Skip to main content
Log in

Lignite Fulvic Acids: Analysis by Dynamic Light Scattering

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Humic and fulvic acids derived from South Ural lignite are studied. The composition of the coal, humic acids, and fulvic acids are characterized by technical and elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and CP/MAS 13C NMR spectroscopy. A method is proposed for extracting fulvic acids from lignite.by means of an aqueous hydrochloric-acid solution of n-butanol. It is established that fulvic acids are characterized by higher content of oxygen-bearing aliphatic groups with a predominance of carboxylic acids and complex esters, while humic acids have a higher content of carbon, hydrogen, and aromatic fragments. Dynamic light scattering shows that colloidal aggregations of fulvic acids in water are disperse systems with bimodal (at low concentrations) and monomodal (at higher concentrations) size distributions of nanoparticles and submicroparticles. The low negative values of the zeta potential for aqueous fulvic acid colloids indicate instability and a tendency to complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Orlov, D.S., Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii (Humic Acids of Soils and General Theory of Humification), Moscow: Izd-vo Mosk. Gos. Univ., 1990.

  2. Orlov, D.S., Gumusovye kisloty pochv (Humic Acids of Soils), Moscow: Izd-vo Mosk. Gos. Univ., 1974.

  3. Ruschev, D.D., Khimiya tverdogo topliva (Chemistry of Solid Fuel), Leningrad: Khimiya, 1976.

  4. Zherebtsov, S.I., Malyshenko, N.V., Votolin, K.S., Ismagilov, Z.R., Androkhanov, V.A., Sokolov, D.A., and Dugarjav, J., Structural-group composition and biological activity of humic acids obtained from brown coals of Russia and Mongolia, Solid Fuel Chem., 2019, vol. 53, no. 3, pp. 145–151.  https://doi.org/10.3103/S0361521919030121

    Article  CAS  Google Scholar 

  5. Zherebtsov, S.I., Malyshenko, N.V., Votolin, K.S., Androkhanov, V.A., Sokolov, D.A., Dugarjav, J., and Ismagilov, Z.R., Study of the biological activity of humine substances for the creation of preparations against desertification, Chem. Sustainable Dev., 2019, vol. 27, no. 2, pp. 138–146.  https://doi.org/10.15372/CSD2019121

    Article  Google Scholar 

  6. Zherebtsov, S.I., Malyshenko, N.V., Votolin, K.S., Shpakodraev, K.M., and Ismagilov, Z.R., Investigation of the dependence of biological activity on the structural parameters of native and modified humic acids from brown coal, Khim. Interesakh Ustoich. Razvit., 2020, vol. 28, no. 2, pp. 152–158.  https://doi.org/10.15372/KhUR2020213

    Article  CAS  Google Scholar 

  7. Sokolov, D.A., Dobryanskaya, S.L., Androkhanov, V.A., Klekovkin, S.Yu., Gossen, I.N., Zherebtsov, S.I., Malyshenko, N.V., Votolin, K.S., and Dugarzhav, Zh., Assessment of the structural-group composition of humic acid from brown coals impact on their biological activity in conditions of technogenic landscapes, Vestn. Kuzbasskogo Gos. Tekh. Univ., 2018, no. 5, pp. 90–99.  https://doi.org/10.26730/1999-4125-2018-5-90-99

  8. Zherebtsov, S.I., Malyshenko, N.V., Votolin, K.S., and Ismagilov, Z.R., Sorption of metal cations by lignite and humic acids, Coke Chem., 2020, vol. 63, no. 3, pp. 142–148.  https://doi.org/10.3103/S1068364X20030096

    Article  Google Scholar 

  9. Zherebtsov, S.I., Malyshenko, N.V., Bryukhovets-kaya, L.V., Lyrshchikov, S.Yu., and Ismagilov, Z.R., Sorption of cobalt cations by humic acids, Coke Chem., 2018, vol. 61, no. 7, pp. 266–269.  https://doi.org/10.3103/S1068364X18070086

    Article  Google Scholar 

  10. Zherebtsov, S.I., Malyshenko, N.V., Bryukhovets-kaya, L.V., and Ismagilov, Z.R., Interaction of copper, zinc, and manganese cations with lignite and humic acids, Coke Chem., 2017, vol. 60, no. 10, pp. 397–403.  https://doi.org/10.3103/S1068364X17100088

    Article  Google Scholar 

  11. Klučáková, M., Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact, Front. Chem., 2018, vol. 6, p. 235.  https://doi.org/10.3389/fchem.2018.00235

    Article  CAS  Google Scholar 

  12. Esfahani, M.R., Stretz, H.A., and Wells, M.J.M., Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation, Sci. Total Environ., 2015, vol. 537, pp. 81–92.  https://doi.org/10.1016/j.scitotenv.2015.08.001

    Article  CAS  Google Scholar 

  13. Yang, Y., Wu, S., and Huang, X., Experimental study on the effect of fulvic acid in waste slurry on flocculation and zeta potential, Sustainability, 2021, vol. 13, no. 14, p. 7784.  https://doi.org/10.3390/su13147784

    Article  CAS  Google Scholar 

  14. Uspenskaya E.V., Pleteneva T.V., Grebennikova T.V., Kazimova, I.V., Fedyakina, I.T., Lebedeva, V.V., Latyshev, O.E., Eliseeva, O.V., Larichev, V.F., Garaev, T.M., Maximova, T.V., Morozova, M.A., Hang, Ph.My, and Syroeshkin, A.V., A comprehensive biological and physico-chemical characterization of humic and fulvic acids nanoparticles as a perspective drug, Preprints, 2021, p. 2021060245. https://doi.org/10.20944/preprints202106.0245.v1

    Book  Google Scholar 

  15. Palomino, D. and Stoll, S., Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems, J. Nanopart. Res., 2013, vol. 15, p. 1428.  https://doi.org/10.1007/s11051-013-1428-5

    Article  CAS  Google Scholar 

  16. Palmer, N.E. and von Wandruszka, R., Dynamic light scattering measurements of particle size development in aqueous humic materials, Fresenius’ J. Anal. Chem., 2001, vol. 371, pp. 951–954. doi https://doi.org/10.1007/s002160101037

    Article  CAS  Google Scholar 

  17. Baalousha, M., Motelica-Heino, M., and Le Coustumer, Ph., Conformation and size of humic substances: effects of major cation concentration and type, pH, salinity, and residence time, Colloids Surf., A, 2006, vol. 272, nos. 1–2, pp. 48–55.  https://doi.org/10.1016/j.colsurfa.2005.07.010

    Article  CAS  Google Scholar 

  18. Votolin, K.S., Zherebtsov, S.I., Shpakodraev, K.M., Malyshenko, N.V., and Ismagilov, Z.R., Composition of humic and fulvic acids from lignite, Coke Chem., 2022, vol. 65, no. 5, pp. 191–200.  https://doi.org/10.3103/S1068364X22050040

    Article  Google Scholar 

  19. GOST (State Standard) 33503-2015: Solid mineral fuel. Methods for determination of moisture in the analysis sample, 2017.

  20. GOST R (State Standard) 55661-2013: Solid mineral fuel. Determination of ash, 2015.

  21. GOST R (State Standard) 55660-2013: Solid mineral fuel. Determination of volatile matter, 2015.

  22. GOST (State Standard) 2408.1-95 (ISO 625-96): Solid fuel. Methods for determination of carbon and hydrogen, 1997.

  23. Bellamy, L.J., The Infrared Spectra of Complex Molecules, London: Wiley, 1954.

    Google Scholar 

  24. Nakanishi, K., Infrared Spectra and Structure of Organic Compounds, Holden-Day, 1957.

    Google Scholar 

  25. ISO—International Organization for Standardization. https://www.iso.org/obp/ui/#iso:std:iso:22412:ed-1:v1:ru.

  26. Efimova, O.S., Kolmykov, R.P., Panina, L.V., Dudnikova, Yu.N., and Ismagilov, Z.R., Determining the composition and particle size of coal dust by dynamic light scattering, Coke Chem., 2021, vol. 64, no. 11, pp. 488–495.  https://doi.org/10.3103/S1068364X2111003X

    Article  Google Scholar 

  27. Efimova, O.S., Fedorova, N.I., Sozinov, S.A., and Ismagilov, Z.R., Chemical and granulometric composition of coal dust from a mine degasing installation, Khim. Interesakh Ustoich. Razvit., 2018, vol. 26, no. 6, pp. 597–602.  https://doi.org/10.15372/KhUR20180605

    Article  CAS  Google Scholar 

  28. Aronov, C.G. and Nesterenko, L.L., Khimiya tverdykh goryuchikh iskopaemykh (Chemistry of Solid Combustible Fossils), Kharkov: Izd-vo Khar’kovskogo Univ., 1960.

  29. Rice, J.A. and MacCarthy, P., Statistical evaluation of the elemental composition of humic substances, Org. Geochem., 1991, vol. 17, no. 5, pp. 635–648.  https://doi.org/10.1016/0146-6380(91)90006-6

    Article  CAS  Google Scholar 

  30. Rus’yanova, N.D., Uglekhimiya (Carbon Chemistry), Moscow: Nauka, 2003.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was conducted on equipment at the Collective-Use Center, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences.

Funding

Financial support was provided by the Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences (project 121031500124-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Votolin, O. S. Efimova, S. I. Zherebtsov, K. M. Shpakodraev, N. V. Malyshenko or Z. R. Ismagilov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Votolin, K.S., Efimova, O.S., Zherebtsov, S.I. et al. Lignite Fulvic Acids: Analysis by Dynamic Light Scattering. Coke Chem. 65, 363–370 (2022). https://doi.org/10.3103/S1068364X22700016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X22700016

Navigation