Skip to main content
Log in

Justification of Geometry and Loading Conditions of the Imitation Model of the GTE Turbine Disc

  • STRUCTURAL MECHANICS AND STRENGTH OF FLIGHT VEHICLES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

In this paper, the analysis of the existing methods for testing the turbine discs by imitation modeling is performed. The requirements for the geometry of the imitation model for gas turbine engine disc are determined. Variants of geometry and methods of loading for imitation models are proposed and investigated. The optimal method for modeling the critical stress concentration region in the area of the through hole in the disc hub is justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Shlyannikov, V.N., Zakharov, A.P., and Tumanov, A.V., Nonlinear Fracture Resistance Parameters for Elements of Aviation Structures under Biaxial Loading, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 3, pp. 22–27 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 3, pp. 340–346].

    Google Scholar 

  2. Nikhamkin, M.Sh. and Vyatchanin, D.A., A Probabilistic Assessment of Cycle Life of GTE Discs Made of Granular Materials, Izv. Vuz. Av. Tekhnika, 2008, vol. 51, no. 1, pp. 70–71 [Russian Aeronautics (Engl. Transl.), vol. 51, no. 1, pp. 94–96].

    Google Scholar 

  3. Shlyannikov, V.N., Yarullin, R.R., and Ishtyryakov, I.S., Lifetime Assessment for a Cracked Compressor Disc Based on the Plastic Stress Intensity Factor, Izv. Vuz. Av. Tekhnika, 2020, vol. 63, no. 1, pp. 15–24 [Russian Aeronautics (Engl. Transl.), vol. 63, no. 1, pp. 14–24].

    Google Scholar 

  4. Servetnik, A.N. and Shadrin, D.V., RU Patent no. 2685438, Byull. Izobret., 2019, no. 11.

  5. Yakovlev, M.M. and Yarullin, R.R., Imitation Modeling Methods of Operation Loading Conditions for Turbomachinery Elements, Trudy Academenergo, 2019, no. 4, p. 51–64.

    Article  Google Scholar 

  6. Tumanov, A.V., Automatization of Mixed Mode Crack Growth Rate Test Using Drop Potential Method, Trudy Academenergo, 2014, no. 4, p. 64–71.

    Google Scholar 

  7. Tumanov, A.V., Shlyannikov, V.N., and Chandra Kishen J.M., An Automatic Algorithm for Mixed Mode Crack Growth Rate Based on Drop Potential Method, Int. Journal of Fatigue, 2015, vol. 81, pp. 227–237.

    Article  Google Scholar 

  8. Shlyannikov, V.N. and Shkanov, I.N., USSR Inventor’s Certificate no. 1227974, Byull. Izobret., 1986, no. 16.

  9. Shanyavskii, A.A., Bezopasnoe ustalostnoe razrushenie elementov aviakonstruktsii. Sinergetika v inzhenernykh prilozheniyakh (Tolerance Fatigue Cracking of Aircraft Components. Synergetics in Engineering Applications), Ufa: Monografiya, 2003.

    Google Scholar 

  10. Shkanov, I.N., Braude, N.Z., and Ganiev, M.M., USSR Inventor’s Certificate no. 1504548, Byull. Izobret., 1989, no. 32.

  11. Velikanova, N.P., Botvina, L.R., and Okatova, G.P., Design and Experimental Studies of Low-Cycle Fatigue Defects in Turbine Discs of Aircraft Long-Life Gas Turbine Engines, Izv. Vuz. Av. Tekhnika, 2008, vol. 51, no. 4, pp. 34–37 [Russian Aeronautics (Engl. Transl.), vol. 51, no. 4, pp. 396–401].

    Google Scholar 

  12. ASTM Standard E8-04. Standard Test Method for Tension Testing of Metallic Materials, American Society for Testing and Materials, West Conshohocken: ASTM International, 2004.

  13. Timofeev, N.I., Konstruktsiya i letnaya ekspluatatsiya dvigatelya NK-8-2U (Design and Flight Operation of the NK-8-2U Engine), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  14. Shlyannikov, V.N., Ishtyryakov, I.S., and Tumanov A.V., Characterization of the Nonlinear Fracture Resistance Parameters for an Aviation GTE Turbine Disc, Fatigue and Fracture of Engineering Materials and Structures, 2020, vol. 43, no. 8, pp. 1686–1702.

    Article  Google Scholar 

  15. Knott, J.F., Fundamentals of Fracture Mechanics, London: Butterworths, 1973.

    Google Scholar 

  16. Inozemtsev, A.A. and Sandratskii, V.L., Gazoturbinnye dvigateli (Gas Turbine Engines), Perm: OAO Aviadvigatel’, 2006.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study of stress-strain state for disc was supported by the Russian Foundation for Basic Research, project no. 20-38-70030, the imitation model geometry optimization assigned to FRC Kazan Scientific Center of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sulamanidze.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 1, pp. 18 - 26.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulamanidze, A.G., Shlyannikov, V.N. & Yarullin, R.R. Justification of Geometry and Loading Conditions of the Imitation Model of the GTE Turbine Disc. Russ. Aeronaut. 64, 18–27 (2021). https://doi.org/10.3103/S1068799821010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821010037

Keywords

Navigation