Skip to main content
Log in

Precisious Observations of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Polar Belt of Near-Yenisei Siberia

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The paper presents a new monitoring station DIAMIS for continuous precisious observations of atmospheric carbon dioxide (CO2) and methane (CH4) mole fractions over the Yenisei Gulf, on the southwestern coast of the Taimyr Peninsula at the edge of the Dikson settlement. Here, we summarize technical details of the instrumental setup, give an overview of calibration and data processing algorithms, describe local environments of the study area, and analyze the seasonal footprint of the measurement station. Based on the observations in September 2018–February 2020, a comparative analysis of the atmospheric CO2 and CH4 annual variations in the polar belt (DIAMIS) and middle-taiga subzone (ZOTTO observatory) of near-Yenisei Siberia is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. G. V. Alekseev and A. P. Nagurnyi, "Influence of Sea Ice Cover on Carbon Dioxide Concentration in the Arctic Atmosphere in the Winter Period," Dokl. Akad. Nauk, No. 6, 401 (2005) [Dokl. Earth Sci., No. 3, 401 (2005)].

  2. G. V. Alekseev, A. P. Nagurnyi, A. P. Makshtas, N. E. Ivanov, and S. V. Shutilin, "A Role of Sea Ice in the Formation of an Annual Cycle of Carbon Dioxide in High-latitude Marine Arctic," Problemy Arktiki i Antarktiki, No. 77 (2007) [in Russian].

  3. L. A. Bezrukov, "Transport and Economic Problems of the Krasnoyarsk Arctic," Naukovedenie, No. 5, 9 (2017) [in Russian].

  4. A. A. Vasiliev, V. P. Melnikov, P. B. Semenov, G. E. Oblogov, and I. D. Streletskaya, "Methane Concentration and Emission in Dominant Landscapes of Typical Tundra of Western Yamal," Dokl. Akad. Nauk, No. 1, 485 (2019) [Dokl. Earth Sci., No. 1, 485 (2019)].

  5. V. A. Poddubny, E. S. Nagovitsyna, Yu. I. Markelov, A. G. Buevich, K. L. Antonov, E. V. Omel’kova, and I. L. Manzhurov, "Estimation of the Spatial Distribution of Methane Concentration in the Area of the Barents and Kara Seas in Summer in 2016–2017," Meteorol. Gidrol., No. 3 (2020) [Russ. Meteorol. Hydrol., No. 3, 45 (2020)].

  6. A. V. Timokhina, A. S. Prokushkin, A. V. Panov, R. A. Kolosov, N. V. Sidenko, J. Lavric, and M. Heimann, "Interannual Variability of Atmospheric CO2 Concentrations over Central Siberia from ZOTTO Data for 2009–2015," Meteorol. Gidrol., No. 5 (2018) [Russ. Meteorol. Hydrol., No. 5, 43 (2018)].

    Article  Google Scholar 

  7. A. A. Treshnikov, The Atlas of the Arctic (Chief Directorate of Geodesy and Cartography under the Council of Ministers of the USSR, Moscow, 1985) [in Russian].

    Google Scholar 

  8. A. V. Urban, A. S. Prokushkin, M. A. Korets, A. V. Panov, Ch. Gerbig, and M. Heiman, "Influence of the Underlying Surface on Greenhouse Gas Concentrations in the Atmosphere over Central Siberia," Geografiya i Prirodnye Resursy, No. 3 (2019) [Geogr. Nat. Resour., 40 (2019)].

    Article  Google Scholar 

  9. A. Z. Shvidenko and D. G. Shchepachenko, "Carbon Budget of Russian Forests," Sibirskii Lesnoi Zhurnal, No. 1 (2014) [in Russian].

  10. L. N. Yurganov and I. Leifer, "Estimates of Methane Emission Rates from Some Arctic and Sub-Arctic Areas Based on IASI Orbital Interferometer Data," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3, 13 (2016) [in Russian].

    Article  Google Scholar 

  11. K. Antonov, V. Poddubny, Y. Markelov, A. Buevich, and A. Medvedev, "Dynamics of Surface Carbon Dioxide and Methane Concentrations on the Arctic Belyy Island in 2015–2017 Summertime," in Proceedings of SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (2018).

  12. R. V. Bekryaev, I. V. Polyakov, and V. A. Alexeev, "Role of Polar Amplification in Long-term Surface Air Temperature Variations and Modern Arctic Warming," J. Climate, No. 14, 23 (2010).

    Article  Google Scholar 

  13. D. Belikov, M. Arshinov, B. Belan, D. Davydov, A. Fofonov, M. Sasakawa, and T. Machida, "Analysis of the Diurnal, Weekly, and Seasonal Cycles and Annual Trends in Atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016," Atmosphere, No. 11, 10 (2019).

    Article  Google Scholar 

  14. L. T. Berner, R. Massey, P. Jantz, B. Forbes, M. Macias-Fauria, I. Myers-Smith, T. Kumpula, G. Gauthier, L. Andreu-Hayles, B. Gaglioti, P. Burns, P. Zetterberg, R. D’Arrigo, and S. Goetz, "Summer Warming Explains Widespread but not Uniform Greening in the Arctic Tundra Biome," Nature Commun., 11 (2020).

    Article  Google Scholar 

  15. U. S. Bhatt, D. A. Walker, M. K. Raynolds, J. Comiso, H. Epstein, G. Jia, R. Gens, J. Pinzon, C. Tucker, C. Tweedie, and P. Webber, "Circumpolar Arctic Tundra Vegetation Change is Linked to Sea Ice Decline," Earth Interact., No. 8, 14 (2010).

    Article  Google Scholar 

  16. J. Blunden and D. S. Arndt, "State of the Climate in 2018," Bull. Amer. Meteorol. Soc., No. 9, 100 (2019).

    Article  Google Scholar 

  17. G. Bonan, "Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests," Science, No. 5882, 320 (2008).

    Article  Google Scholar 

  18. E. Chuvilin, V. Ekimova, D. Davletshina, N. Sokolova, and B. Bukhanov, "Evidence of Gas Emissions from Permafrost in the Russian Arctic," Geosciences, No. 383, 10 (2020).

  19. E. J. Dlugokencky, R. C. Myers, P. M. Lang, K. Masarie, A. Crotwell, K. Thoning, B. Hall, J. Elkins, and L. P. Steele, "Conversion of NOAA Atmospheric Dry Air CH4 Mole Fractions to a Gravimetrically Prepared Standard Scale," J. Geophys. Res. Atmos., No. D18, 110 (2005).

  20. A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. Molen, L. Marchesini, T. Maximov, S. Maksyutov, and E. Schulze, "An Estimate of the Terrestrial Carbon Budget of Russia Using Inventory-based, Eddy Covariance and Inversion Methods," Biogeosciences, No. 12, 9 (2012).

    Article  Google Scholar 

  21. R. Fraser, T. Lantz, I. Olthof, S. Kokelj, and R. Sims, "Warming-induced Shrub Expansion and Lichen Decline in the Western Canadian Arctic," Ecosystems, No. 7, 17 (2014).

    Article  Google Scholar 

  22. P. Friedlingstein, M. Meinshausen, V. Arora, C. Jones, A. Anav, S. Liddicoat, and R. Knutti, "Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks," J. Climate, No. 2, 27 (2014).

    Article  Google Scholar 

  23. D. J. Hayes, D. W. Kicklighter, A. D. McGuire, M. Chen, Q. Zhuang, F. Yuan, J. Melillo, and S. Wullschleger, "The Impacts of Recent Permafrost Thaw on Land-atmosphere Greenhouse Gas Exchange," Environ. Res. Lett., No. 4, 9 (2014).

    Article  Google Scholar 

  24. L. D. Hinzman, C. J. Deal, A. D. McGuire, S. Mernild, I. Polyakov, and J. Walsh, "Trajectory of the Arctic as an Integrated System," Ecol. Appl., No. 8, 23 (2013).

    Article  Google Scholar 

  25. G. Hugelius, J. Strauss, S. Zubrzycki, J. Harden, E. Schuur, C. Ping, L. Schirrmeister, G. Grosse, G. Michaelson, C. Koven, J. O’Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry, "Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps," Biogeosciences, No. 23, 11 (2014).

    Article  Google Scholar 

  26. IPCC: The Ocean and Cryosphere in a Changing Climate (2019), https://www.ipcc.ch/srocc/home/ (Accessed April 28, 2022).

  27. V. M. Ivakhov, N. N. Paramonova, V. I. Privalova, A. V. Zinchenko, M. Loskutova, A. Makshtas, V. Kustov, T. Laurila, M. Aurela, and E. Asmi, "Atmospheric Concentration of Carbon Dioxide at Tiksi and Cape Baranov Stations in 2010–2017," Russ. Meteorol. Hydrol., No. 4, 44 (2019).

    Article  Google Scholar 

  28. A. D. McGuire, L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. Hayes, M. Heimann, T. Lorenson, R. Macdonald, and N. Roulet, "Sensitivity of the Carbon Cycle in the Arctic to Climate Change," Ecol. Monogr., No. 4, 79 (2009).

    Article  Google Scholar 

  29. A. D. McGuire, T. R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J. Kimball, C. Koven, P. Lafleur, P. Miller, W. Oechel, P. Peylin, M. Williams, and Y. Yi, "An Assessment of the Carbon Balance of Arctic Tundra: Comparisons Among Observations, Process Models, and Atmospheric Inversions," Biogeosciences, No. 8, 9 (2012).

    Article  Google Scholar 

  30. T. L. McKnight and D. Hess, "Climate Zones and Types: The Koppen System," in Physical Geography: A Landscape Appreciation (Prentice Hall, 2000).

  31. S. A. Montzka, M. Krol, E. Dlugokencky, B. Hall, P. Jockel, and J. Lelieveld, "Small Interannual Variability of Global Atmospheric Hydroxyl," Science, No. 6013, 331 (2011).

    Article  Google Scholar 

  32. A. Panov, A. Prokushkin, K. R. Kubler, M. Korets, A. Urban, M. Bondar, and M. Heimann, "Continuous CO2 and CH4 Observations in the Coastal Arctic Atmosphere of the Western Taimyr Peninsula, Siberia: The First Results from a New Measurement Station in Dikson," Atmosphere, 12 (2021).

    Article  Google Scholar 

  33. T. Park, S. Ganguly, H. Tommervik, E. Euskirchen, K. Hogda, S. Karlsen, V. Brovkin, R. Nemani, and R. Myneni, "Changes in Growing Season Duration and Productivity of Northern Vegetation Inferred from Long-term Remote Sensing Data," Environ. Res. Lett., No. 8, 11 (2016).

    Article  Google Scholar 

  34. V. Poddubny, E. Nagovitsyna, K. Antonov, J. Markelov, A. Buevich, E. Omelkova, I. Manzhurov, A. Medvedev, and J. Vasilyeva, "Estimation of the Atmospheric Greenhouse Gas Spatial Distribution in the Arctic Using a Back Trajectory Model," Math. Methods in the Appl. Sci., No. 13, 43 (2020).

    Article  Google Scholar 

  35. F. Reum, C. Gerbig, J. V. Lavric, C. Rella, and M. Gockede, "Correcting Atmospheric CO2 and CH4 Mole Fractions Obtained with Picarro Analyzers for Sensitivity of Cavity Pressure to Water Vapor," Atmos. Meas. Tech., No. 2, 12 (2019).

    Article  Google Scholar 

  36. F. Reum, M. Gockede, J. V. Lavric, O. Kolle, S. Zimov, N. Zimov, M. Pallandt, and M. Heimann, "Accurate Measurements of Atmospheric Carbon Dioxide and Methane Mole Fractions at the Siberian Coastal Site Ambarchik," Atmos. Meas. Tech., No. 11, 12 (2019).

    Article  Google Scholar 

  37. J. Richter-Menge, M. L. Druckenmiller, and M. Jeffries, Arctic Report Card: Update for 2019 (2019), https://arctic.noaa.gov/Report-Card/Report-Card-2019 (Accessed November 20, 2020).

  38. J. Richter-Menge, J. E. Overland, J. T. Mathis, and E. Osborne, Arctic Report Card. 2017, http://www.arctic.noaa.gov/Report-Card, 2017 (Accessed November 20, 2020).

  39. E. A. G. Schuur, A. D. McGuire, C. Schadel, G. Grosse, J. Harden, D. Hayes, G. Hugelius, C. Koven, P. Kuhry, D. Lawrence, S. Natali, D. Olefeldt, V. Romanovsky, K. Schaefer, M. Turetsky, C. Treat, and J. Vonk, "Climate Change and the Permafrost Carbon Feedback," Nature, 520 (2015).

    Article  Google Scholar 

  40. E. A. G. Schuur, J. G. Vogel, K. G. Crummer, H. Lee, J. Sickman, and T. Osterkamp, "The Effect of Permafrost Thaw on Old Carbon Release and Net Carbon Exchange from Tundra," Nature, 459 (2009).

    Article  Google Scholar 

  41. M. C. Serreze, J. E. Walsh, F. S. Chapin III, "Observational Evidence of Recent Change in the Northern High-latitude Environment," Climate Change, No. 1, 46 (2000).

    Article  Google Scholar 

  42. N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson, "Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf," Science, 327 (2010).

    Article  Google Scholar 

  43. A. F. Stein, R. R. Draxler, G. D. Rolph, B. Stunder, M. D. Cohen, and F. Ngan, "NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modelling System," Bull. Amer. Meteorol. Soc., 96 (2015).

    Article  Google Scholar 

  44. K. W. Thoning, P. P. Tans, and W. D. Komhyr, "Atmospheric Carbon Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985," J. Geophys. Res. Atmos., No. D6, 94 (1989).

    Article  Google Scholar 

  45. D. A. Walker, M. K. Raynolds, F. J. A. Daniels, E. Einarsson, A. Elvebakk, W. Gould, A. E. Katenin, S. S. Kholod, C. Markon, E. S. Melnikov, N. Moskalenko, S. Talbot, and B. A. Yurtsev, "The Circumpolar Arctic Vegetation Map," J. Veg. Sci., No. 3, 16 (2005).

    Article  Google Scholar 

  46. C. L. Zhao and P. P. Tans, "Estimating Uncertainty of the WMO Mole Fraction Scale for Carbon Dioxide in Air," J. Geophys. Res., No. D8, 111 (2006).

  47. D. Zona, B. Gioli, R. Commane, J. Lindaas, S. Wofsy, C. Miller, S. Dinardo, S. Dengel, C. Sweeney, A. Karion, R. Chang, J. Henderson, P. Murphy, J. Goodrich, V. Moreaux, A. Liljedahl, J. Watts, J. Kimball, D. Lipson, and W. Oechel, "Cold Season Emissions Dominate the Arctic Tundra Methane Budget," Proc. Nat. Acad. Sci. USA, No. 1, 113 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 11, pp. 19-31. https://doi.org/10.52002/0130-2906-2022-11-19-31.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, A.V., Prokushkin, A.S., Kubler, K. et al. Precisious Observations of Atmospheric Carbon Dioxide and Methane Mole Fractions in the Polar Belt of Near-Yenisei Siberia. Russ. Meteorol. Hydrol. 47, 829–838 (2022). https://doi.org/10.3103/S1068373922110024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922110024

Keywords

Navigation