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Abstract—This work contributes to the research devoted to the recognition of a convex body
by probabilistic characteristics of its lower-dimensional sections. In this paper, for any convex
quadrilateral, five orientation-dependent characteristics are introduced and explicitly evaluated per
direction. In terms of these characteristics, simple explicit representations of the orientation-
dependent chord length distribution function and the covariogram are obtained not only for an
arbitrary convex quadrilateral but also for any right prism based on it.
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1. INTRODUCTION

Inferring properties of an unknown convex body D ⊂ R
n with a non-empty interior from its chord

length measurements is one of the fundamental problems in geometric tomography. Although it is
known that the body cannot be characterized by its chord length distribution (see [1]), there are positive
results when the distribution function is known for each separate direction. Such a function is known as
an orientation-dependent chord length distribution function (ODCLD).

On the other hand, the problem of finding the ODCLD function is equivalent to the problem of finding
the function

CD(x) = Ln(D ∩ {D+ x}), x ∈ R
n,

where D+ x = {P + x : P ∈ D} and Ln(·) is the n-dimensional Lebesgue measure in R
n. This

function is called the covariogram of D.
The hypothesis [2] thatD can be determined from its covariogram was rejected whenn ≥ 4 (see [4, 5])

and confirmed when D is a planar convex domain (see [6]), or a three-dimensional convex polytope (see
[7]). Since then, numerous papers have been published with the objective of achieving an explicit form of
the ODCLD function or the covariogram for a specific body D ⊂ R

n. In particular, when n = 2, 3, the
research includes the articles [8] and [9], where D is a triangle or a parallelogram, [10] and [11], where D
is a regular polygon, an ellipse, or a prism with a triangular or elliptical base. The most recent research
in this direction is reflected in [12, 13], and [14], where the ODCLD function and the covariogram are
found for some quadrilateral prisms and their rectangular or trapezoidal bases.

This paper focuses on finding an explicit representation of the ODCLD function for an arbitrary
convex quadrilateral. The quadrilateral is closed: it contains its interior points and the boundary.

The necessary terminology and characteristics of the quadrilateral to build the ODCLD function are
provided in Sections 2 and 3. Particularly, we extend there the concept of a ϕ-diameter for a polygon
introduced by David Mount [3], and then define supplementary measures for a standard image (defined
in section 2) of a convex quadrilateral. Readers, already familiar with the concept of X-ray (refer to
Chapter 1 of [4]), may benefit while contemplating the origins and significance of the newly introduced

*E-mail: davit.martirosyan@ysu.am

416



ORIENTATION-DEPENDENT CHORD LENGTH DISTRIBUTION 417

orientation-dependent characteristics. To determine the ODCLD function, acquiring orientation-
dependent X-rays is sufficient (see, for example, [15]). These X-rays, which exhibit convex functions
with up to three graph pieces for a convex quadrilateral, can be accurately determined using ϕ-diameters
and supplementary ϕ-measures as necessary parameters.

The main synthetic results are presented in Section 4, where the ODCLD function and the covar-
iogram of a convex quadrilateral are found in terms of the lengths of orientation-dependent diameters
and supplementary measures. As an application, in the last section, the analogs of those results are
established for quadrilateral prisms. All orientation-dependent computations are processed in Section 5.

2. A STANDARD IMAGE OF A QUADRILATERAL

In a Cartesian plane, for any convex quadrilateral D there are points B(b, 0), b > 0, A ∈ {(x, y) :
x ≥ 0, y > 0}, and C ∈ {(x, y) : x > 0, y > 0} such that D is congruent to the quadrilateral OACB,
where O is the origin of coordinates. We will call such a quadrilateral an image of D. The side OB will
be called the base, the sides OA and BC will be called legs, α and β will stand for the inclination angles
(measured anticlockwise from the positive direction of x-axis) of the legs OA and BC, respectively.
If α ≤ β then the quadrilateral OABC will be called a standard image of D.

Proposition 2.1. Every convex quadrilateral D has a standard image.

Proof. Let OACB be an image of D. Then let θA and θC be the internal angles at the vertices A and
C, respectively. If β < α then θA + θC < π.

If θA < π
2 , consider the Euclidean transformation T that rotates the plane clockwise about the

origin by α and then reflects it on the x-axis. Then OA′C ′B′ becomes a standard image of D, where
A′ = T (B), B′ = T (A), and C ′ = T (C). Indeed, if α′ and β′ are the corresponding inclination angles
of the legs OA′ and B′C ′, then

α′ = α ≤ π

2
< π − θA = β′.

If θC < π
2 , let T be the translation by

−−→
CO followed by the clockwise rotation by α+ θA about O.

Denoting A′ = T (B), B′ = T (A), and C ′ = T (O) we again obtain a standard image of D since

α′ = θC < π − θA = β′.

�
In addition to the length of the base, b and inclination angles of legs, α and β, we introduce two more

parameters for OACB, a standard image of D. Let α0 and β0 be the inclination angles of the diagonals
OC and BA, respectively. Obviously,

α0 < α ≤ β < β0,

and any standard image is determined by the five parameters b, α0, α, β, β0. We will utilize the notation

Ds = [b, α0, α, β, β0]

for a standard image. For example, a rectangle with sides of lengths 1 and
√
3 has two standard images,

D
(1)
s = [1, π3 ,

π
2 ,

π
2 ,

2π
3 ] and D

(2)
s = [

√
3, π6 ,

π
2 ,

π
2 ,

5π
6 ].

The values α0, α, β, β0 determine another parameter γ, the inclination angle of AC. It is easy to check
that

tan γ =
cotα+ cot β − cotα0 − cot β0

cotα cot β − cotα0 cot β0
.

We classify the standard images into two categories based on the value of γ. Due to convexity of D,
either 0 ≤ γ < α0, or β0 < γ < π. If the first inequality occurs, we will call the standard image to be
of Type 1, otherwise, of Type 2. For example, a right-angled trapezoid has five standard images, where
three of them are of Type 1, and two are of Type 2. Any parallelogram has only standard images of Type 1,
whereas any kite with three congruent obtuse internal angles permits only standard images of Type 2.
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3. ORIENTATION-DEPENDENT DIAMETERS AND SUPPLEMENTARY MEASURES

Let Ds be a standard image of a convex quadrilateral D ⊂ R
2. Consider the vector

φ = (cosϕ, sinϕ) ∈ S
1,

and let lϕ be the subspace of R2 spanned by φ. By φ⊥ we denote the orthogonal complement of lϕ. For
any y ∈ φ⊥, let lϕ + y be the line which is parallel to φ and passes through y. Denote

χ(lϕ + y) = L1

(
(lϕ + y) ∩Ds

)
.

If the line lϕ + y intersects Ds, then we will say that it makes a chord in Ds of length χ(lϕ + y). Denote

Πx
E(ϕ) = {y ∈ ΠE(ϕ) : χ(lϕ + y) ≤ x},

where ΠE(ϕ) is the orthogonal projection of E ⊂ R
2 onto φ⊥. Assuming that y is uniformly distributed

over ΠDs(ϕ), the chord length distribution function in direction φ for Ds is defined by

FDs(x, ϕ) =
L1

(
Πx

Ds
(ϕ)

)

bDs(ϕ)
, (3.1)

where bDs(ϕ) = L1(ΠDs(ϕ)).
Hereinafter, since lϕ−π = lϕ, we will assume ϕ ∈ [0, π).
To determine the distribution function FDs(x, ϕ) we need the quantities (introduced in [13])

x0(ϕ) = min
y∈φ⊥

v

χ(lϕ + y) and x1(ϕ) = max
y∈φ⊥

v

χ(lϕ + y),

where φ⊥
v is the set of vectors y ∈ φ⊥ so that the line lϕ + y passes through a vertex of Ds and makes a

chord of positive Lebesgue measure there. The quantity x1(ϕ) coincides with

xmax(ϕ) = max
y∈ΠDs (ϕ)

χ(lϕ + y),

and any chord of length xmax(ϕ) is known as a ϕ-diameter of Ds (see [3]). In this paper, where
convenient, we will call it a first-order ϕ-diameter of Ds. Any chord of length x0(ϕ) will be called
a second-order ϕ-diameter of Ds.

Below, in addition to x0(ϕ) and x1(ϕ), we aim to introduce three more orientation-dependent
characteristics 
0(ϕ), 
(ϕ), and 
1(ϕ) of the standard image Ds = [b, α0, α, β, β0]. These characteristics
will be non-negative continuous functions and will satisfy to bDs(ϕ) = 
0(ϕ) + 
(ϕ) + 
1(ϕ) for all
ϕ ∈ [0, π). We will call them supplementary ϕ-measures of Ds.

Case 1: Ds has no parallel sides. We have γ > 0 and α < β. Then for any ϕ the first and the
second-order ϕ-diameters are unique. Let them be (lϕ + y1) ∩Ds and (lϕ + y0) ∩Ds, respectively.
If ϕ 	= α0 and ϕ 	= β0 then y0 	= y1. In the case when y0, y1 ∈ int

(
ΠDs(ϕ)

)
, they partition ΠDs(ϕ)

into three segments: the middle segment, the side-segment adjacent to y0, and the other side-segment
adjacent to y1. We denote the lengths of those segments by 
(ϕ), 
0(ϕ), and 
1(ϕ), respectively. If
y0 ∈ ∂ΠDs(ϕ) or y1 ∈ ∂ΠDs(ϕ), we define correspondingly 
0(ϕ) = 0 or 
1(ϕ) = 0.

When ϕ = α0 or ϕ = β0, the first and the second-order ϕ-diameters coincide. We extend the
definitions of 
, 
0, and 
1 preserving their continuous dependence on ϕ:


(α0) = 
(β0) = |y0 − y1| = 0, 
0(α0) = lim
ϕ→α0


0(ϕ),


0(β0) = lim
ϕ→β0


0(ϕ), 
1(α0) = lim
ϕ→α0


1(ϕ), 
1(β0) = lim
ϕ→β0


1(ϕ).

Case 2: Ds has exactly one pair of parallel sides.
Subcase 2.1: Let γ = 0 and α < β. Uniqueness of the first and the second-order ϕ-diameters takes

place if and only if ϕ ∈ [0, α0] ∪ [β0, π). If ϕ 	= α0 and ϕ 	= β0, we define y0, y1, and then 
(ϕ), 
0(ϕ),

1(ϕ) the same way we did it in Case 1. The values at α0 and β0 are defined below:


(α0) = 
(β0) = 0,
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0(α0) = 
0(α0−), 
0(β0) = 
0(β0+), 
1(α0) = 
1(α0−), 
1(β0) = 
1(β0+).

The case α0 < ϕ < β0 yields x0(ϕ) = x1(ϕ), so we face infinitely many ϕ-diameters. Here by 
(ϕ) we
denote the distance between the two farthest ϕ -diameters, (lϕ + y0) ∩Ds and (lϕ + y1) ∩Ds. Using
these vectors y0 and y1, we define 
(ϕ), 
0(ϕ), 
1(ϕ) again by the algorithm provided in Case 1.

Subcase 2.2: Now let γ > 0 and α = β. The first and the second-order ϕ-diameters are unique if
and only if ϕ ∈ [α0, β0]. For ϕ ∈ (α0, β0) we define y0, y1, and then 
(ϕ), 
0(ϕ), 
1(ϕ) by the algorithm
of Case 1. For the boundary values we define


(α0) = 
(β0) = 0,


0(α0) = 
0(α0+), 
0(β0) = 
0(β0−), 
1(α0) = 
1(α0+), 
1(β0) = 
1(β0−).

If ϕ /∈ [α0, β0] then x0(ϕ) = x1(ϕ), so Ds has infinitely many ϕ-diameters. We define 
(ϕ), 
0(ϕ), 
1(ϕ)
the same way as we did it in Subcase 2.1 for ϕ ∈ (α0, β0).

Case 3: Ds has two pairs of parallel sides. In a parallelogram, x0(ϕ) = x1(ϕ) holds for any value
of ϕ. We define


(ϕ) = |y0 − y1|,
and


0(ϕ) = 
1(ϕ) =
bDs(ϕ)− 
(ϕ)

2
,

where (lϕ + y0) ∩Ds and (lϕ + y1) ∩Ds are the two farthest ϕ - diameters of Ds.

4. REPRESENTATION OF THE ORIENTATION-DEPENDENT CHORD LENGTH
DISTRIBUTION FUNCTION AND THE COVARIOGRAM

The following theorem represents the function introduced in (3.1) in terms of the lengths of
orientation-dependent diameters and supplementary measures.

Theorem 4.1. Let Ds be a standard image of a convex quadrilateral D and 0 ≤ ϕ < π. If x1, x0
are the lengths of respectively the first and the second-order ϕ-diameters, and 
0, 
, 
1 are the
supplementary ϕ-measures of Ds, then

FDs(x, ϕ) =
1


0 + 
+ 
1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if x < 0(

0
x0

+

1
x1

)
x, if 0 ≤ x < x0(ϕ)


0 +
x− x0
x1 − x0


+
x

x1

1, if x0(ϕ) ≤ x < x1(ϕ)


0 + 
+ 
1, if x ≥ x1(ϕ)

. (4.1)

Proof. The statement is obvious when x < 0 or x ≥ x1. Below we assume 0 ≤ x < x1.
Case A:ϕ is such that x0(ϕ) < x1(ϕ). Let (lϕ + y1)∩Ds and (lϕ + y0)∩Ds be the first and second-

order ϕ - diameters of Ds. If y0, y1 ∈ int
(
ΠDs(ϕ)

)
, then the mentioned diameters partition Ds into two

triangles T0(ϕ), T1(ϕ), and a trapezoid T(ϕ), where T0 is based on the second-order diameter and
has a height of length 
0, T1 is based on the first-order diameter and has a height of length 
1, and the
trapezoid T is based on the mentioned diameters and has a height of length 
. Then

L1

(
Πx

Ds
(ϕ)

)
=

1∑

i=0

L1

(
Πx

Ti
(ϕ)

)
+ L1

(
Πx

T(ϕ)
)
. (4.2)

If 0 ≤ x < x0, then Πx
T(ϕ) = ∅ and

L1

(
Πx

Ti
(ϕ)

)
=

x

xi
L1

(
ΠTi(ϕ)

)
=

x

xi

i.

If x0 ≤ x < x1, then

L1

(
Πx

T0
(ϕ)

)
= L1

(
ΠT0(ϕ)

)
= 
0,
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L1

(
Πx

T1
(ϕ)

)
=

x

x1
L1

(
ΠT1(ϕ)

)
=

x

x1

1,

and

L1

(
Πx

T(ϕ)
)
=

x− x0
x1 − x0

L1

(
ΠT(ϕ)

)
=

x− x0
x1 − x0


.

Now according to (3.1) and (4.2), we obtain

FDs(x, ϕ) =
1

bDs(ϕ)

(
x

x0

0 +

x

x1

1

)
, for 0 ≤ x < x0, (4.3)

and

FDs(x, ϕ) =
1

bDs(ϕ)

(

0 +

x− x0
x1 − x0


+
x

x1

1

)
, for x0 ≤ x < x1. (4.4)

Formula (4.2) works for such values of ϕ that imply yi 	∈ int
(
ΠDs

)
for i = 0 or i = 1. In this case, Ti

turns into the segment (lϕ + yi) ∩Ds, and yields

L1

(
Πx

Ti
(ϕ)

)
= L1

(
ΠTi(ϕ)

)
= 
i(ϕ) = 0.

Since li(ϕ) has been defined as a continuous function, the formulas (4.3) and (4.4) remain valid.

Case B: ϕ is such that x0(ϕ) = x1(ϕ). Consider (lϕ + y1)∩Ds and (lϕ + y0)∩Ds, the two farthest
ϕ — diameters of Ds. If y0 	= y1 and they both belong to int

(
ΠDs(ϕ)

)
then DS will be partitioned into

the two triangles T0(ϕ), T1(ϕ), and the trapezoid T(ϕ) defined in Case A. If y0 = y1 or yi 	∈ int
(
ΠDs

)

for i = 0 or i = 1, then T, or correspondingly, Ti, turns into the segment (lϕ + yi) ∩Ds. In all these
scenarios the formula (4.2) does operate, and since the functions 
i(ϕ) are continuous, it implies (4.3).
�

Corollary 4.1. The function FDs(·, ϕ) is continuous on the real axis if and only if the ϕ-diameter of
Ds is unique. If for someϕ, the ϕ-diameter of Ds is not unique thenFDS

(·, ϕ) holds a jump discontinuity
at xmax(ϕ). The jump is equal to





0 + 
+ 
1
.

Proof. A ϕ-diameter is unique if and only if x0(ϕ) < x1(ϕ), or x0(ϕ) = x1(ϕ) but 
(ϕ) = 0. Due to
(4.1), this is equivalent to the continuity of FDS

(·, ϕ).
If a ϕ-diameter is not unique, then x0(ϕ) = x1(ϕ) = xmax(ϕ) and 
(ϕ) > 0. Hence, FDs(xmax(ϕ)+,

ϕ) = 1 whereas FDs(xmax(ϕ)−, ϕ) = �0+�1
�0+�+�1

= 1− �
�0+�+�1

. �
From now on, the notation CE(t, ϕ) will be used for the covariogram CE(tφ), where E ⊂ R

2 and
t ≥ 0. Further in the text, ‖E‖ will stand for the area of E.

Theorem 4.2. Let Ds be a standard image of a convex quadrilateral D and 0 ≤ ϕ < π. If x1, x0
are the lengths of respectively the first and the second-order ϕ-diameters, and 
0, 
, 
1 are the
supplementary ϕ-measures of Ds, then CDs(t, ϕ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0
0 + (x0 + x1)
+ x1
1
2

− (
0 + 
+ 
1)t+
1

2

(

0
x0

+

1
x1

)
t2, if 0 ≤ t < x0

1

2

(

1
x1

+



x1 − x0

)
(x1 − t)2, if x0 ≤ t < x1

0, if t ≥ x1

.

Proof. The case t ≥ x1 is obvious so below we assume 0 ≤ t < x1.
Due to the Matheron formula [2], p. 86, we have

∂CDs(t, ϕ)

∂t
= −L1

({
y ∈ φ⊥ : L1 (Ds ∩ (lϕ + y)) ≥ t

})
,
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which can be rewritten in terms of the orientation-dependent chord length distribution function as

∂CDs(t, ϕ)

∂t
= −bDs(ϕ) · [1− FDs(t, ϕ)].

Integration of both parts of the last formula yields

CDs(t, ϕ) = CDs(0, ϕ) − bDs(ϕ) · t+ bDs(ϕ) ·
t∫

0

FDs(u, ϕ)du, t ≥ 0. (4.5)

Since

CDs(0, ϕ) = ‖Ds‖ =
x0
0 + (x0 + x1)
+ x1
1

2
,

bDs(ϕ) = 
0(ϕ) + 
(ϕ) + 
1(ϕ),

and
t∫

0

(

0
x0

+

1
x1

)
udu =

1

2

(

0
x0

+

1
x1

)
t2,

then the required form of CDs(t, ϕ), where 0 ≤ t < x0, immediately follows from (4.5) and Theorem 4.1.
If x0 ≤ t < x1, then we use the corresponding part of Theorem 4.1 in (4.5):

CDs(t, ϕ) = CDs(0, ϕ) − bDs(ϕ) · t+
1

2

(

0
x0

+

1
x1

)
x20 +

t∫

x0


0 +
u− x0
x1 − x0


+
u

x1

1du.

Computation of the integral followed by the regrouping of similar terms produces

CDs(t, ϕ) =
x21


2(x1 − x0)
+

x1
1
2

−
(

x1


x1 − x0
+ 
1

)
· t+ 1

2

(

1
x1

+



x1 − x0

)
· t2

=
1

2

(

1
x1

+



x1 − x0

)
(x1 − t)2.

5. COMPUTATION OF ORIENTATION-DEPENDENT DIAMETERS
AND SUPPLEMENTARY MEASURES

For a standard image Ds = [b, α0, α, β, β0], we denote

Λ = {α, β}, Δ = {α0, β0}, Σ = {0, α, γ, β},
which are the sets of the inclination angles of the legs, diagonals, and the sides of Ds, respectively. For
any ϕ ∈ [0, π), we define the functions Xϕ : Λ×Δ×Σ \ {ϕ} −→ R and Lϕ : (Λ×Δ)∪ (Δ×Λ) −→ R

by

Xϕ(x, y, z) =
b sinx sin(y − z)

sin(y − x) sin(z − ϕ)
,

Lϕ(x, y) =
b sin(x− ϕ) sin y

sin(x− y)
.

Theorem 5.1. Let Ds = [b, α0, α, β, β0] be a standard image of Type 1 of a convex quadrilateral
D. If x1, x0 are the lengths of respectively the first and the second-order ϕ-diameters of Ds, then

i. x0(ϕ) = Xϕ(α, β0, β) and x1(ϕ) = Xϕ(β, α0, β), for 0 ≤ ϕ < γ;

ii. x0(ϕ) = Xϕ(β, α0, α) and x1(ϕ) = Xϕ(β, α0, β), for γ ≤ ϕ < α0;
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iii. x0(ϕ) = Xϕ(β, α0, γ) and x1(ϕ) = Xϕ(β, α0, 0), for α0 ≤ ϕ < α;

iv. x0(ϕ) = −Xϕ(α, β0, 0) and x1(ϕ) = Xϕ(β, α0, 0), for α ≤ ϕ < β;

v. x0(ϕ) = −Xϕ(α, β0, 0) and x1(ϕ) = −Xϕ(α, β0, γ), for β ≤ ϕ < β0;

vi. x0(ϕ) = −Xϕ(α, β0, β) and x1(ϕ) = −Xϕ(α, β0, α), for β0 ≤ ϕ < π.

Proof. Let the quadrilateral Ds = OACB not have any pair of parallel sides. The lengths of the
diagonals AB and OC are

dAB =
b sinα

sin(β0 − α)
and dOC =

b sin β

sin(β − α0)
. (5.1)

We denote Π{A}(ϕ) = yA, Π{C}(ϕ) = yC , and Π{B}(ϕ) = yB . Then the first and the second-order ϕ-
diameters of Ds are, respectively, equal to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lϕ ∩Ds and (lϕ + yA) ∩Ds, if 0 ≤ ϕ < γ

lϕ ∩Ds and (lϕ + yC) ∩Ds, if γ ≤ ϕ < α0

(lϕ + yC) ∩Ds and lϕ ∩Ds, if α0 ≤ ϕ < α

(lϕ + yC) ∩Ds and (lϕ + yA) ∩Ds, if α ≤ ϕ < β

(lϕ + yB) ∩Ds and (lϕ + yA) ∩Ds, if β ≤ ϕ < π

. (5.2)

To compute x0(ϕ) we initially assume that the chosen direction φ is not parallel to any side or a diagonal
of Ds, which means ϕ 	∈ Δ ∪ Σ. This allows us to determine uniquely the triangle, where one of its
sides is the second-order diameter of Ds and another side is the diagonal that shares an endpoint with
the mentioned diameter. In that triangle, the internal angles that occurred in front of the second-order
diameter and in front of the corresponding diagonal, are respectively equal to

β0 − β and β − ϕ, if 0 < ϕ < γ; α− α0 and π − α+ ϕ, if γ < ϕ < α0;

α0 − γ and π − ϕ+ γ, if α0 < ϕ < α; π − β0 and ϕ, if α < ϕ < β;

π − β0 and ϕ, if β < ϕ < β0; β0 − β and π − ϕ+ β, if β0 < ϕ < π.

Since x0 ∈ C[0, π), by (5.1), (5.2) and the Law of sines we conclude

x0(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dAB
sin(β0 − β)

sin(β − ϕ)
= Xϕ(α, β0, β), if 0 ≤ ϕ < γ

dOC
sin(α− α0)

sin(α− ϕ)
= Xϕ(β, α0, α), if γ ≤ ϕ < α0

dOC
sin(α0 − γ)

sin(ϕ− γ)
= Xϕ(β, α0, γ), if α0 ≤ ϕ < α

dAB
sinβ0
sinϕ

= −Xϕ(α, β0, 0), if α ≤ ϕ < β0

dAB
sin(β0 − β)

sin(ϕ− β)
= −Xϕ(α, β0, β), if β0 ≤ ϕ < π

. (5.3)

To prove the required identities for x1(ϕ), we assume again that ϕ 	∈ Δ∪Σ. Consider the triangle, where
one of its sides is the first-order diameter of Ds and another side is the diagonal that shares an endpoint
with the mentioned diameter. In this case, the internal angles of the triangle that occurred in front of the
first-order diameter and in front of the corresponding diagonal, are respectively equal to

β − α0 and π − β + ϕ, if 0 < ϕ < γ or γ < ϕ < α0;

α0 and π − ϕ, if α0 < ϕ < α or α < ϕ < β;

π − β0 + γ and ϕ− γ, if β < ϕ < β0; β0 − α and π − ϕ+ α, if β0 < ϕ < π.
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As x1 ∈ C[0, π), we obtain

x1(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dOC
sin(β − α0)

sin(β − ϕ)
= Xϕ(β, α0, β), if 0 ≤ ϕ < α0

dOC
sinα0

sinϕ
= Xϕ(β, α0, 0), if α0 ≤ ϕ < β

dAB
sin(β0 − γ)

sin(ϕ− γ)
= −Xϕ(α, β0, γ), if β ≤ ϕ < β0

dAB
sin(β0 − α)

sin(ϕ− α)
= −Xϕ(α, β0, α), if β0 ≤ ϕ < π

. (5.4)

It remains to notice that the formulas (5.3) and (5.4) also hold if γ = 0 or α = β. �

Theorem 5.2. Let Ds = [b, α0, α, β, β0] be a standard image of Type 1 of a convex quadrilateral
D. If 
0, 
 and 
1 are the supplementary ϕ-measures of Ds, then


0(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lϕ(α, β0)− Lϕ(α0, β), if 0 ≤ ϕ < γ

Lϕ(α0, β)− Lϕ(α, β0), if γ ≤ ϕ < α0 or β0 ≤ ϕ < π

−Lϕ(α, β0), if α0 ≤ ϕ < α

Lϕ(α, β0), if α ≤ ϕ < β0

, (5.5)


(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Lϕ(α, β0), if 0 ≤ ϕ < γ

−Lϕ(α0, β), if γ ≤ ϕ < α0

Lϕ(α0, β), if α0 ≤ ϕ < α

Lϕ(α0, β)− Lϕ(α, β0), if α ≤ ϕ < β

Lϕ(β0, α), if β ≤ ϕ < β0

−Lϕ(β0, α), if β0 ≤ ϕ < π

, (5.6)


1(ϕ) =

⎧
⎪⎨

⎪⎩

b sinϕ, if 0 ≤ ϕ < α0 or β0 ≤ ϕ < π

Lϕ(β, α0), if α0 ≤ ϕ < β

−Lϕ(β, α0), if β ≤ ϕ < β0

. (5.7)

Proof. First of all, we notice that

L1(ΠE(ϕ)) = L1(E) sin |ε− ϕ|, (5.8)

for any line segment E ⊂ R
2, L1(E) < ∞ inclined by ε ∈ [0, π). When E is a diagonal of Ds, then

L1(E) can be read from (5.1). If E is a leg, we use either of the notations

sOA =
b sin β0

sin(β0 − α)
and sCB =

b sinα0

sin(β − α0)
(5.9)

for its length.

Let us first prove (5.6). For ϕ, being in either of the six intervals

[0, γ), [γ, α0), [α0, α), [α, β), [β, β0), [β0, π),

the corresponding six-term sequence of the quantity 
(ϕ) becomes

L1(ΠOA(ϕ)), L1(ΠOC(ϕ)), L1(ΠOC(ϕ)), L1(ΠOC(ϕ)) − L1(ΠOA(ϕ)),

L1(ΠAB(ϕ)), L1(ΠAB(ϕ)).
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Since the inclination angles of OA, OC, and AB are, respectively, α, α0, and β0, formulas (5.8), (5.9),
(5.1) yield 
(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sOA sin |α− ϕ| = b sin β0
sin(β0 − α)

sin(α− ϕ) = −Lϕ(α, β0), if 0 ≤ ϕ < γ

dOC sin |α0 − ϕ| = b sin β

sin(β − α0)
sin(α0 − ϕ) = −Lϕ(α0, β), if γ ≤ ϕ < α0

dOC sin |α0 − ϕ| = b sin β

sin(β − α0)
sin(ϕ− α0) = Lϕ(α0, β), if α0 ≤ ϕ < α

dOC sin |α0 − ϕ| − sOA sin |α− ϕ| = Lϕ(α0, β)− Lϕ(α, β0), if α ≤ ϕ < β

dAB sin |β0 − ϕ| = b sinα

sin(β0 − α)
sin(β0 − ϕ) = Lϕ(β0, α), if β ≤ ϕ < β0

dAB sin |β0 − ϕ| = b sinα

sin(β0 − α)
sin(ϕ− β0) = −Lϕ(β0, α), if β0 ≤ ϕ < π

.

Similarly, 
0(ϕ) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dOC sin |α0 − ϕ| − sOA sin |α− ϕ| = Lϕ(α, β0)− Lϕ(α0, β), if 0 ≤ ϕ < γ

sOA sin |α− ϕ| − dOC sin |α0 − ϕ| = Lϕ(α0, β)− Lϕ(α, β0), if γ ≤ ϕ < α0

sOA sin |α− ϕ| = −Lϕ(α, β0), if α0 ≤ ϕ < α

sOA sin |α− ϕ| = Lϕ(α, β0), if α ≤ ϕ < β

sOA sin |α− ϕ| = Lϕ(α, β0), if β ≤ ϕ < β0

dOC sin |α0 − ϕ| − sOA sin |α− ϕ| = Lϕ(α0, β)− Lϕ(α, β0), if β0 ≤ ϕ < π

,

and


1(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b sin |0− ϕ| = b sinϕ, if 0 ≤ ϕ < γ

b sin |0− ϕ| = b sinϕ, if γ ≤ ϕ < α0

sCB sin |β − ϕ| = Lϕ(β, α0), if α0 ≤ ϕ < α

sCB sin |β − ϕ| = Lϕ(β, α0), if α ≤ ϕ < β

sCB sin |β − ϕ| = −Lϕ(β, α0), if β ≤ ϕ < β0

b sin |0− ϕ| = b sinϕ, if β0 ≤ ϕ < π

,

which are equivalent to (5.5) and (5.7), respectively. �
Corollary 5.1. If a standard image Ds = [b, α0, α, β, β0] of a convex quadrilateral is of Type 1 then

bDs(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lϕ(β, α0), if 0 ≤ ϕ < γ

Lϕ(β0, α), if γ ≤ ϕ < α

b sinϕ, if α ≤ ϕ < β

Lϕ(α0, β), if β ≤ ϕ < π

. (5.10)

Proof. Since bDs(ϕ) = 
0(ϕ) + 
(ϕ) + 
1(ϕ), we substitute 
0(ϕ), 
(ϕ), and 
1(ϕ) by their cor-
responding expressions from (5.5), (5.6), and (5.7). To reach (5.10), it remains to check the identity
Lϕ(x, y) + Lϕ(y, x) = b sinϕ over the domain of Lϕ. �

The proofs of the following results for a standard image of Type 2 are omitted since they are similar to
the ones provided for Type 1.

Theorem 5.3. Let Ds = [b, α0, α, β, β0] be a standard image of Type 2 of a convex quadrilateral
D. If x1, x0 are the lengths of respectively the first and the second-order ϕ-diameters of Ds, then

i. x0(ϕ) = Xϕ(β, α0, α) and x1(ϕ) = Xϕ(β, α0, β), for 0 ≤ ϕ < α0;

ii. x0(ϕ) = Xϕ(β, α0, 0) and x1(ϕ) = Xϕ(β, α0, γ), for α0 ≤ ϕ < α;
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iii. x0(ϕ) = Xϕ(β, α0, 0) and x1(ϕ) = −Xϕ(α, β0, 0), for α ≤ ϕ < β;

iv. x0(ϕ) = −Xϕ(α, β0, γ) and x1(ϕ) = −Xϕ(α, β0, 0), for β ≤ ϕ < β0;

v. x0(ϕ) = −Xϕ(α, β0, β) and x1(ϕ) = −Xϕ(α, β0, α), for β0 ≤ ϕ < γ;

vi. x0(ϕ) = −Xϕ(β, α0, α) and x1(ϕ) = −Xϕ(α, β0, α), for γ ≤ ϕ < π.

Theorem 5.4. Let Ds = [b, α0, α, β, β0] be a standard image of Type 2 of a convex quadrilateral
D. If 
0, 
 and 
1 are the supplementary ϕ-measures of Ds, then


0(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lϕ(β0, α)− Lϕ(β, α0), if 0 ≤ ϕ < α0 or β0 ≤ ϕ < γ

Lϕ(β, α0), if α0 ≤ ϕ < β

−Lϕ(β, α0), if β ≤ ϕ < β0

Lϕ(β, α0)− Lϕ(β0, α), if γ ≤ ϕ < π

,


(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Lϕ(α0, β), if 0 ≤ ϕ < α0

Lϕ(α0, β), if α0 ≤ ϕ < α

Lϕ(β0, α)− Lϕ(β, α0), if α ≤ ϕ < β

Lϕ(β0, α), if β ≤ ϕ < β0

−Lϕ(β0, α), if β0 ≤ ϕ < γ

−Lϕ(β, α0), if γ ≤ ϕ < π

,


1(ϕ) =

⎧
⎪⎨

⎪⎩

b sinϕ, if 0 ≤ ϕ < α0 or β0 ≤ ϕ < π

−Lϕ(α, β0), if α0 ≤ ϕ < α

Lϕ(α, β0), if α ≤ ϕ < β0

.

Corollary 5.2. If a standard image Ds = [b, α0, α, β, β0] of a convex quadrilateral is of Type 2 then

bDs(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lϕ(β0, α), if 0 ≤ ϕ < α

b sinϕ, if α ≤ ϕ < β

Lϕ(α0, β), if β ≤ ϕ < γ

Lϕ(α, β0), if γ ≤ ϕ < π

.

6. ORIENTATION-DEPENDENT CHORD LENGTH DISTRIBUTION FUNCTION
AND THE COVARIOGRAM OF A CONVEX QUADRILATERAL PRISM

Denote by Dh
s the right prism {(x, y, z) : (x, y) ∈ Ds, 0 < z ≤ h}, where Ds is a standard image of

a convex quadrilateral. For a vector

ω = (cosϕ cos θ, sinϕ cos θ, sin θ) ∈ S
2,

let ω⊥ be the orthogonal complement of {tω : t ∈ R} in R
3, and ΠDh

s
(ϕ, θ) be the orthogonal projection

of Dh
s onto the plane ω⊥.

We define the chord length distribution function in direction ω for Dh
s by

FDh
s
(t, ϕ, θ) =

L2{y ∈ ΠDh
s
(ϕ, θ) : χ(l(ϕ,θ) + y) ≤ t}
bDh

s
(ϕ, θ)

,

where l(ϕ,θ) + y is the line that passes through y ∈ ω⊥ and has direction vector ω,

χ(l(ϕ,θ) + y) = L1

(
(l(ϕ,θ) + y

)
∩Dh

s ),
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and

bDh
s
(ϕ, θ) = L2(ΠDh

s
(ϕ, θ)).

As {z ∈ R
3 : z = h

2} is a plane of symmetry of Dh
s , we notice that FDh

s
(t, ϕ, θ) = FDh

s
(t, ϕ − π, θ), for

ϕ ∈ [π, 2π) and FDh
s
(t, ϕ, θ) = FDh

s
(t, ϕ,−θ). Based on this observation, from now on we will assume

that ϕ ∈ [0, π) and θ ∈ [0, π
2 ].

Denote

xmax(ϕ, θ) = max
y∈Π

Dh
s
(ϕ,θ)

χ(l(ϕ,θ) + y).

It is easy to check that

xmax(ϕ, θ) =

{
xmax(ϕ)
cos θ , if 0 ≤ θ ≤ tan−1 h

xmax(ϕ)
h

sin θ , if tan−1 h
xmax(ϕ)

< θ ≤ π
2

. (6.1)

Theorem 6.1. For a ϕ ∈ [0, π), let x1 and x0 be the lengths of the first and the second-order
ϕ-diameters of Ds, respectively. Let 
0, 
, 
1 be the supplementary ϕ-measures of Ds, and denote
bDs = 
0 + 
+ 
1. Then, for the direction ω = (cosϕ cos θ, sinϕ cos θ, sin θ), 0 ≤ θ ≤ π

2 and the
prism Dh

s , the following statements take place:

(a) If tan−1 h
x0

< θ ≤ π
2 and 0 ≤ t < xmax(ϕ, θ), or 0 ≤ θ ≤ tan−1 h

x0
and 0 ≤ t < x0 sec θ, then

FDh
s
(t, ϕ, θ) =

a1t+ a2t
2

‖Ds‖ sin θ + bDsh cos θ
, (6.2)

where

a1 = h

(

0
x0

+

1
x1

)
cos2 θ + bDs sin 2θ, a2 = −3

2

(

0
x0

+

1
x1

)
sin θ cos2 θ;

(b) If 0 ≤ θ ≤ tan−1 h
x0

and x0 sec θ ≤ t < xmax(ϕ, θ), then x0 < x1 and

FDh
s
(t, ϕ, θ) =

c0 + c1t+ c2t
2

‖Ds‖ sin θ + bDsh cos θ
, (6.3)

where

c0 = (h cos θ +
x0
2

sin θ)

(

0 −


x0
x1 − x0

)
,

c1 = (h cos2 θ + x1 sin 2θ)

(



x1 − x0
+


1
x1

)
, c2 = −3

2
sin θ cos2 θ

(



x1 − x0
+


1
x1

)
.

Proof. Using the formula (see [11]) that establishes a relation between the orientation-dependent
chord length distribution functions of a cylinder and its base, for 0 ≤ t < xmax(ϕ, θ) we obtain

FDh
s
(t, ϕ, θ) =

bDs cos θ

‖Ds‖ sin θ + bDsh cos θ

×

⎡

⎣(h− t sin θ)FDs(t cos θ, ϕ) + 2t sin θ − sin θ

t∫

0

FDs(u cos θ, ϕ)du

⎤

⎦ . (6.4)

(a) By (6.1), the inequality tan θ > h
x0

implies xmax(ϕ, θ) =
h

sin θ , and then

t cos θ <
h

tan θ
< x0,

for any t ∈ [0, xmax(ϕ, θ)).
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If tan θ ≤ h
x0

but 0 ≤ t < x0 sec θ, the inequality t cos θ < x0 still holds. Therefore, by Theorem 4.1,
we substitute FDs(t cos θ, ϕ) and FDs(u cos θ, ϕ) in (6.4) by

1

bDs

(

0
x0

+

1
x1

)
t cos θ and

1

bDs

(

0
x0

+

1
x1

)
u cos θ,

respectively. Computation of the integral in (6.4) followed by combining the like terms results in (6.2).

(b) Let now tan θ ≤ h
x0

but x0 sec θ ≤ t < xmax(ϕ, θ). Then x0 < x1, otherwise it will contradict to
(6.1). Theorem 4.1 yields

FDs(t cos θ, ϕ) =
1

bDs

(

0 +

t cos θ − x0
x1 − x0


+
t cos θ

x1

1

)
, (6.5)

and
t∫

0

FDs(u cos θ, ϕ)du

=

x0 sec θ∫

0

FDs(u cos θ, ϕ)du+

t∫

x0 sec θ

FDs(u cos θ, ϕ)du =
1

bDs

×

⎡

⎣
x0 sec θ∫

0

(

0
x0

+

1
x1

)
u cos θdu+

t∫

x0 sec θ

(

0 +

u cos θ − x0
x1 − x0


+
u cos θ

x1

1

)
du

⎤

⎦ . (6.6)

To reach (6.3), it remains to evaluate (6.6), substitute its value along with (6.5) into (6.4), and simplify.
�

Corollary 6.1. Let

μ(ϕ, θ) = L2

(
{y ∈ ΠDh

s
(ϕ, θ) : χ(l(ϕ,θ) + y) = xmax(ϕ, θ)}

)
.

The function FDh
s
(·, ϕ, θ) is continuous on the real axis if and only if μ(ϕ, θ) = 0. Otherwise, if

μ(ϕ, θ) > 0 for some pair (ϕ, θ), then FDh
s
(·, ϕ, θ) has a jump discontinuity at xmax(ϕ, θ). The jump

is equal to

μ(ϕ, θ)

‖Ds‖ sin θ + bDsh cos θ
.

Proof. For any (ϕ, θ), the continuity of FDh
s
(·, ϕ, θ) at t = 0 immediately follows from (6.2). The

continuity at t = x0 sec θ also takes place. Careful calculations show that the expressions in (6.2) and
(6.3) coincide when t = x0 sec θ. Thus, the only discontinuity may occur at t = xmax(ϕ, θ).

Since

FDh
s
(xmax(ϕ, θ)−, ϕ, θ) =

L2{y ∈ ΠDh
s
(ϕ, θ) : χ(l(ϕ,θ) + y) < xmax(ϕ, θ)}

bDh
s
(ϕ, θ)

= 1− μ(ϕ, θ)

bDh
s
(ϕ, θ)

,

the continuity at xmax(ϕ, θ) holds if and only if μ(ϕ, θ) = 0. The jump is equal to μ(ϕ,θ)
b
Dh

s
(ϕ,θ) =

μ(ϕ,θ)
‖Ds‖ sin θ+bDsh cos θ . �

Remark 6.1. One can verify that μ(ϕ, 0) = h · 
(ϕ), so we rediscover Corollary 4.1. For the other
extreme, μ(ϕ, π2 ) = ‖Ds‖ holds. The jump in this case is the highest possible, 1. We do not aim to
compute μ(ϕ, θ) for other directions.
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Fig. 1. Examples of orientation-dependent chord length distribution functions in right prisms Dh
s with base Ds =

[10, π
6
, π
3
, π
2
, 2π

3
]. (a) Represents the surface z(t, h) = FDh

s
(t, π

6
, π
3
), (b) represents the surface z(t, h) = FDh

s
(t, π

2
, π
4
).
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Fig. 2. Examples of orientation-dependent chord length distribution functions in right prisms Dh
s with base Ds =

[10, π
6
, π
4
, 2π

3
, π − tan−1

√
3

4−
√

3
]. (a) Represents the surface z(t, h) = FDh

s
(t, π

2
, 2π

5
), (b) represents the surface

z(t, h) = FDh
s
(t, 9π

10
, 2π

7
).

In order to visualize the possible breaks in continuity and smoothness of the ODCLD function, we
plot the function z(t, h) = FDh

s
(t, ϕ, θ) for a given pair (ϕ, θ) and different values of the height h. As an

example, in Figure 1, this is done for the prism based on the kite Ds = [10, π6 ,
π
3 ,

π
2 ,

2π
3 ], where ϕ = π

6 ,
θ = π

3 , and then ϕ = π
2 , θ = π

4 .

Each of the highlighted curves on the surface represents the graph of the ODCLD function for the
prism of a given height. Figure 2 is created by the same logic for the prisms with a trapezoidal base

Ds = [10, π6 ,
π
4 ,

2π
3 , π − tan−1

√
3

4−
√
3
].

Theorem 6.2. For a ϕ ∈ [0, π), let x1 and x0 be the lengths of the first and the second-
order ϕ-diameters of Ds, respectively. Let 
0, 
, 
1 be the supplementary ϕ-measures of Ds, and
denote bDs = 
0 + 
+ 
1. Then, for the direction ω = (cosϕ cos θ, sinϕ cos θ, sin θ), 0 ≤ θ ≤ π

2 , the
covariogram CDh

s
(tω) = CDh

s
(t, ϕ, θ) of the prism Dh

s has the following representation:
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(a) If tan−1 h
x0

< θ ≤ π
2 and 0 ≤ t < xmax(ϕ, θ), or 0 ≤ θ ≤ tan−1 h

x0
and 0 ≤ t < x0 sec θ, then

CDh
s
(t, ϕ, θ) =

(
‖Ds‖ − bDs cos θ · t+

1

2

(

0
x0

+

1
x1

)
cos2 θ · t2

)
(h− sin θ · t);

(b) If 0 ≤ θ ≤ tan−1 h
x0

and x0 sec θ ≤ t < xmax(ϕ, θ), then x0 < x1 and

CDh
s
(t, ϕ, θ) =

1

2

(



x1 − x0
+


1
x1

)
(x1 − cos θ · t)2(h− sin θ · t).

Proof. Let 0 ≤ t < xmax(ϕ, θ). Since

Dh
s ∩

(
Dh

s + tω
)
= (Ds ∩ {Ds + (t cos θ)φ})× [t sin θ, h],

we obtain

CDh
s
(tω) = L2(Ds ∩ {Ds + (t cos θ)φ}) · (h− t sin θ),

and then

CDh
s
(t, ϕ, θ) = CDs(t cos θ, ϕ)(h − t sin θ). (6.7)

The proof now follows from (6.7) and Theorem 4.2. �
Remark 6.2. Taking θ = 0, it is easy to check that all the results obtained in Section 4 are coherent

with the results presented in the current section.
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