Skip to main content
Log in

Applying Infiltration Processes and Self-Propagating High-Temperature Synthesis for Manufacturing Cermets: А Review

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Cermets are ceramic–metal composites with a relatively high content of ceramic phases ranging from 15 to 85 vol %. It is shown that, if in the 20th century cermets have been considered mainly composites of high-temperature carbide, oxide, nitride, boride, and silicide-based ceramic phases with iron-group metallic phases, then in the 21st century the concept of cermets has significantly expanded owing to the appearance of composites made of ceramic and metal phases with lower melting points, including sulfides and MAX phases, as well as light and low-melting metals (Al, Mg, Cu, Ag, Pb, and Sn). In connection with this, cermets have begun to be considered not only as tooling and heat- and wear-resistant heavy structural materials, but also as light, strong structural materials for the production of vehicles and functional materials for different purposes. However, cermets are quite often characterized by disadvantages such as a tendency to brittle destruction, the difficulty of achieving uniformity and reproducibility of a structure, and the detection of defects therein, as well as the high production cost of such materials. All this makes it necessary to further development them; conduct studies on improving the composition, structure, and properties of cermets; search for new applications; develop novel methods for manufacturing cermets; and reduce production costs. Different methods for manufacturing cermets are discussed, including solid-phase, liquid-phase, gas-phase, and in situ methods. Methods of infiltration with metal melts, the effect of wetting, and the conditions for the implementation of spontaneous infiltration are considered in more detail. The results of the application of self-propagating high-temperature synthesis (SHS) are also described in detail, including a novel method for manufacturing cermets based on the use of the SHS of a porous ceramic framework followed by spontaneous infiltration with a molten metal proposed by the authors of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Cermets, Tinklepaugh, J.R. and Crandall, W.B., Eds., New York: Reinhold Publ., 1960.

    Google Scholar 

  2. Kislyi, P.S., Bodnaruk, N.I., Borovikova, M.S., Zaverukha, O.V., Kolina, G.K., Kryl’, N.A., Kuzenkova, M.A., Kushtalova, I.P., Prikhod’ko, L.I., and Storozh, B.D., Kermety (Cermets), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  3. Cermet Market: Global Industry Analysis 2012–2016 and Opportunity Assessment. 2017–2027. https:// www.futuremarketinsights.com/reports/cermet-market. Accessed November 15, 2020.

  4. Dasgupta, S. and Das, A., Cermets, 2013. https:// www.researchgate.net/publication/298313590_Cermets. Accessed August 09, 2021. https://doi.org/10.13140/RG.2.1.1851.0480

  5. Mari, D., Cermets and hardmetals, in Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 1118–1122. https://doi.org/10.1016/B0-08-043152-6/00209-6

    Book  Google Scholar 

  6. Mari, D., Cermets and hardmetals, in Reference Module in Materials Science and Materials Engineering, Elsevier Reference Collection, Elsevier, 2016. https://doi.org/10.1016/B978-0-12-803581-8.02365-1

    Book  Google Scholar 

  7. Plucknett, K., Cermets and hardmetals, Metals, 2018, vol. 8, no. 11, p. 963. https://doi.org/10.3390/met8110963

    Article  CAS  Google Scholar 

  8. Panov, V.S., Konyashin, I.Yu., Levashov, E.A., and Zaitsev, A.A., Tverdye splavy. Uchebnik (Hardmetals. Student’s Book), Moscow: National Univ. of Science and Technology MISiS, 2019.

  9. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: Poluchenie, svoistva, primenenie (Titanium Carbide: Producing, Properties, Application), Moscow: Metallurgiya, 1987.

  10. Klimov, D.A., Myktybekov, B., Nizovtsev, V.E., and Ukhov, P.A., Prospects of application of nanostructured composite materials based on carbides and oxides of refractory metals for aerospace objects, Tr. Inst. Mosk. Aviats. Inst. im. Sergo Ordzhonikidze, 2011, no. 46. Klimov, D.A., Myktybekov, B., Nizovtsev, V.E., and Ukhov, P.A., Perspective applications of nanostructured composite materials based on high-melting metal carbides and oxides for air-cosmic objects, Tr. Inst.-Mosk. Aviats. Inst. im. Sergo Ordzhonikidze, 2011, no. 46. http://trudymai.ru/upload/iblock/520/perspektivy-primeneniya-nanostrukturnykhkompozitsionnykh-materialov-na-osnove-karbidov-i-oksidov-tugoplavkikhmetallov-dlya-aviakosmicheskikh-obektov..pdf?lang= ru&issue=46. Accessed November 19, 2020.

  11. Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh. Uchebnoe posobie dlya vuzov (Technology and Properties of Sintered Hardmetals and Products from Them. Student’s Book for Institutions of Higher Education), Moscow: Moscow State Institute of Steel and Alloys (Technological Univ.), 2004.

  12. Meschter, P.J. and Schwartz, D.S., Silicide-matrix materials for high-temperature application, JOM, 1989, vol. 42, no. 11, pp. 52–55. https://doi.org/10.1007/bf03220384

    Article  Google Scholar 

  13. Nabavi, A., Capozzi, A., Goroshin, S., Frost, D.L., and Barthelat, F., A novel method for net-shape manufacturing of chromium-chromium sulfide cermets, J. Mater. Sci., 2014, vol. 49, no. 23, pp. 8095–8106. https://doi.org/10.1007/s10853-014-8517-4

    Article  CAS  Google Scholar 

  14. Nabavi, A., Goroshin, S., Frost, D.L., and Barthelat, F., Mechanical properties of chromium-chromium sulfide cermets fabricated by self-propagating high-temperature synthesis, J. Mater. Sci., 2015, vol. 50, no. 9, pp. 3434–3446. https://doi.org/10.1007/s10853-015-8902-7

    Article  CAS  Google Scholar 

  15. Hammann, T., Johnson, R., Riyad, M.F., and Gupta, S., Effect of Ti3SiC2 particulates on the mechanical and tribological behavior of Sn matrix composites, in Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials II, American Ceramic Society, 2016, pp. 65–74. https://doi.org/10.1002/9781119211662.ch8

    Book  Google Scholar 

  16. Amini, Sh., Strock, C.W., and Li, W., US Patent 2020/0003125 A1, 2020.

  17. Barsoum, M.W., MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Weinheim: Wiley-VCH, 2013.

    Book  Google Scholar 

  18. MAX Phases: Microstructure, Properties, and Applications, Low, I.-M. and Zhou, Ya., Eds., New York: Nova, 2012.

  19. Hanaor, D.A.H., Hu, L., Kan, W.H., Proust, G., Foley, M., Karaman, I., and Radovic, M., Compressive performance and crack propagation in Al alloy/Ti2AlC composites, Mater. Sci. Eng., A, 2016, no. 672, pp. 247–256. https://doi.org/10.1016/j.msea.2016.06.073

  20. Dmitruk, A., Naplocha, K., Zak, A., Strojny-Nedza, A., Dieringa, H., and Kainer, K.-U., Development of pore-free Ti–Si–C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration, J. Mater. Eng. Perform., 2019, vol. 28, no. 10, pp. 6248–6257. https://doi.org/10.1007/s11665-019-04390-8

    Article  CAS  Google Scholar 

  21. Ngai, T.L., Zheng, W., and Li, Yu., Effect of sintering temperature on the preparation of Cu-Ti3SiC2 metal matrix composite, Prog. Nat. Sci.: Mater. Int., 2013, vol. 23, no. 1, pp. 70–76. https://doi.org/10.1016/j.pnsc.2013.01.011

    Article  Google Scholar 

  22. Dang, W., Ren, S., Zhou, J., Yu, Y., Li, Z., and Wang L., Influence of Cu on the mechanical and tribological properties of Ti3SiC2, Ceram. Int., 2016, vol. 42, no. 8, pp. 9972–9980. https://doi.org/10.1016/j.ceramint.2016.03.099

    Article  CAS  Google Scholar 

  23. Oglezneva, S.A., Kachenyuk, M.N., and Ogleznev, N.D., Investigation into the structure formation and properties of materials in the copper-titanium silicon carbide system, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 6, pp. 649–655. https://doi.org/10.3103/S1067821217060074

    Article  Google Scholar 

  24. Zhang, R., Feng, K., Meng, J., Su, B., Ren, Sh., and Hai, W., Synthesis and characterization of spark plasma sintered Ti3SiC2/Pb composites, Ceram. Int., 2015, vol. 41, no. 9, part A, pp. 10380–10386. https://doi.org/10.1016/j.ceramint.2015.05.013

  25. Zhang, R., Feng, K., Meng, J., Liu, F., Ren, S., Hai, W., Zhang, A. Tribological behavior of Ti3SiC2 and Ti3SiC2/Pb composites sliding against Ni-based alloys at elevated temperatures, Ceram. Int., 2016, vol. 42, no. 6, pp. 7107–7117. https://doi.org/10.1016/j.ceramint.2016.01.099

    Article  CAS  Google Scholar 

  26. Anazi, F.A., Ghosh, S., Dunnigan, R., and Gupta, S., Synthesis and tribological behavior of novel Ag- and Bi-based composites reinforced with Ti3SiC2, Wear, 2017, vols. 376–377, Part B, pp. 1074–1083. https://doi.org/10.1016/j.wear.2017.01.107

  27. Yang, K., Ma, H., Zhao, W., Li, Xi., and Liu, H., Investigation of the preparation and tribological behavior of a frictional interface covered with sinusoidal microchannels containing SnAgCu and Ti3SiC2, Tribol. Int., 2020, vol. 150, article no. 106368. https://doi.org/10.1016/j.triboint.2020.106368

    Article  CAS  Google Scholar 

  28. Materialovedenie. Uchebnik dlya vuzov (Materials Science. Student’s Book for Institutions of Higher Education), Arzamasov, B.N., Ed., Moscow: Bauman Moscow State Technical Univ., 2008.

    Google Scholar 

  29. Kompozitsionnye materialy. Spravochnik (Composite Materials. Handbook), Karpinos, D.M., Ed., Kiev: Naukova Dumka, 1985.

    Google Scholar 

  30. Tuchinskii, L.I., Kompozitsionnye materialy, poluchaemye metodom propitki (Composite Materials Obtained by Impregnation), Moscow: Metallurgiya, 1986.

  31. Bataev, A.A. and Bataev, V.A., Kompozitsionnye materialy: Stroenie, poluchenie, primenenie (Composite Materials: Structure, Obtaining, Application), Novosibirsk: Novosibirsk State Technical Univ., 2002.

  32. Kainer, K.U., Metal Matrix Composites. Custom-Made Materials for Automotive and Aerospace Engineering, Weinheim: Wiley-VCH, 2006.

    Book  Google Scholar 

  33. Binner, J., Chang, H., and Higginson, R., Processing of ceramic-metal interpenetrating composites, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 837–842. https://doi.org/10.1016/j.jeurceramsoc.2008.07.034

    Article  CAS  Google Scholar 

  34. Campbell, F.C., Structural Composite Materials, Materials Park, OH: ASM Int., 2010.

    Book  Google Scholar 

  35. Cuevas, A.C., Becerril, E.B., Martinez, M.S., and Ruiz, J.L., Metal Matrix Composites: Wetting and Infiltration, Cham: Springer Nature, 2018. https://doi.org/10.1007/978-3-319-91854-9

    Book  Google Scholar 

  36. Zheng, Y., Wang, S., You, M., Tan, H., and Xiong, W., Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering, Mater. Chem. Phys., 2005, vol. 92, no. 1, pp. 64–70. https://doi.org/10.1016/j.matchemphys.2004.12.031

    Article  CAS  Google Scholar 

  37. Zhang, H., Yan, D., and Tang, S., Preparation and properties of ultra-fine TiCN matrix cermets by vacuum microwave sintering, Rare Met., 2010, vol. 29, no. 5, pp. 528–532. https://doi.org/10.1007/s12598-010-0162-8

    Article  CAS  Google Scholar 

  38. Kumar, R., Chaubey, A.K., Maity, T., and Prashanth, K.G., Mechanical and tribological properties of Al2O3–TiC composite fabricated by spark plasma sintering process with metallic (Ni, Nb) binders, Metals, 2018, vol. 8, no. 1, p. 50. https://doi.org/10.3390/met8010050

    Article  CAS  Google Scholar 

  39. Suryanarayana, C. and Al-Aqeeli, N., Mechanically alloyed nanocomposites, Prog. Mater. Sci., 2013, vol. 58, pp. 383–502. https://doi.org/10.1016/j.pmatsci.2012.10.001

    Article  CAS  Google Scholar 

  40. Amosov, A.P., Borovinskaya, I.P., and Merzhanov, A.G., Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov (Powder Technology of Self-Propagating High-Temperature Synthesis of Materials), Moscow: Mashinostroenie-1, 2007.

  41. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Advanced Materials and Technologies for Self-Propagating High-Temperature Synthesis), Moscow: National Univ. of Science and Technology MISiS, 2011.

  42. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2016, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  43. Muscat, D. and Drew, R.A.L., Modeling the infiltration kinetics of molten aluminium into porous titanium carbide, Metall. Mater. Trans. A, 1994, vol. 25, pp. 2357–2361.

    Article  Google Scholar 

  44. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, Springer, 2013.

    Google Scholar 

  45. Ryazanov, S.A., RF Patent 2190682, 2002.

  46. Cong, X.-S., Shen, P., Wang, Y., and Jiang, Q., Wetting of polycrystalline SiC by molten Al and Al–Si alloys, Appl. Surf. Sci., 2014, vol. 317, pp. 140–146. https://doi.org/10.1016/j.apsusc.2014.08.055

    Article  CAS  Google Scholar 

  47. Waheed, M.S. and Salih, A.I., Wettability of Al2O3 by aluminum and Al–Mg alloys, Eng. Tech. J., 2010, vol. 28, no. 9, pp. 1771–1777.

    Google Scholar 

  48. Kieffer, R. and Schwarzkopf, P., Cemented Carbides, New-York: Macmillan, 1960.

  49. Adebisi, A.A., Metal matrix composite brake rotor: historical development and product life cycle analysis, Int. J. Automot. Mech. Eng., 2011, vol. 4, pp. 471–480. https://doi.org/10.15282/ijame.4.2011.8.0038

    Article  Google Scholar 

  50. Ajay Kumar, P., Rohatgi, P., and Weiss, D., 50 Years of foundry-produced metal matrix composites and future opportunities, Int. J. Metalcast., 2020, vol. 14, pp. 291–317. https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  51. An, Q., Cong, X., Shen, P., and Jiang, Q., Roles of alloying elements in wetting of SiC by Al, J. Alloys Compd., 2019, vol. 784, pp. 1212–1220. https://doi.org/10.1016/j.jallcom.2019.01.138

    Article  CAS  Google Scholar 

  52. Saravan, R.A., Molina, J.M., Narciso, J., Garcia-Cordovilla, C., and Louis, E., Effects of nitrogen on the surface tension of pure aluminum at high temperatures, Scr. Mater., 2001, vol. 44, pp. 965–970.

    Article  Google Scholar 

  53. Sepulveda, P. and Binner, J.G.P., Processing of cellular ceramics by foaming and in situ polymerization of organic monomers, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2059–2066. https://doi.org/10.1016/S0955-2219(99)00024-2

    Article  CAS  Google Scholar 

  54. Mao, X., Processing of ceramic foams, in Recent Advances in Porous Ceramics, Uday M. Basheer Al-Naib, Ed., IntechOpen, 2018, pp. 31–47. https://doi.org/10.5772/intechopen.71006

    Book  Google Scholar 

  55. Mikheev, R.S. and Chernyshova, T.A., Discretely reinforced composite materials of the Al–TiC system (review), Zagotovitel’nye Proizvod. Mashinostr., 2008, no. 11, pp. 44–53.

  56. Contreras, A., Bedolla, E., and Perez, R., Interfacial phenomena in wettability of TiC by Al–Mg alloys, Acta Mater., 2004, vol. 52, pp. 985–994. https://doi.org/10.1016/j.actamat.2003.10.034

    Article  CAS  Google Scholar 

  57. Contreras, A., Wetting of TiC by Al-Cu alloys and interfacial characterization, J. Colloid Interface Sci., 2007, vol. 311, pp. 159–170. https://doi.org/10.1016/j.jcis.2007.02/041

    Article  CAS  Google Scholar 

  58. Leon, C.A., Lopez, V.H., Bedolla, E., and Drew, R.A.L., Wettability of TiC by commercial aluminum alloys, J. Mater. Sci., 2002, vol. 37, pp. 3509–3514.

    Article  CAS  Google Scholar 

  59. Contreras, A., Albiter, A., Bedolla, E., and Perez, R., Processing and characterization of Al–Cu and Al–Mg base composites reinforced with TiC, Adv. Eng. Mater., 2004, vol. 6, no. 9, pp. 767–775. https://doi.org/10.1002/ADEM.200400102

    Article  CAS  Google Scholar 

  60. Xiaomeng, F., Yin, X., Wang, L., Greil, P., and Travitzky, N., Synthesis of Ti3SiC2-based materials by reactive melt infiltration, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 1–7. https://doi.org/10.1016/J.IJRMHM.2014.02.006

    Article  Google Scholar 

  61. Bo-Lin, H. and Yue-Feng, Zh., Microstructure and properties of TiC/Ni3Al composites prepared by pressureless melt infiltration with porous TiC/Ni3Al preforms, Mater. Manuf. Processes, 2011, vol. 26, pp. 586–591. https://doi.org/10.1080/10426910903229339

    Article  CAS  Google Scholar 

  62. Dey, A. and Pandey, K.M., Magnesium metal matrix composites: A review, Rev. Adv. Mater. Sci., 2015, vol. 42, pp. 58–67.

    CAS  Google Scholar 

  63. Amini, S., Ni, C., and Barsoum, M.W., Processing, microstructural characterization and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite, Compos. Sci. Technol., 2009, vol. 69, nos. 3–4, pp. 414–420. https://doi.org/10.1016/j.compscitech.2008.11.007

    Article  CAS  Google Scholar 

  64. Amini, S. and Barsoum, M.W., On the effect of texture on the mechanical and damping properties of nanocrystalline Mg-matrix composites reinforced with MAX phases, Mater. Sci. Eng., A, 2010, vol. 527, nos. 16–17, pp. 3707–3718. https://doi.org/10.1016/j.msea.2010.01.073

    Article  CAS  Google Scholar 

  65. Zhang, Y., Sun, Zh., and Zhou, Ya., Cu/Ti3SiC2 composite: a new electrofriction material, Mater. Res. Innovations, 1998, vol. 3, no. 2, pp. 80–84. https://doi.org/10.1007/s100190050129

    Article  Google Scholar 

  66. Rohatgi, P.K., Xiang, Ch., and Gupta, N., Aqueous corrosion of metal matrix composites. Corrosion behavior of lead-free copper/graphite particle composites, in Reference Module in Materials Science and Materials Engineering. Comprehensive Composite Materials II, Elsevier, 2018, vol. 4, pp. 287–312. https://doi.org/10.1016/B978-0-12-803581-8.09985-9

    Book  Google Scholar 

  67. Frage, N., Froumin, N., and Dariel, M.P., Wetting of TiC by non-reactive liquid metals, Acta Mater., 2002, vol. 50, pp. 237–245. https://doi.org/10.1016/S1359-6454(01)00349-4

    Article  CAS  Google Scholar 

  68. Aizenshtein, M., Froumin, N., Nafman, O., and Frage, N., Wetting and spontaneous infiltration: the case study of TaC/(Au, Al and Cu) compared to TiC/Cu, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 133, article no. 012020. https://doi.org/10.1088/1757-899X/133/1/012020

  69. Lu, J.R., Zhou, Y., Zheng, Y., Li, H.Y., and Li, S.B., Interface structure and wetting behavior of Cu/Ti3SiC2 system, Adv. Appl. Ceram., 2015, vol. 114, no. 1, pp. 39–44. https://doi.org/10.1179/1743676114Y.0000000185

    Article  CAS  Google Scholar 

  70. Gupta, S. and Barsoum, M.W., On the tribology of the MAX phases and their composites during dry sliding: A review, Wear, 2011, vol. 271, pp. 1878–1894. https://doi.org/10.1016/j.wear.2011.01.043

    Article  CAS  Google Scholar 

  71. Chen, G., Peng, H., Silberschmidt, V.V., Chan, Y.C., Liu, Ch., and Wu, F. Performance of Sn–3.0Ag–0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing, J. Alloys Compd., 2016, vol. 685, pp. 680–689. https://doi.org/10.1016/j.jallcom.2016.05.245

    Article  CAS  Google Scholar 

  72. Fu, W., Song, X., Tian, R., Lei, Yu., Long, W., Zhong, S., and Feng, J., Wettability and joining of SiC by Sn–Ti: Microstructure and mechanical properties, J. Mater. Sci. Technol., 2020, vol. 40, no. 1, pp. 15–23. https://doi.org/10.1016/j.jmst.2019.08.040

    Article  Google Scholar 

  73. Dezellus, O., Voytovych, R., Li, A.P.H., Li, G., Constantin, F.B., and Viala, J.C., Wettability of Ti3SiC2 by Ag–Cu and Ag–Cu–Ti melts, J. Mater. Sci., 2010, vol. 45, pp. 2080–2084. https://doi.org/10.1007/s10853-009-3941-6

    Article  CAS  Google Scholar 

  74. Borovinskaya, I.P., Vishnyakova, G.A., Maslov, V.M., and Merzhanov, A.G., On the possibility for obtaining composite materials in the combustion regime, in Protsessy goreniya v khimicheskoy tekhnologii i metallurgii (Combustion Processes for Chemical Technology and Metallurgy), Chernogolovka: Branch of Institute of Chemical Physics USSR Acad. Sci., 1975, pp. 141–149.

  75. Merzhanov, A.G., Borovinskaya, I.P., Pitjulin, A.N., Ratnikov, V.I., Epishin, K.L., and Kvanin, V.L., US Patent 4988480A, 1991.

  76. Pityulin, A.N., Bogatov, Yu.V., and Rogachev, A.S., Gradient hard alloys, Int. J. Self-Propag. High-Temp. Synth., 1992, vol. 1, no. 1, pp. 111–118.

    CAS  Google Scholar 

  77. Yukhvid, V.I., SHS-metallurgy: fundamental and applied research, Adv. Mater. Technol., 2016, no. 4, pp. 23–34. https://doi.org/10.17277/amt.2016.04.pp.023-034

  78. Sanin, V.N. and Yukhvid, V.I., Centrifugation-driven melt infiltration in high-temperature layered systems, Inorg. Mater., 2005, vol. 41, no. 3, pp. 247–254.

    Article  CAS  Google Scholar 

  79. Dmitruk, A. and Naplocha, K., Manufacturing of Al alloy matrix composite materials reinforced with MAX phases, Arch. Foundry Eng., 2018, vol. 18, no. 2, pp. 198–202. https://doi.org/10.24425/122528

    Article  CAS  Google Scholar 

  80. Amosov, A.P., Fedotov, A.F., Latukhin, E.I., and Novikov, V.A., TiC–Al interpenetrating composites by SHS pressing, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 187–191. https://doi.org/10.3103/S1061386215040032

    Article  CAS  Google Scholar 

  81. Fedotov, A.F., Amosov, A.P., Latukhin, E.I., and Novikov, V.A., Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 1, pp. 33–40. https://doi.org/10.3103/S1067821216010053

    Article  Google Scholar 

  82. Amosov, A.P., Latukhin, E.I., Lutz, R.A., Titova, Yu.V., and Maydan, D.A., SHS of aluminum-ceramic composites, in Technologicheskoe gorenie (Technological Combustion), Aldoshin, S.M. and Alymov, M.I., Eds., Moscow: Institute of Problems of Chemical Physics Russ. Acad. Sci., 2018, pp. 287–315. https://doi.org/10.31857/S9785907036383000012

  83. Amosov, A.P., Latukhin, E.I., Ryabov, A.M., Umerov, E.R., and Novikov, V.A., Application of SHS process for fabrication of copper–titanium silicon carbide composite (Cu–Ti3SiC2), J. Phys.: Conf. Ser., 2018, vol. 1115, no. 4, article no. 042003. https://doi.org/10.1088/1742-6596/1115/4/042003

    Article  CAS  Google Scholar 

  84. Amosov, A.P., Latukhin, E.I., and Ryabov, A.M., Applying SHS for the fabrication of the Ti3SiC2–Ni composite, Russ. J. Non-Ferrous Met., 2019, vol. 60, no. 5, pp. 555–565. https://doi.org/10.3103/S1067821219050031

    Article  Google Scholar 

  85. Amosov, A.P., Latukhin, E.I., and Umerov, E.R., RF Patent 2733524, 2020.

  86. Latukhin, E.I., Umerov, E.R., Amosov, A.P., Amosov, E.A., and Novikov, V.A., Physical and chemical fundamentals of combustion synthesis of skeleton ceramic metal composites TiC–Al, AIP Conf. Proc., 2020, vol. 2304, article no. 020013. https://doi.org/10.1063/5.0033883

    Article  CAS  Google Scholar 

  87. Amosov, A., Amosov, E., Latukhin, E., Kichaev, P., and Umerov, E., Producing TiC–Al cermet by combustion synthesis of TiC porous skeleton with spontaneous infiltration by aluminum melt, Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects (EFRE 2020), Tomsk, 2020, pp. 1057–1062. https://doi.org/10.1109/EFRE47760.2020.9241903

  88. Rogachev, A.S. and Mukasyan, A.S., Combustion for Material Synthesis, New York: CRC Press, 2014.

    Book  Google Scholar 

  89. Saravanan, R.A., Molina, J.M., Narciso, J., Garcia-Cordovilla, C., and Louis, E., Surface tension of pure aluminum in argon/hydrogen and nitrogen/hydrogen atmospheres at high temperatures, J. Mater. Sci. Lett., 2002, vol. 21, pp. 309–311.

    Article  CAS  Google Scholar 

  90. Davis, J.R., Aluminum and Aluminum Alloys, Materials Park, OH: ASM Int., 1993.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project nos. 20-08-00435 and 20-33-90056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Amosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, A.P., Latukhin, E.I. & Umerov, E.R. Applying Infiltration Processes and Self-Propagating High-Temperature Synthesis for Manufacturing Cermets: А Review. Russ. J. Non-ferrous Metals 63, 81–100 (2022). https://doi.org/10.3103/S1067821222010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222010047

Keywords:

Navigation