Skip to main content

Advertisement

Log in

Biomedical Photonics for Intraoperative Diagnostics: Review of Capabilities and Clinical Applications

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Optical spectroscopy and microscopy techniques are widely used for basic studies of living systems. However, their application in clinical practice has two fundamental limitations. First, the depth of probing biological tissues with light is small and varies from tenths to several of millimeters. Secondly, it is difficult to use exogenous labels, which increase the sensitivity and specificity of pathological tissue detection, in vivo measurements on patients. This raises the question of the place of biomedical photonics among other physical diagnostic methods used in clinical practice. This article presents an review of optical methods and relatively new certified commercially available medical devices that use photonics to solve intraoperative diagnostic problems, i.e., the discrimination between pathological and healthy tissue sites in vivo and ex vivo by an endogenous optical response. This work discusses a wide range of medical fields in which researchers and engineers have been able to achieve high rates of sensitivity and specificity in solving the problem of classifying such tissues. The advantages and disadvantages of optical imaging and diagnostic methods, which determine their place in clinical practice, are discussed by the example of intraoperative diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. C. Ash, M. Dubec, K. Donne, and T. Bashford, ‘‘Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods,’’ Lasers Med. Sci. 32, 1909–1918 (2017). https://doi.org/10.1007/s10103-017-2317-4

    Article  Google Scholar 

  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, ‘‘Imaging the body with diffuse optical tomography,’’ IEEE Signal Process. Mag. 18, 57–75 (2001). https://doi.org/10.1109/79.962278

    Article  ADS  Google Scholar 

  3. D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, ‘‘Fluorescent proteins and their applications in imaging living cells and tissues,’’ Physiol. Rev. 90, 1103–1163 (2010). https://doi.org/10.1152/physrev.00038.2009

    Article  Google Scholar 

  4. S. Pahlow, K. Weber, J. Popp, Bayden, R. Wood, K. Kochan, A. Ruther, D. Perez-Guaita, Ph. Heraud, N. Stone, A. Dudgeon, B. Gardner, R. Reddy, D. Mayerich, and R. Bhargava, ‘‘Application of vibrational spectroscopy and imaging to point-of-care medicine: A review,’’ Appl. Spectrosc. 72 (S1), 52–84 (2018).

    Article  Google Scholar 

  5. D. M. Roblyer, ‘‘Perspective on the increasing role of optical wearables and remote patient monitoring in the COVID-19 era and beyond,’’ J. Biomed. Opt. 25, 102703 (2020). https://doi.org/10.1117/1.JBO.25.10.102703

    Article  ADS  Google Scholar 

  6. I. P. Santos, E. M. Barroso, T. C. B. Schut, P. J. Caspers, C. G. F. van Lanschot, Da-H. Choi, M. F. van der Kamp, R. W. H. Smits, R. van Doorn, R. M. Verdijk, V. Noordhoek Hegt, J. H. von der Thusen, C. H. M. van Deurzen, L. B. Koppert, G. J. L. H. van Leenders, P. C. Ewing-Graham, H. C. van Doorn, C. M. F. Dirven, M. B. Busstra, J. Hardillo, A. Sewnaik, I. ten Hove, H. Mast, D. A. Monserez, C. Meeuwis, T. Nijsten, E. B. Wolvius, R. J. Baatenburg de Jong, G. J. Puppels, and S. Koljenovic, ‘‘Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics,’’ Analyst 142, 3025–3047 (2017). https://doi.org/10.1039/C7AN00957G

    Article  ADS  Google Scholar 

  7. R. Asari, C. Passler, K. Kaczirek, C. Scheuba, and B. Biederle, ‘‘Hypoparathyroidism after total thyroidectomy,’’ Arch. Surg. 143, 132–137 (2008). https://doi.org/10.1001/archsurg.2007.55

    Article  Google Scholar 

  8. D. T. Lin, S. G. Patel, A. R. Shaha, B. Singh, and J. P. Shah, ‘‘Incidence of inadvertent parathyroid removal during thyroidectomy,’’ Laryngoscope 112, 608–611 (2002). https://doi.org/10.1097/00005537-200204000-00003

    Article  Google Scholar 

  9. O. Thomusch, A. Machens, C. Sekulla, J. Ukkat, M. Brauckhoff, and H. Dralle, ‘‘The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: A multivariate analysis of 5846 consecutive patients,’’ Surgery 133, 180–185 (2003). https://doi.org/10.1067/msy.2003.61

    Article  Google Scholar 

  10. A. Bergenfelz, S. Jansson, A. Kristoffersson, H. Mårtensson, E. Reihnér, G. Wallin, and I. Lausen, ‘‘Complications to thyroid surgery: Results as reported in a database from a multicenter audit comprising 3 660 patients,’’ Langenbeck’s Arch. Surg. 393, 667–673 (2008). https://doi.org/10.1007/s00423-008-0366-7

    Article  Google Scholar 

  11. J. P Bilezikian, A. Khan,J. T. Potts, Jr., M. L. Brandi, B. L. Clarke, D. Shoback, H. Juppner, P. D’Amour, J. Fox, L. Rejnmark, L. Mosekilde, M. R. Rubin, D. Dempster, R. Gafni, M. T. Collins, J. Sliney, and J. Sanders, ‘‘Hypoparathyroidism in the adult: Epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research,’’ J. Bone Miner. Res. 26, 2317–2337 (2011). https://doi.org/10.1002/jbmr.483

    Article  Google Scholar 

  12. C. Paras, M. Keller, A. Mahadevan-Jansen, L. White, and J. Phay, ‘‘Near-infrared autofluorescence for the detection of parathyroid glands,’’ J. Biomed. Opt. 16, 067012 (2011). https://doi.org/10.1117/1.3583571

    Article  ADS  Google Scholar 

  13. E. Kose, A. V. Rudin, B. Kahramangil, E. Moore, H. Aydin, M. Donmez, V. Krishnamurthy, A. Siperstein, and E. Berber, ‘‘Autofluorescence imaging of parathyroid glands: An assessment of potential indications,’’ Surgery 167, 173–179 (2020). https://doi.org/10.1016/j.surg.2019.04.072

    Article  Google Scholar 

  14. M. A. McWade, C. Paras, L. M. White, J. E. Phay, A. Mahadevan-Jansen, and J. T. Bro- ome, ‘‘A novel optical approach to intraoperative detection of parathyroid glands,’’ Surgery 154, 1371–1377 (2013). https://doi.org/10.1016/j.surg.2013.06.046

    Article  Google Scholar 

  15. M. A. McWade, C. Paras, L. M. White, J. E. Phay, C. Solórzano, J. T. Broome, and A. Mahadevan-Jansen, ‘‘Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging,’’ J. Clin. Endocrinol. Metab. 99, 4574–4580 (2014). https://doi.org/10.1210/jc.2014-2503

    Article  Google Scholar 

  16. R. Ladurner, M. Lerchenberger, N. Al Arabi, J. K. S. Gallwas, H. Stepp, and K. K. J. Hallfeldt, ‘‘Parathyroid autofluorescence—How does it affect parathyroid and thyroid surgery? A 5 year experience,’’ Molecules 24, 2560 (2019). https://doi.org/10.3390/molecules24142560

    Article  Google Scholar 

  17. G. Thomas, M. A. McWade, J. Q. Nguyen, M. E. Sanders, J. T. Broome, N. Baregamian, C. C. Solórzano, and A. Mahadevan-Jansen, ‘‘Innovative surgical guidance for label-free real-time parathyroid identification,’’ Surgery 165, 114–123 (2019). https://doi.org/10.1016/j.surg.2018.04.079

    Article  Google Scholar 

  18. C. M. Kiernan, G. Thomas, N. Baregamian, and C. C. Solórzano, ‘‘Initial clinical experiences using the intraoperative probe-based parathyroid autofluorescence identification system-PTeyeT during thyroid and parathyroid procedures,’’ J. Surg. Oncol. 124, 271–281 (2021). https://doi.org/10.1002/jso.26500

    Article  Google Scholar 

  19. F. Dip, J. Falco, S. Verna, M. Prunello, M. Loccisano, P. Quadri, K. White, and R. Rosental, ‘‘Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy,’’ J. Am. Coll. Surg. 228, 744–751 (2019). https://doi.org/10.1016/j.jamcollsurg.2018.12.044

    Article  Google Scholar 

  20. E. C. Moore, A. Rudin, A. Alameh, and E. Berber, ‘‘Near-infrared imaging in re-operative parathyroid surgery: first description of autofluorescence from cryopreserved parathyroid glands,’’ Gland Surg. 8, 283–286 (2019). https://doi.org/10.21037/gs.2018.12.05

    Article  Google Scholar 

  21. I. Tabei, A. Fuke, A. Fushimi, and H. Takeyama, ‘‘Determination of the optimum excitation wavelength for the parathyroid gland using a near-infrared camera,’’ Front. Surg. 7, 619859 (2021). https://doi.org/10.3389/fsurg.2020.619859

    Article  Google Scholar 

  22. G. Thomas, M. A. McWade, M. E. Sanders, C. C. Solórzano, W. H. McDonald, and A. Mahadevan-Jansen, ‘‘Identifying the novel endogenous near-infrared fluorophore within parathyroid and other endocrine tissues,’’ in Biomedical Optics 2016 (Optica Publishing Group, 2016), p. PTu3A.5. https://doi.org/10.1364/OTS.2016.PTu3A.5

  23. J. Bec, D. Vela, J. E. Phipps, M. Agung, J. Unger, K. B. Margulies, J. A. Southard, L. M. Buja, and L. Marcu, ‘‘Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime,’’ JACC Cardiovasc. Imaging 14, 1832–1842 (2021). https://doi.org/10.1016/j.jcmg.2020.10.004

    Article  Google Scholar 

  24. J. Liu, X. Wang, R. Wang, Ch. Xu, R. Zhao, H. Li, Sh. Zhang, and X. Yao, ‘‘Near-infrared auto-fluorescence spectroscopy combining with Fisher’s linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy,’’ BMC Surg. 20, 4 (2020). https://doi.org/10.1186/s12893-019-0670-x

    Article  Google Scholar 

  25. A. Karlas, M. A. Pleitez, J. Aguirre, and V. Ntziachristos, ‘‘Optoacoustic imaging in endocrinology and metabolism,’’ Nat. Rev. Endocrinol. 17, 323–335 (2021). https://doi.org/10.1038/s41574-021-00482-5

    Article  Google Scholar 

  26. A. Taruttis and V. Ntziachristos, ‘‘Advances in real-time multispectral optoacoustic imaging and its applications,’’ Nat. Photonics 9, 219–227 (2015). https://doi.org/10.1038/nphoton.2015.29

    Article  ADS  Google Scholar 

  27. W. S. Tummers, S. E. Miller, N. T. Teraphongphom, A. Gomez, I. Steinberg, D. M. Huland, S. Hong, S.-R. Kothapalli, A. Hasan, R. Ertsey, B. A. Bon- sing, A. L. Vahrmeijer, R.-J. Swijnenburg, T. A. Longacre, G. A. Fisher, S. S. Gambhir, G. A. Poultsides, and E. L. Rosenthal, ‘‘Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging,’’ Ann. Surg. Oncol. 25, 1880–1888 (2018). https://doi.org/10.1245/s10434-018-6453-2

    Article  Google Scholar 

  28. M. A. Lediju Bell, A. K. Ostrowski, K. Li, P. Kazanzides, and E. M. Boctor, ‘‘Localization of transcranial targets for photoacoustic-guided endonasal surgeries,’’ Photoacoustics 3, 78–87 (2015). https://doi.org/10.1016/j.pacs.2015.05.002

    Article  Google Scholar 

  29. V. Padhye, R. Valentine, and P. J. Wormald, ‘‘Management of carotid artery injury in endonasal surgery,’’ Int. Arch. Otorhinolaryngol 18, S173 (2014). https://doi.org/10.1055/s-0034-1395266

    Article  Google Scholar 

  30. G. Mowatt, J. N’Dow, L. Vale, G. Nabi, Ch. Boachie, J. A. Cook, C. Fraser, and T. R. Leyshon Griffiths, ‘‘Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,’’ Int. J. Technol. Assess. Health Care 27, 3–10 (2011). https://doi.org/10.1017/S0266462310001364

    Article  Google Scholar 

  31. Y. Lotan, T. J. Bivalacqua, T. Downs, W. Huang, J. Jones, A. M. Kamat, B. Konety, P.-U. Malmström, J. McKiernan, M. O’Donnell, S. Patel, K. Pohar, M. Resnick, A. Sankin, A. Smith, G. Steinberg, E. Trabulsi, M. Woods, and S. Daneshmand, ‘‘Blue light flexible cystoscopy with hexaminolevulinate in non-muscle-invasive bladder cancer: review of the clinical evidence and consensus statement on optimal use in the USA—Update 2018,’’ Nat. Rev. Urol. 16, 377–386 (2019). https://doi.org/10.1038/s41585-019-0184-4

    Article  Google Scholar 

  32. K. Bochenek, D. Aebisher, A. Miedzybrodzka, G. Cieślar, and A. Kawczyk-Krupka, ‘‘Methods for bladder cancer diagnosis - The role of autofluorescence and photodynamic diagnosis,’’ Photodiagnosis Photodyn. Ther. 27, 141–148 (2019). https://doi.org/10.1016/j.pdpdt.2019.05.036

    Article  Google Scholar 

  33. T. Yatabe, S.-L. Marie, H. Fukuhara, T. Karashima, K. Inoue, and M. Yokoyama, ‘‘5-Aminolevulinic acid-induced severe hypotension during transurethral resection of a bladder tumor: a case report,’’ JA Clin. Rep. 5, 58 (2019). https://doi.org/10.1186/s40981-019-0279-1

    Article  Google Scholar 

  34. H. W. Herr and S. M. Donat, ‘‘A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences,’’ BJU Int. 102, 1111–1114 (2008). https://doi.org/10.1111/j.1464-410X.2008.07846.x

    Article  Google Scholar 

  35. C. Zheng, Y. Lv, Q. Zhong, R. Wang, and Q. Jiang, ‘‘Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis,’’ BJU Int. 110, E680–E687 (2012). https://doi.org/10.1111/j.1464-410X.2012.11500.x

    Article  Google Scholar 

  36. E. C. C. Cauberg, S. Kloen, M. Visser, J. J. M. C. H. de la Rosette, M. Babjuk, V. Soukup, M. Pesl, J. Duskova, and T. M. de Reijke, ‘‘Narrow band imaging cystoscopy improves the detection of non-muscle-invasive bladder cancer,’’ Urology 76, 658–663 (2010). https://doi.org/10.1016/j.urology.2009.11.075

    Article  Google Scholar 

  37. Narrow band imaging (NBI) is clinically proven to diagnose more bladder cancer, NBI Urology Por- tal. https://www.nbi-portal.eu/en/uro/. Cited October 11, 2021.

  38. Z. Tandogdu, R. Lewis, A. Duncan, S. Penegar, A. McDonald, L. Vale, J. Shen, J. D. Kelly, R. Pickard, J. N. Dow, C. Ramsay, H. Mostafid, P. Mariappan, G. Nabi, J. Creswell, H. Lazaro- wicz, J. McGrath, E. Taylor, E. Clark, G. Maclennan, J. Norrie, E. Hall, and R. Heer, ‘‘Photodynamic versus white light-guided treatment of non-muscle invasive bladder cancer: a study protocol for a randomised trial of clinical and cost-effectiveness,’’ BMJ Open 9, e022268 (2019). https://doi.org/10.1136/bmjopen-2018-022268

    Article  Google Scholar 

  39. J.-H. Cho, ‘‘Advanced imaging technology other than narrow band imaging,’’ Clin. Endosc. 48, 503–510 (2015). https://doi.org/10.5946/ce.2015.48.6.503

    Article  Google Scholar 

  40. R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jon- ges, J. A. Kummer, and J. L. H. Ruud Bosch, ‘‘In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,’’ Anal. Chem. 82, 5993–5999 (2010). https://doi.org/10.1021/ac100448p

    Article  Google Scholar 

  41. M. C. Kriegmair, P. Honeck, M. Theuring, C. Bolenz, and M. Ritter, ‘‘Wide-field autofluorescence-guided TUR-B for the detection of bladder cancer: A pilot study,’’ World J. Urol. 36, 745–751 (2018). https://doi.org/10.1007/s00345-017-2147-9

    Article  Google Scholar 

  42. M. C. Jacobson, R. W. White de Vere, and S. G. Demos, ‘‘In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer,’’ J. Biomed. Opt. 17, 036011 (2012). https://doi.org/10.1117/1.JBO.17.3.036011

    Article  ADS  Google Scholar 

  43. A. Tewari, J. Peabody, R. Sarle, G. Balakrishnan, A. Hemal, A. Shrivastava, and M. Menon, ‘‘Technique of da vinci robot-assisted anatomic radical prostatectomy,’’ Urology 60, 569–572 (2002). https://doi.org/10.1016/S0090-4295(02)01852-6

    Article  Google Scholar 

  44. M. T. Gettman, A. Hoznek, L. Salomon, R. Katz, T. Borkowski, P. Antiphon, A. Lobontu, and C.-C. Abbou, ‘‘Laparoscopic radical prostatectomy: Description of the extraperitoneal approach using the da Vinci robotic system,’’ J. Urol. 170, 416–419 (2003). https://doi.org/10.1097/01.ju.0000076015.88739.a2

    Article  Google Scholar 

  45. M. Pinto, K. Zorn, J.-Ph. Tremblay, J. Desroches, F. Dallaire, K. Aubertin, E. Marple, C. Kent, F. Leblond, D. Trudel, and F. Lesage, ‘‘Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures,’’ J. Biomed. Opt. 24, 025001 (2019). https://doi.org/10.1117/1.JBO.24.2.025001

    Article  ADS  Google Scholar 

  46. D. Schlager, A. Miernik, S. Lamrini, M. Vogel, H.-O. Teichmann, A. Brandenburg, and J. Schütz, ‘‘A novel laser lithotrispy system with automatic real-time urinary stone recognition: Computer controlled ex vivo lithotripsy is feasible and reproducible in endoscopic stone fragmentation,’’ J. Urol. 202, 1263–1269 (2019). https://doi.org/10.1097/JU.0000000000000457

    Article  Google Scholar 

  47. D. Schlager, A. Schulte, J. Schütz, A. Brandenburg, C. Schell, S. Lamrini, M. Vogel, H.-O. Teichmann, and A. Miernik, ‘‘Laser-guided real-time automatic target identification for endoscopic stone lithotripsy: a two-arm in vivo porcine comparison study,’’ World J. Urol. 39, 2719–2726 (2021). https://doi.org/10.1007/s00345-020-03452-0

    Article  Google Scholar 

  48. J. Schütz, A. Miernik, A. Brandenburg, and D. Schlager, ‘‘Experimental evaluation of human kidney stone spectra for intraoperative stone-tissue-instrument analysis using autofluorescence,’’ J. Urol. 201, 182–188 (2019). https://doi.org/10.1016/j.juro.2018.07.067

    Article  Google Scholar 

  49. B. Lange, J. Cordes, and R. Brinkmann, ‘‘Differentiation of tissue and kidney stones for laser lithotripsy using different spectroscopic approaches,’’ SPIE Proc. 9542, 95420O (2015). https://doi.org/10.1117/12.2183686

  50. B. Lange, J. Cordes, and R. Brinkmann, ‘‘Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,’’ Lasers Surg. Med. 47, 737–744 (2015). https://doi.org/10.1002/lsm.22418

    Article  Google Scholar 

  51. F. Strittmatter, M. Eisel, R. Brinkmann, J. Cordes, B. Lange, and R. Sroka, ‘‘Laser-induced lithotripsy: A review, insight into laboratory work, and lessons learned,’’ Transl. Biophotonics 2, e201900029 (2020). https://doi.org/10.1002/tbio.201900029

    Article  Google Scholar 

  52. A. Miernik, Y. Eilers, C. Nuese, C. Bolwien, A. Lambrecht, A. Hesse, J. J. Rass- weiler, D. Schlager, K. Wilhelm, U. Wetterauer, and M. Schoenthaler, ‘‘Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers,’’ World J. Urol. 33, 1593–1599 (2015). https://doi.org/10.1007/s00345-014-1477-0

    Article  Google Scholar 

  53. P. Carli, F. Mannone, V. de Giorgi, P. Nardini, A. Chiarugi, and B. Giannotti, ‘‘The problem of false-positive diagnosis in melanoma screening: The impact of dermoscopy,’’ Melanoma Res. 13, 179–182 (2003).

    Article  Google Scholar 

  54. H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, ‘‘Diagnostic accuracy of dermoscopy,’’ Lancet Oncol. 3, 159–165 (2002). https://doi.org/10.1016/S1470-2045(02)00679-4

    Article  Google Scholar 

  55. C. A. Morton and R. M. Mackie, ‘‘Clinical accuracy of the diagnosis of cutaneous malignant melanoma,’’ Br. J. Dermatol. 138, 283–287 (1998). https://doi.org/10.1046/j.1365-2133.1998.02075.x

    Article  Google Scholar 

  56. J. I. van der Rhee, W. Bergman, and N. A. Kukutsch, ‘‘Impact of dermoscopy on the management of high-risk patients from melanoma families: A prospective study,’’ Acta Derm. Venereol. 91, 428–431 (2011). https://doi.org/10.2340/00015555-1100

    Article  Google Scholar 

  57. I. P. Santos, P. J. Caspers, T. C. Bakker Schut, R. van Doorn, V. N. Hegt, S. Koljenović, and G. J. Puppels, ‘‘Raman spectroscopic characterization of melanoma and benign melanocytic lesions suspected of melanoma using high-wavenumber Raman spectroscopy,’’ Anal. Chem. 88, 7683–7688 (2016). https://doi.org/10.1021/acs.analchem.6b01592

    Article  Google Scholar 

  58. G. Pellacani, A. M. Cesinaro, and S. Seidenari, ‘‘Reflectance-mode confocal microscopy of pigmented skin lesions-Improvement in melanoma diagnostic specificity,’’ J. Am. Acad. Dermatol. 53, 979–985 (2005). https://doi.org/10.1016/j.jaad.2005.08.022

    Article  Google Scholar 

  59. V. Ahlgrimm-Siess, C. Massone, S. Koller, R. Fink-Puches, E. Richtig, I. Wolf, A. Gerger, and R. Hofmann-Wellenhof, ‘‘In vivo confocal scanning laser microscopy of common naevi with globular homogeneous and reticular pattern in dermoscopy,’’ Br. J. Dermatol. 158, 1000–1007 (2008). https://doi.org/10.1111/j.1365-2133.2008.08460.x

    Article  Google Scholar 

  60. R. G. B. Langley, N. Walsh, A. E. Sutherland, I. Propperova, L. Delaney, S. F. Morris, and C. Gallant, ‘‘The diagnostic accuracy of in vivo confocal scanning laser microscopy compared to dermoscopy of benign and malignant melanocytic lesions: A prospective study,’’ Dermatology 215, 365–372 (2007). https://doi.org/10.1159/000109087

    Article  Google Scholar 

  61. U. Dahlstrand, R. Sheikh, C. D. Nguyen, J. Hult, N. Reistad, and M. Malmsjö, ‘‘Identification of tumor margins using diffuse reflectance spectroscopy with an extended-wavelength spectrum in a porcine model,’’ Skin Res. Technol. 24, 667–671 (2018). https://doi.org/10.1111/srt.12583

    Article  Google Scholar 

  62. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, ‘‘Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’’ J. Biomed. Opt. 10, 064020 (2005). https://doi.org/10.1117/1.2135799

    Article  ADS  Google Scholar 

  63. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, ‘‘Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,’’ J. Biomed. Opt. 13, 014017 (2008). https://doi.org/10.1117/1.2844710

    Article  ADS  Google Scholar 

  64. E. Borisova, P. Troyanova, P. Pavlova, and L. Avramov, Quantum Electron. 38, 597–605 (2008). https://doi.org/10.1070/QE2008v038n06ABEH013891

    Article  ADS  Google Scholar 

  65. E. Borisova, P. Pavlova, E. Pavlova, and P. Troyanova, ‘‘Optical biopsy of human skin—A tool for cutaneous tumours’ diagnosis,’’ Int. J. Bioautomation 16, 53–72 (2012).

    Google Scholar 

  66. I. A. Bratchenko, D. N. Artemyev, O. O. Myakinin, Yu. A. Khristoforova, A. A. Moryatov, S. V. Kozlov, and V. P. Zakharov, ‘‘Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions,’’ J. Biomed. Opt. 22, 027005 (2017). https://doi.org/10.1117/1.JBO.22.2.027005

    Article  ADS  Google Scholar 

  67. E. G. Borisova, I. A. Bratchenko, Y. A. Khristoforova, L. A. Bratchenko, Ts. I. Genova, A. I. Gisbrecht, A. A. Moryatov, S. V. Kozlov, P. P. Troyanova, and V. P. Zakharov, ‘‘Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions,’’ Opt. Eng. 59, 061616 (2020). https://doi.org/10.1117/1.OE.59.6.061616

    Article  ADS  Google Scholar 

  68. D. Leupold, M. Scholz, G. Stankovic, J. Reda, S. Buder, R. Eichhorn, G. Wessler, M. Stücker, K. Hoffmann, J. Bauer, and C. Garbe, ‘‘The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes,’’ Pigment Cell Melanoma Res. 24, 438–445 (2011). https://doi.org/10.1111/j.1755-148X.2011.00853.x

    Article  Google Scholar 

  69. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, ‘‘Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,’’ Exp. Dermatol. 18, 509–515 (2009). https://doi.org/10.1111/j.1600-0625.2008.00815.x

    Article  Google Scholar 

  70. L. Szyc, C. Scharlach, H. Haenssle, and C. Fink, ‘‘In vivo two-photon-excited cellular fluorescence of melanin, NAD(P)H, and keratin enables an accurate differential diagnosis of seborrheic keratosis and pigmented cutaneous melanoma,’’ J. Biomed. Opt. 26, 075002 (2021). https://doi.org/10.1117/1.JBO.26.7.075002

    Article  ADS  Google Scholar 

  71. F. Ghassemi, R. Mirshahi, K. Fadakar, and S. Sabour, ‘‘Optical coherence tomography angiography in choroidal melanoma and nevus,’’ Clin. Ophthalmol. 12, 207–214 (2018). https://doi.org/10.2147/OPTH.S148897

    Article  Google Scholar 

  72. T. Gambichler, P. Regeniter, F. G. Bechara, A. Orlikov, R. Vasa, G. Moussa, M. Stücker, P. Altmeyer, and K. Hoffmann, ‘‘Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo,’’ J. Am. Acad. Dermatol. 57, 629–637 (2007). https://doi.org/10.1016/j.jaad.2007.05.029

    Article  Google Scholar 

  73. M. Gniadecka, P. A. Philipsen, S. Wessel, R. Gniadecki, H. C. Wulf, S. Sigurdsson, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, and L. K. Hansen, ‘‘Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,’’ J. Invest. Dermatol. 122, 443–449 (2004). https://doi.org/10.1046/j.0022-202X.2004.22208.x

    Article  Google Scholar 

  74. I. A. Bratchenko, L. A. Bratchenko, A. A. Mo- ryatov, Yu. A. Khristoforova, D. N. Artemyev, O. O. Myakinin, A. E. Orlov, S. V. Kozlov, and V. P. Zakharov, ‘‘In vivo diagnosis of skin cancer with a portable Raman spectroscopic device,’’ Exp. Dermatol. 30, 652–663 (2021). https://doi.org/10.1111/exd.14301

    Article  Google Scholar 

  75. X. L. Deán-Ben and D. Razansky, ‘‘Optoacoustic imaging of the skin,’’ Exp. Dermatol. 30, 1598–1609 (2021). https://doi.org/10.1111/exd.14386

    Article  Google Scholar 

  76. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, ‘‘Pump-probe imaging differentiates melanoma from melanocytic nevi,’’ Sci. Transl. Med. 3, 71ra15 (2011). https://doi.org/10.1126/scitranslmed.3001604

    Article  Google Scholar 

  77. K.-Yo. Ju, S. Degan, M. C. Fischer, K. C. Zhou, X. Jia, J. Yu, and W. S. Warren, ‘‘Unraveling the molecular nature of melanin changes in metastatic cancer,’’ J. Biomed. Opt. 24, 051414 (2019). https://doi.org/10.1117/1.JBO.24.5.051414

    Article  ADS  Google Scholar 

  78. H. Nahata and S. P. Singh, ‘‘Deep learning solutions for skin cancer detection and diagnosis,’’ in Machine Learning with Health Care Perspective, Ed. by V. Jain and J. Chatterjee, Learning and Analytics in Intelligent Systems, Vol. 13 (Springer, Cham, 2020), pp. 159–182. https://doi.org/10.1007/978-3-030-40850-3-8

  79. A. Adegun and S. Viriri, ‘‘Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art,’’ Artif. Intell. Rev. 54, 811–841 (2021). https://doi.org/10.1007/s10462-020-09865-y

    Article  Google Scholar 

  80. R. Cicchi, A. Cosci, S. Rossari, D. Kapsokalyvas, E. Baria, V. Maio, D. Massi, V. De Giorgi, N. Pimpinelli, and F. S. Pavone, ‘‘Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions,’’ J. Biophotonics 7, 86–95 (2014). https://doi.org/10.1002/jbio.201200230

    Article  Google Scholar 

  81. A. Varkentin, M. Mazurenka, E. Blumenröther, L. Behrendt, S. Emmert, U. Morgner, M. Meinhardt-Wollweber, M. Rahlves, and B. Roth, ‘‘Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements,’’ J. Biophotonics 11, e201700288 (2018). https://doi.org/10.1002/jbio.201700288

    Article  Google Scholar 

  82. M. Mazurenka, L. Behrendt, M. Meinhardt-Wollweber, U. Morgner, and B. Roth, ‘‘Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening,’’ Rev. Sci. Instrum. 88, 105103 (2017). https://doi.org/10.1063/1.5004999

    Article  ADS  Google Scholar 

  83. G. Gelikonov, V. Gelikonov, A. Moiseev, P. Shilyagin, S. Ksenofontov, I. Kasatkina, D. Terpelov, L. Matveev, A. Matveyev, V. Zaitsev, A. Sovetsky, N. Gladkova, E. V. Zagaynova, M. Sirotkina, E. Gubarkova, E. Kiseleva, A. Plekhanov, V. Elagin, K. Yashin, D. Vorontsov, E. Sedova, A. Maslennikova, S. Kuznetsov, and A. Vitkin, ‘‘Multimodal OCT for malignancy imaging,’’ in Multimodal Optical Diagnostics of Cancer, Ed. by V. V. Tuchin, J. Popp, and V. Zakharov (Springer, Cham, 2020), pp. 425–464. https://doi.org/10.1007/978-3-030-44594-2_12

  84. M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, ‘‘In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,’’ Br. J. Dermatol. 160, 1026–1033 (2009). https://doi.org/10.1111/j.1365-2133.2008.09003.x

    Article  Google Scholar 

  85. M. A. L. M. Boone, S. Norrenberg, G. B. E. Jemec, and V. Del Marmol, ‘‘Imaging of basal cell carcinoma by high-definition optical coherence tomography: Histomorphological correlation. A pilot study,’’ Br. J. Dermatol. 167, 856–864 (2012). https://doi.org/10.1111/j.1365-2133.2012.11194.x

    Article  Google Scholar 

  86. O. Warszawik-Hendzel, M. Olszewska, M. Maj, A. Rakowska, J. Czuwara, and L. Rudnicka, ‘‘Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma,’’ J. Dermatol. Case Rep. 9, 89–97 (2015). https://doi.org/10.3315/jdcr.2015.1221

    Article  Google Scholar 

  87. K. Sauermann, T. Gambichler, M. Wilmert, S. Rotterdam, M. Stücker, P. Altmeyer, and K. Hoffmann, ‘‘Investigation of basal cell carcionoma by confocal laser scanning microscopy in vivo,’’ Skin Res. Technol. 8, 141–147 (2002). https://doi.org/10.1034/j.1600-0846.2002.20345.x

    Article  Google Scholar 

  88. A. Gerger, S. Koller, W. Weger, E. Richtig, H. Kerl, H. Samonigg, P. Krippl, and J. Smolle, ‘‘Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors,’’ Cancer. 107, 193–200 (2006). https://doi.org/10.1002/cncr.21910

    Article  Google Scholar 

  89. J. Paoli, M. Smedh, A.-M. Wennberg, and M. B. Ericson, ‘‘Multiple laser scanning microscopy on non-melanoma skin cancer: Morphologic features for future non-invasive diagnostics,’’ J. Invest. Dermatol. 128, 1248–1255 (2008). https://doi.org/10.1038/sj.jid.5701139

    Article  Google Scholar 

  90. A. J. Thompson, S. Coda, M. B. Sørensen, G. Kennedy, R. Patalay, U. Waitong-Brämming, P. A. A. De Beule, M. A. A. Neil, S. Andersson-Engels, N. Bendsøe, P. M. W. French, K. Svanberg, and C. Dunsby, ‘‘In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas,’’ J. Biophotonics 5, 240–254 (2012). https://doi.org/10.1002/jbio.201100126

    Article  Google Scholar 

  91. E. A. Drakaki, C. Dessinioti, A. J. Stratigos, C. Salavastru, and C. Antoniou, ‘‘Laser-induced fluorescence made simple: implications for the diagnosis and follow-up monitoring of basal cell carcinoma,’’ J. Biomed. Opt. 19, 030901 (2014). https://doi.org/10.1117/1.JBO.19.3.030901

    Article  ADS  Google Scholar 

  92. T. C. Bakker Schut, P. J. Caspers, G. J. Puppels, A. Nijssen, F. Heule, M. H. A. Neumann, and D. P. Hayes, ‘‘Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,’’ J. Invest. Dermatol. 119, 64–69 (2002). doi 10.1046/j.1523-1747.2002.01807.x

    Article  Google Scholar 

  93. R. Boitor, C. de Wolf, F. Weesie, Dustin W. Shipp, S. Varma, D. Veitch, A. Wernham, A. Koloydenko, G. Puppels, T. Nijsten, H. C. Williams, P. Caspers, and I. Notingher, ‘‘Clinical integration of fast Raman spectroscopy for Mohs micrographic surgery of basal cell carcinoma,’’ Biomed. Opt. Express 12, 2015–2026 (2021). https://doi.org/10.1364/BOE.417896

    Article  Google Scholar 

  94. A. Gerger, M. Wiltgen, U. Langsenlehner, E. Richtig, M. Horn, W. Weger, V. Ahlgrimm-Siess, R. Hofmann-Wellenhof, H. Samonigg, and J. Smolle, ‘‘Diagnostic image analysis of malignant melanoma in in vivo confocal laser-scanning microscopy: a preliminary study,’’ Skin Res. Technol. 14, 359–363 (2008). https://doi.org/10.1111/j.1600-0846.2008.00303.x

    Article  Google Scholar 

  95. E. A. Shirshin, B. P. Yakimov, M. E. Darvin, N. P. Omelyanenko, S. A. Rodionov, Y. I. Gurfinkel, J. Lademann, V. V. Fadeev, and A. V. Priezzhev, ‘‘Label-free multiphoton microscopy: The origin of fluorophores and capabilities for analyzing biochemical processes,’’ Biochemistry 84, 69–88 (2019). https://doi.org/10.1134/S0006297919140050

    Article  Google Scholar 

  96. E. A. Shirshin, Y. I. Gurfinkel, A. V. Priezzhev, V. V. Fadeev, J. Lademann, and M. E. Darvin, ‘‘Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: Assessment of blood capillaries and structural proteins localization,’’ Sci. Rep. 7, 1171 (2017). https://doi.org/10.1038/s41598-017-01238-w

    Article  ADS  Google Scholar 

  97. M. Kröger, J. Scheffel, V. V. Nikolaev, E. A. Shirshin, F. Siebenhaar, J. Schleusener, J. Lademann, M. Maurer, and M. E. Darvin, ‘‘In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging,’’ Sci. Rep. 10, 14930 (2020). https://doi.org/10.1038/s41598-020-71901-2

    Article  Google Scholar 

  98. E. A. Shirshin, Y. I. Gurfinkel, S. T. Matskeplishvili, M. L. Sasonko, N. P. Omelyanenko, B. P. Yakimov, J. Lademann, and M. E. Darvin, ‘‘In vivo optical imaging of the viable epidermis around the nailfold capillaries for the assessment of heart failure severity in humans,’’ J. Biophotonics 11, e201800066 (2018). https://doi.org/10.1002/jbio.201800066

    Article  Google Scholar 

  99. P. J. Caspers, H. A. Bruining, G. J. Puppels, G. W. Lucassen, and E. A. Carter, ‘‘In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles,’’ J. Invest. Dermatol. 116, 434–442 (2001). https://doi.org/10.1046/j.1523-1747.2001.01258.x

    Article  Google Scholar 

  100. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, ‘‘Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,’’ Biophys. J. 85, 572–580 (2003). https://doi.org/10.1016/S0006-3495(03)74501-9

    Article  ADS  Google Scholar 

  101. J. Lademann, M. C. Meinke, W. Sterry, and M. E. Darvin, ‘‘Carotenoids in human skin,’’ Exp. Dermatol. 20, 377–382 (2011). https://doi.org/10.1111/j.1600-0625.2010.01189.x

    Article  Google Scholar 

  102. C. Choe, J. Lademann, and M. E. Darvin, ‘‘Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo,’’ Analyst 141, 6329–6337 (2016). https://doi.org/10.1039/C6AN01717G

    Article  ADS  Google Scholar 

  103. B. P. Yakimov, A. V. Venets, J. Schleusener, V. V. Fadeev, J. Lademann, E. A. Shirshin, and M. E. Darvin, ‘‘Blind source separation of molecular components of the human skin in vivo: non-negative matrix factorization of Raman microspectroscopy data,’’ Analyst 146, 3185–3196 (2021). https://doi.org/10.1039/D0AN02480E

    Article  ADS  Google Scholar 

  104. Ch. Choe, J. Lademann, and M. E. Darvin, ‘‘Confocal Raman microscopy for investigating the penetration of various oils into the human skin in vivo,’’ J. Dermatol. Sci. 79, 176–178 (2015). https://doi.org/10.1016/j.jdermsci.2015.05.004

    Article  Google Scholar 

  105. Raman technology for tissue analysis, RiverD International BV. https://www.riverd.com/. Cited October 11, 2021.

  106. B. P. Yakimov, E. A. Shirshin, J. Schleusener, A. S. Allenova, V. V. Fadeev, and M. E. Darvin, ‘‘Melanin distribution from the dermal-epidermal junction to the stratum corneum: Non-invasive in vivo assessment by fluorescence and Raman microspectroscopy,’’ Sci. Rep. 10, 14374 (2020). https://doi.org/10.1038/s41598-020-71220-6

    Article  ADS  Google Scholar 

  107. P. Guimaraes, A. Batista, M. Zieger, M. Kaatz, and K. Koenig, ‘‘Artificial intelligence in multiphoton tomography: Atopic dermatitis diagnosis,’’ Sci. Rep. 10, 7968 (2020). https://doi.org/10.1038/s41598-020-64937-x

    Article  ADS  Google Scholar 

  108. A. Batista, H. G. Breunig, T. Hager, B. Seitz, and K. König, ‘‘Early evaluation of corneal collagen crosslinking in ex-vivo human corneas using two-photon imaging,’’ Sci. Rep. 9, 10241 (2019). https://doi.org/10.1038/s41598-019-46572-3

    Article  ADS  Google Scholar 

  109. C. R. Chu, N. J. Izzo, J. J. Irrgang, M. Ferretti, and R. K. Studer, ‘‘Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography,’’ J. Biomed. Opt. 12, 051703 (2007). https://doi.org/10.1117/1.2789674

    Article  ADS  Google Scholar 

  110. J. Rogowska, C. M. Bryant, and M. E. Brezinski, ‘‘Cartilage thickness measurements from optical coherence tomography,’’ J. Opt. Soc. Am. A 20, 357–367 (2003). https://doi.org/10.1364/JOSAA.20.000357

    Article  ADS  Google Scholar 

  111. C. R. Chu, A. Williams, D. Tolliver, C. K. Kwoh, and S. Bruno, III, ‘‘Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears,’’ Arthritis Rheumatol. 62, 1412–1420 (2010). https://doi.org/10.1002/art.27378

    Article  Google Scholar 

  112. M. J. O’Malley and C. R. Chu, ‘‘Arthroscopic optical coherence tomography in diagnosis of early arthritis,’’ Minimally Invasive Surg. 2011, 671308 (2011). https://doi.org/10.1155/2011/671308

    Article  Google Scholar 

  113. R. Pailhé, A. Mounier, B. Boisson, R. C. Rouchy, S. Voros, E. Chipon, I. Boudry, M. Medici, C. Hughes, and A. Moreau-Gaudry, ‘‘Qualitative and quantitative assessment of cartilage degeneration using full-field optical coherence tomography ex vivo,’’ Osteoarthritis Cartilage 26, 285–292 (2018). https://doi.org/10.1016/j.joca.2017.11.008

    Article  Google Scholar 

  114. D. M. Bear, M. Szczodry, S. Kramer, C. H. Coyle, P. Smolinski, and C. R. Chu, ‘‘Optical coherence tomography (OCT) detection of subclinical traumatic cartilage injury,’’ J. Orthop. Trauma 24, 577–582 (2010). https://doi.org/10.1097/BOT.0b013e3181f17a3b

    Article  Google Scholar 

  115. P. Å. Óberg, T. Sundqvist, and A. Johansson, ‘‘Assessment of cartilage thickness utilising reflectance spectroscopy,’’ Med. Biol. Eng. Comput. 42, 3–8 (2004). https://doi.org/10.1007/BF02351004

    Article  Google Scholar 

  116. L. Kreiß, M. Hohmann, F. Klämpfl, S. Schürmann, F. Dehghani, M. Schmidt, O. Friedrich, and L. Büchler, ‘‘Diffuse reflectance spectroscopy and Raman spectroscopy for label-free molecular characterization and automated detection of human cartilage and subchondral bone,’’ Sens. Actuators B Chem. 301, 127121 (2019). https://doi.org/10.1016/j.snb.2019.127121

    Article  Google Scholar 

  117. M. Prakash, A. Joukainen, J. Torniainen, M. K. M. Honkanen, L. Rieppo, I. O. Afara, H. Kröger, J. Töyräs, and J. K. Sarin, ‘‘Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy,’’ Osteoarthritis Cartilage 27, 1235–1243 (2019).

    Article  Google Scholar 

  118. J. K. Sarin, N. C. R. te Moller, A. Mohammadi, M. Prakash, J. Torniainen, H. Brommer, E. Nippolainen, R. Shaikh, J. T. A. Mäkelä, R. K. Korhonen, P. R. van Weeren, I. O. Afara, and J. Töyräs, ‘‘Machine learning augmented near-infrared spectroscopy: In vivo follow-up of cartilage defects,’’ Osteoarthritis Cartilage 29, 423–432 (2021). https://doi.org/10.1016/j.joca.2020.12.007

    Article  Google Scholar 

  119. Y. Hagiwara, T. Izumi, Y. Yabe, M. Sato, K. Sonofuchi, K. Kanazawa, M. Koide, Yo. Saijo, and E. Itoi, ‘‘Simultaneous evaluation of articular cartilage and subchondral bone from immobilized knee in rats by photoacoustic imaging system,’’ J. Orthop. Sci. 20, 397–402 (2015). https://doi.org/10.1007/s00776-014-0692-2

    Article  Google Scholar 

  120. M. Wu, B. C. J. van Teeffelen, K. Ito, F. N. van de Vosse, R. P. A. Janssen, C. C. van Donkelaar, and R. G. P. Lopata, ‘‘Spectroscopic photoacoustic imaging of cartilage damage,’’ Osteoarthritis Cartilage 29, 1071–1080 (2021). https://doi.org/10.1016/j.joca.2021.04.001

    Article  Google Scholar 

  121. I. A. Olumegbon, A. Oloyede, and I. O. Afara, ‘‘Near-infrared (NIR) spectroscopic evaluation of articular cartilage: A review of current and future trends,’’ Appl. Spectrosc. Rev. 52, 541–559 (2017). https://doi.org/10.1080/05704928.2016.1250010

    Article  ADS  Google Scholar 

  122. J. K. Sarin, N. C. R. te Moller, I. A. D. Mancini, H. Brommer, J. Visser, J. Malda, P. R. van Weeren, I. O. Afara, and J. Töyräs, ‘‘Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo,’’ Sci. Rep. 8, 13409 (2018). https://doi.org/10.1038/s41598-018-31670-5

    Article  ADS  Google Scholar 

  123. MIRACLE Project. https://miracleproject.eu/. Cited October 11, 2021.

  124. D. M. Kustov, E. I. Kozlikina, K. T. Efendiev, M. V. Loshchenov, P. V. Grachev, Yu. S. Maklygina, I. S. Trifonov, A. V. Baranov, E. F. Stranadko, D. N. Panchenkov, V. V. Krylov, and V. B. Losche- nov, ‘‘Laser-induced fluorescent visualization and photodynamic therapy in surgical treatment of glial brain tumors,’’ Biomed. Opt. Express 12, 1761–1773 (2021). https://doi.org/10.1364/BOE.415936

    Article  Google Scholar 

  125. A. A. Potapov, S. A. Goryaynov, V. A. Okhlopkov, L. V. Shishkina, V. B. Loschenov, T. A. Savelieva, D. A. Golbin, A. P. Chumakova, M. F. Goldberg, M. D. Varyukhina, and A. Spallone, ‘‘Laser biospectroscopy and 5-ALA fluorescence navigation as a helpful tool in the meningioma resection,’’ Neurosurg. Rev. 39, 437–447 (2016). https://doi.org/10.1007/s10143-015-0697-0

    Article  Google Scholar 

  126. V. B. Loschenov, K. G. Linkov, T. A. Savelieva, M. V. Loschenov, S. S. Model, and A. V. Borodkin, ‘‘Hardware and tool equipment for fluorescence diagnostics and photodynamic therapy,’’ Fotodinamicheskaya Terapiya Fotodiagnostika 2 (3), 17–25 (2013).

    Google Scholar 

  127. D. Farrakhova, I. Romanishkin, Y. Maklygina, L. Bezdetnaya, and V. Loschenov, ‘‘Analysis of fluorescence decay kinetics of indocyanine green monomers and aggregates in brain tumor model in vivo,’’ Nanomaterials 11, 3185 (2021). https://doi.org/10.3390/nano11123185

    Article  Google Scholar 

  128. Sh.-Yu Tzeng, J.-Ya. Guo, Ch.-Ch. Yang, Ch.-K. Hsu, H. Ji Huang, Sh.-J. Chou, Ch.-H. Hwang, and Sh.-H. Tseng, ‘‘Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: a pilot study in psoriasis patients Biomed. Opt. Express 7, 616–628 (2016). https://doi.org/10.1364/BOE.7.000616

    Article  Google Scholar 

  129. A. A. Gavdush, N. V. Chernomyrdin, K. M. Ma- lakhov, Sh.-I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, ‘‘Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: A road toward intraoperative THz diagnosis,’’ J. Biomed. Opt. 24, 027001 (2019). https://doi.org/10.1117/1.JBO.24.2.027001

    Article  ADS  Google Scholar 

  130. O. Cherkasova, Y. Peng, M. Konnikova, Yu. Kistenev, Ch. Shi, D. Vrazhnov, O. Shevelev, E. Zavjalov, S. Kuznetsov, and A. Shkurinov, ‘‘Diagnosis of glioma molecular markers by terahertz technologies,’’ Photonics 8, 22 (2021). https://doi.org/10.3390/photonics8010022

    Article  Google Scholar 

  131. A. S. Kucheryavenko, N. V. Chernomyrdin, A. A. Gavdush, A. I. Alekseeva, P. V. Nikitin, I. N. Dolganova, P. A. Karalkin, A. S. Khalansky, I. E. Spektor, M. Skorobogatiy, V. V. Tuchin, and K. I. Zaytsev, ‘‘Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 101.8: Brain tissue heterogeneity,’’ Biomed. Opt. Express 12, 5272–5289 (2021). https://doi.org/10.1364/BOE.432758

    Article  Google Scholar 

  132. M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca, and F. Leblond, ‘‘Intraoperative brain cancer detection with Raman spectroscopy in humans,’’ Sci. Transl. Med. 7, 274ra19 (2015). https://doi.org/10.1126/scitranslmed.aaa2384

    Article  Google Scholar 

  133. https://surguide.nl/marginguide/. Cited Octo- ber 11, 2021.

  134. E. M. Barroso, R. W. H. Smits, C. G. F. van Lanschot, P. J. Caspers, I. ten Hove, H. Mast, A. Sewnaik, J. A. Hardillo, C. A. Meeuwis, R. Verdijk, V. Noordhoek Hegt, R. J. Baatenburg de Jong, E. B. Wolvius, T. C. Bakker Schut, S. Koljenović, and G. J. Puppels, ‘‘Water concentration analysis by Raman spectroscopy to determine the location of the tumor border in oral cancer surgery,’’ Cancer Res. 76, 5945–5953 (2016). https://doi.org/10.1158/0008-5472.CAN-16-1227

    Article  Google Scholar 

  135. S. Duraipandian, M. S. Bergholt, W. Zheng, Kh. Yu Ho, M. Teh, Kh. G. Yeoh, J. B. Yan So, A. Shabbir, and Zh. Huang, ‘‘Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,’’ J. Biomed. Opt. 17, 081418 (2012). https://doi.org/10.1117/1.JBO.17.8.081418

    Article  ADS  Google Scholar 

  136. M. S. Bergholt, W. Zheng, K. Yu Ho, M. Teh, Kh. G. Yeoh, J. B. Yan So, A. Shabbir, and Zh. Huang, ‘‘Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy,’’ J. Biophotonics 6, 49–59 (2013). https://doi.org/10.1002/jbio.201200138

    Article  Google Scholar 

  137. H. H. Kim, ‘‘Diagnostic, prognostic, and predictive molecular biomarkers and the utility of molecular imaging in common gastrointestinal tumors,’’ Biomed Res. Int. 2015, 670121 (2015). https://doi.org/10.1155/2015/670121

    Article  Google Scholar 

  138. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, ‘‘Near-infrared Raman spectroscopy for early diagnosis and typing of adenocarcinoma in the stomach,’’ Br. J. Surg. 97, 550–557 (2010). https://doi.org/10.1002/bjs.6913

    Article  Google Scholar 

  139. Endofotonics. http://www.endofotonics.com/. Cited October 11, 2021.

  140. J. Wang, K. Lin, W. Zheng, Kh. Yu Ho, M. Teh, Kh. G. Yeoh, and Zh. Huang, ‘‘Comparative study of the endoscope-based bevelled and volume fiber-optic Raman probes for optical diagnosis of gastric dysplasia in vivo at endoscopy,’’ Anal. Bioanal. Chem. 407, 8303–8310 (2015).

    Article  Google Scholar 

  141. A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, ‘‘A review of clinical photoacoustic imaging: Current and future trends,’’ Photoacoustics 16, 100144 (2019). https://doi.org/10.1016/j.pacs.2019.100144

    Article  Google Scholar 

  142. B. Lengenfelder, F. Mehari, M. Hohmann, M. Heinlein, E. Chelales, M. J. Waldner, F. Klämpfl, Z. Zalevsky, and M. Schmidt, ‘‘Remote photoacoustic sensing using speckle-analysis,’’ Sci. Rep. 9, 1057 (2019). https://doi.org/10.1038/s41598-018-38446-x

    Article  ADS  Google Scholar 

  143. S. de Assis, A. Warri, M. I. Cruz, O. Laja, Ye Tian, B. Zhang, Yu. Wang, T. Hui-M. Huang, and L. Hilakivi-Clarke, ‘‘High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring,’’ Nat. Commun. 3, 1053 (2012).

    Article  ADS  Google Scholar 

  144. L. Lin, P. Hu, X. Tong, Sh. Na, R. Cao, X. Yuan, D. C. Garrett, J.i Shi, K. Maslov, and L. V. Wang, ‘‘High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation,’’ Nat. Commun. 12, 882 (2021). https://doi.org/10.1038/s41467-021-21232-1

    Article  ADS  Google Scholar 

  145. Seno Medical. https://senomedical.com/. Cited October 11, 2021.

  146. M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar , ‘‘Photoacoustic image patterns of breast carcinoma and comparisons with magnetic resonance imaging and vascular stained histopathology,’’ Sci. Rep. 5, 11778 (2015). https://doi.org/10.1038/srep11778

    Article  ADS  Google Scholar 

  147. M. R. Hajihashemi, S. R. Grobmyer, S. Z. Al-Quran, and H. Jiang, ‘‘Noninvasive evaluation of nuclear morphometry in breast lesions using multispectral diffuse optical tomography,’’ PLoS One 7, e45714 (2012). doi 10.1371/journal.pone.0045714

    Article  ADS  Google Scholar 

  148. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, and K. D. Paulsen, ‘‘Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,’’ Appl. Opt. 38, 5480–5490 (1999). https://doi.org/10.1364/AO.38.005480

    Article  ADS  Google Scholar 

  149. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch Jr., S. Pathak, B. J. Czerniecki, J. C. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schwei- ger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, A. G. Yodh, ‘‘Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,’’ J. Biomed. Opt. 14, 024020 (2009). https://doi.org/10.1117/1.3103325

    Article  ADS  Google Scholar 

  150. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, ‘‘Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI,’’ Med. Phys. 32, 1128–1139 (2005). https://doi.org/10.1118/1.1869612

    Article  Google Scholar 

  151. G. W. Stone, A. Maehara, A. J. Lansky, B. de Bruyne, E. Cristea, G. S. Mintz, R. Mehran, J. McPherson, N. Farhat, S. P. Marso, H. Parise, B. Templin, R. White, Zh. Zhang, and P. W. Serruys, ‘‘A prospective natural-history study of coronary atherosclerosis,’’ N. Engl. J. Med. 364, 226–235 (2011). https://doi.org/10.1056/NEJMoa1002358

    Article  Google Scholar 

  152. R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, ‘‘Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,’’ J. Biomed. Opt. 20, 030901 (2015). https://doi.org/10.1117/1.JBO.20.3.030901

    Article  ADS  Google Scholar 

  153. Infraredx. https://www.infraredx.com/. Cited October 11, 2021.

  154. M. Jaguszewski, R. Klingenberg, and U. Landmesser, ‘‘Intracoronary near-infrared spectroscopy (NIRS) imaging for detection of lipid content of coronary plaques: Current experience and future perspectives,’’ Curr. Cardiovasc. Imaging Rep. 6, 426–430 (2013). https://doi.org/10.1007/s12410-013-9224-2

    Article  Google Scholar 

  155. Ik-K. Jang, ‘‘Near infrared spectroscopy,’’ Circ. Cardiovasc. Interv. 5, 10–11 (2012). https://doi.org/10.1161/CIRCINTERVENTIONS.111.967935

    Article  Google Scholar 

  156. N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, K. D. Elgass, J. Ri- vera, H. G. Schneider, B. R. Wood, R. Stocker, and K. Peter, ‘‘Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques,’’ Nat. Commun. 8, 75 (2017). https://doi.org/10.1038/s41467-017-00138-x

    Article  ADS  Google Scholar 

  157. G. J. Ughi, H. Wang, E. Gerbaud, J. A. Gardecki, A. M. Fard, E. Hamidi, P. Vacas-Jacques, M. Ro- senberg, F. A. Jaffer, and G. J. Tearney, ‘‘Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging,’’ JACC Cardiovasc. Imaging 9, 1304–1314 (2016). https://doi.org/10.1016/j.jcmg.2015.11.020

    Article  Google Scholar 

  158. M. S. Albaghdadi, R. Ikegami, M. B. Kassab, J. A. Gardecki, M. Kunio, M. M. Chowdhury, R. Khamis, P. Libby, G. J. Tearney, and F. A. Jaffer, ‘‘Near-infrared autofluorescence in atherosclerosis associates with ceroid and is generated by oxidized lipid-induced oxidative stress,’’ Arterioscler. Thromb. Vasc. Biol. 41, e385 (2021). https://doi.org/10.1161/ATVBAHA.120.315612

    Article  Google Scholar 

  159. J. Bec, J. E. Phipps, D. Gorpas, D. Ma, H. Fatakdawala, K. B. Margulies, J. A. Southard, and L. Marcu, ‘‘In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system,’’ Sci. Rep. 7, 8960 (2017). https://doi.org/10.1038/s41598-017-08056-0

    Article  ADS  Google Scholar 

  160. C. Li, J. Bec, X. Zhou, and L. Marcu, ‘‘High performance FLIm/OCT catheter system compatible for biochemical/structural evaluation of atherosclerosis,’’ Proc. SPIE 11621, 116210P (2021). https://doi.org/10.1117/12.2577322

    Article  Google Scholar 

  161. M. M. Lukina, M. V. Shirmanova, T. F. Sergeeva, and E. V. Zagaynova, ‘‘Metabolic imaging in the study of oncological processes,’’ Mod. Technol. Med. 8 (4), 113–128 (2016). https://doi.org/10.17691/stm2016.8.4.16

    Article  Google Scholar 

  162. J. Bec, T. A. Shaik, C. Krafft, T. W. Bocklitz, A. Alfonso-Garcia, K. B. Margulies, J. Popp, and L. Marcu, ‘‘Investigating origins of FLIm contrast in atherosclerotic lesions using combined FLIm-Raman spectroscopy,’’ Front. Cardiovasc. Med. 7, 122 (2020). https://doi.org/10.3389/fcvm.2020.00122

    Article  Google Scholar 

  163. S. Kim, H. Yoo, and J. W. Kim, ‘‘Long journey of intravascular imaging: What and how to look at the atheroma in coronary artery,’’ JACC Cardiovasc. Imaging 14, 1843–1845 (2021). https://doi.org/10.1016/j.jcmg.2020.11.015

    Article  Google Scholar 

  164. Y. Sun, S. You, X. Du, A. Spaulding, Z. G. Liu, E. J. Chaney, D. R. Spillman, Jr., M. Marjanovic, H. Tu, and S. A. Boppart, ‘‘Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy,’’ Quant. Imaging Med. Surg. 10, 2177–2190 (2020). https://doi.org/10.21037/qims-20-381

    Article  Google Scholar 

  165. M.-J. Bertrand, M. Abran, F. Maafi, D. Busseuil, N. Merlet, T. Mihalache-Avram, P. Geoffroy, P.-L. Tardif, A. Abulrob, M. Arbabi-Ghahroudi, F. Ni, M. Sirois, Ph. L. L’Allier, É. Rhéaume, F. Lesage, and J.-C. Tardif, ‘‘In vivo near-infrared fluorescence imaging of atherosclerosis using local delivery of novel targeted molecular probes,’’ Sci. Rep. 9, 2670 (2019). https://doi.org/10.1038/s41598-019-38970-4

    Article  ADS  Google Scholar 

  166. Invenio Imaging. https://www.invenio-imaging.com/. Cited October 11, 2021.

  167. D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hol- lon, J. Boyle, S. Lewis, M. Garrard, Sh. L. Hervey-Jumper, H. J. L. Garton, C. O. Maher, J. A. Heth, O. Sagher, D. A. Wilkinson, M. Snuderl, S. Venneti, Sh. H. Ramkissoon, K. A. McFadden, A. Fisher-Hubbard, A. P. Lieberman, T. D. Johnson, X. Sunney Xie, J. K. Trautman, C. W. Freudiger, and S. Camelo-Piragua, ‘‘Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,’’ Nat. Biomed. Eng. 1, 0027 (2017). https://doi.org/10.1038/s41551-016-0027

  168. T. C. Hollon, B. Pandian, A. R. Adapa, E. Urias, A. V. Save, S. S. S. Khalsa, D. G. Eichberg, R. S. D’Amico, Z. U. Farooq, S. Lewis, P. D. Pet- ridis, T. Marie, A. H. Shah, H. J. L. Garton, C. O. Maher, J. A. Heth, E. L. McKean, S. E. Sullivan, Sh. L. Hervey-Jumper, P. G. Patil, B. Gregory Thompson, O. Sagher, G. M. McKhann, II, R. J. Komotar, M. E. Ivan, M. Snuderl, M. L. Otten, T. D. Johnson, M. B. Sisti, J. N. Bruce, K. M. Muras- zko, J. Trautman, C. W. Freudiger, P. Canoll, H. Lee, S. Camelo-Piragua, and D. A. Orringer, ‘‘Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks,’’ Nat. Med. 26, 52–58 (2020). https://doi.org/10.1038/s41591-019-0715-9

    Article  Google Scholar 

Download references

Funding

This work was carried out within the program of the development of the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University ‘‘Photonic and Quantum Technologies. Digital Medicine.’’

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Shirshin, B. P. Yakimov, N. V. Zlobina, D. A. Davydov, A. G. Armaganov, V. V. Fadeev, N. N Sysoev or A. A. Kamalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirshin, E.A., Yakimov, B.P., Budylin, G.S. et al. Biomedical Photonics for Intraoperative Diagnostics: Review of Capabilities and Clinical Applications. Moscow Univ. Phys. 77, 777–800 (2022). https://doi.org/10.3103/S002713492206011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492206011X

Keywords:

Navigation