High resolution structural characterisation of laser-induced defect clusters inside diamond,” Appl. Phys. Lett. 111 (8), 081103 (2017). https://doi.org/10.1063/1.4993118

    Article  ADS  Google Scholar 

  51. T. V. Kononenko and E. V. Zavedeev, “Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond,” Quantum Electron. 46 (3), 229–235 (2016). https://doi.org/10.1070/QEL15895

    Article  ADS  Google Scholar 

  52. S. P. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light: Sci. Appl. 8, 110 (2019). https://doi.org/10.1038/s41377-019-0215-1

    Article  ADS  Google Scholar 

  53. S. Lagomarsino, M. Bellini, C. Corsi, S. Fanetti, F. Gorelli, I. Liontos, J. Parrini, M. Santoro, and S. Sciortino, “Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors,” Diamond Relat. Mater. 43, 23–28 (2014). https://doi.org/10.1016/j.diamond.2014.01.002

    Article  ADS  Google Scholar 

  54. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B. 61 (20), 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  55. M. Girolami, A. Bellucci, P. Calvani, V. Valentini, D. M. Trucchi, and S. Orlando, “Raman investigation of femtosecond laser-induced graphitic columns in single-crystal diamond,” Appl. Phys. A. 117 (1), 143–147 (2014). https://doi.org/10.1007/s00339-014-8310-x

    Article  ADS  Google Scholar 

  56. A. A. Khomich, K. K. Ashikkalieva, A. P. Bolshakov, T. V. Kononenko, V. G. Ralchenko, V. I. Konov, P. Oliva, G. Conte, and S. Salvatori, “Very long laser-induced graphitic pillars buried in single-crystal CVD-diamond for 3D detectors realization,” Diamond Relat. Mater. 90, 84–92 (2018). https://doi.org/10.1016/j.diamond.2018.10.006

    Article  ADS  Google Scholar 

  57. M. C. Rossi, S. Salvatori, G. Conte, T. Kononenko, and V. Valentini, “Phase transition, structural defects and stress development in superficial and buried regions of femtosecond laser modified diamond,” Opt. Mater. 96, 109214 (2019). https://doi.org/10.1016/j.optmat.2019.109214

    Article  Google Scholar 

  58. S. Salvatori, M. C. Rossi, G. Conte, T. Kononenko, M. Komlenok, A. Khomich, V. Ralchenko, V. Konov, G. Provatas, and M. Jaksic, “Diamond detector with laser-formed buried graphitic electrodes: Micron-scale mapping of stress and charge collection efficiency,” IEEE Sens. J. 19 (24), 11908–11917 (2019). https://doi.org/10.1109/JSEN.2019.2939618

    Article  ADS  Google Scholar 

  59. A. Tardieu, F. Cansell, and J. Petitet, “Pressure and temperature dependence of the first-order Raman mode of diamond,” J. Appl. Phys. 68 (7), 3243–3245 (1990). https://doi.org/10.1063/1.346375

    Article  ADS  Google Scholar 

  60. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, “General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy,” Appl. Phys. Lett. 88 (16), 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  ADS  Google Scholar 

  61. S. M. Pimenov, I. I. Vlasov, A. A. Khomich, B. Neuenschwander, M. Muralt, and V. Romano, “Picosecond-laser-induced structural modifications in the bulk of single-crystal diamond,” Appl. Phys. A. 105, 673–677 (2011). https://doi.org/10.1007/s00339-011-6645-0

    Article  ADS  Google Scholar 

  62. R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field, “Theoretical strength and cleavage of diamond,” Phys. Rev. Lett. 84 (22), 5160–5163 (2000). https://doi.org/10.1103/PhysRevLett.84.5160

    Article  ADS  Google Scholar 

  63. E. M. Hsu, N. A. Mailman, G. A. Botton, and H. K. Haugen, “Microscopic investigation of single-crystal diamond following ultrafast laser irradiation,” Appl. Phys. A. 103 (1), 185–192 (2011). https://doi.org/10.1007/s00339-010-5986-4

    Article  ADS  Google Scholar 

  64. V. V. Kononenko, V. M. Gololobov, T. V. Kononenko, and V. I. Konov, “Photoinduced graphitization of diamond,” Laser Phys. Lett. 12 (1), 016101 (2015). https://doi.org/10.1088/1612-2011/12/1/016101

    Article  ADS  Google Scholar 

  65. V. N. Strekalov, V. I. Konov, V. V. Kononenko, and S. M. Pimenov, “Early stages of laser graphitization of diamond,” Appl. Phys. A. 76 (4), 603–607 (2003). https://doi.org/10.1007/s00339-002-2014-3

    Article  ADS  Google Scholar 

  66. F. P. Bundy, H. P. Bovenkerk, H. M. Strong, and R. H. Wentore, “Diamond-graphite equilibrium line from growth and graphitization of diamond,” J. Chem. Phys. 35 (2), 383–391 (1961). https://doi.org/10.1063/1.1731938

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Ashikkalieva.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikkalieva, K.K. Laser-Induced Graphitization of Diamond Bulk: The State of the Art (A Review). Phys. Wave Phen. 30, 1–16 (2022). https://doi.org/10.3103/S1541308X22010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22010034

Keywords:

Navigation