Skip to main content
Log in

Improving Wear and Corrosion Properties of Magnesium Alloy by Cold Sprayed Nano WC-17Co Coating

  • INVESTIGATION OF MACHINING PROCESSES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

To promote the application of magnesium alloys for reducing the weight of the engineering components, improvement of their wear and corrosion resistance by coating processes is a necessity. In the present study, cold sprayed nano WC-17Co coatings have been deposited on commercial AZ80 magnesium alloy at different nozzle traverse speeds. WC-17Co coating exhibits a highly dense structure and well bonds with the magnesium alloy substrate when the traverse speed is selected as 80 and 40 mm/s. The C40 coating that is prepared at 40 mm/s possesses the highest microhardness and fracture toughness. The ball-on-disk wear test indicates that WC-17Co coating can significantly improve the wear resistance of magnesium alloy. The wear rate of C40 coating is 8.2 × 10–7 mm3 N–1 m–1, while magnesium alloy exhibits very high wear rate of 6.8 × 10–4 mm3 N–1 m–1. Meanwhile, WC-17Co coating reduces the corrosion current density of magnesium alloy and C40 coating also possesses more excellent corrosion resistance than that of C80 coating. Thus, with appropriate traverse speed, high quality nano WC-17Co coating can be prepared and the wear and corrosion resistance of magnesium alloy substrate can be greatly improved by this cold sprayed coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Gupta, M. and Wong, W.L.E., Magnesium-based nanocomposites: Lightweight materials of the future, Mater. Charact., 2015, vol. 105, pp. 30–46.

    Article  CAS  Google Scholar 

  2. Mordike, B.L. and Ebert, T., Magnesium properties-applications-potential, Mater. Sci. Eng., A, 2001, vol. 302, no. 1, pp. 37–45.

    Article  Google Scholar 

  3. Joost, W.J. and Krajewski, P.E., Towards magnesium alloys for high-volume automotive applications, Scr. Mater., 2017, vol. 128, pp. 107–112.

    Article  CAS  Google Scholar 

  4. Song, G., Atrens, A., and Dargusch, M., Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci., 1998, vol. 41, pp. 249–273.

    Article  Google Scholar 

  5. García-Rodríguez, S., Torres, B., Maroto, A., López, A.J., Otero, E., and Rams, J., Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites, Wear, 2017, vols. 390–391, pp. 1–10.

    Article  Google Scholar 

  6. Arrabal, R., Pardo, A., Merino, M.C., Mohedano, M., Casajús, P., and Matykina, E., Corrosion of magnesium-aluminum alloys with Al–11Si/SiC thermal spray composite coatings in chloride solution, J. Therm. Spray Technol., 2011, vol. 20, no. 3, pp. 569–579.

    Article  CAS  Google Scholar 

  7. Goli, E. and Aghajani, H., A study on corrosion resistance of Al magnetron sputtering coated AZ31 magnesium alloy, Vacuum, 2018, vol. 152, pp. 231–238.

    Article  CAS  Google Scholar 

  8. Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., and Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites, Surf. Coat. Technol., 2017, vol. 309, pp. 1023–1032.

    Article  CAS  Google Scholar 

  9. Jacobs, L., Hyland, M.M., and De Bonte, M., Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process, J. Therm. Spray Technol., 1998, vol. 7, no. 2, pp. 213–218.

    Article  CAS  Google Scholar 

  10. Hou, G., An, Y., Liu, G., Zhou, H., Chen, J., and Chen, Z., Effect of atmospheric plasma spraying power on microstructure and properties of WC–(W,Cr)2C–Ni coatings, J. Therm. Spray Technol., 2011, vol. 20, no. 6, pp. 1150–1160.

    Article  CAS  Google Scholar 

  11. Guilemany, J.M., Dosta, S., and Miguel, J.R., The enhancement of the properties of WC–Co HVOF coatings through the use of nanostructured and microstructured feedstock powders, Surf. Coat. Technol., 2006, vol. 201, pp. 1180–1190.

    Article  CAS  Google Scholar 

  12. Guilemany, J.M., Dosta, S., Nin, J., and Miguel, J.R., Study of the properties of WC–Co nanostructured coatings sprayed by high-velocity oxyfuel, J. Therm. Spray Technol., 2005, vol. 14, no. 3, pp. 405–413.

    Article  CAS  Google Scholar 

  13. Assadi, H., Kreye, H., Gärtner, F., and Klassen, T., Cold spraying—A materials perspective, Acta Mater., 2016, vol. 116, pp. 382–407.

    Article  CAS  Google Scholar 

  14. Kim, H.J., Lee, C.H., and Hwang, S.Y., Fabrication of WC–Co coatings by cold spray deposition, Surf. Coat. Technol., 2005, vol. 191, pp. 335–340.

    Article  CAS  Google Scholar 

  15. Lima, R.S., Karthikeyan, J., Kay, C.M., Lindemann, J., and Berndt, C.C., Microstructural characteristics of cold-sprayed nanostructured WC–Co coatings, Thin Solid Films, 2002, vol. 416, pp. 129–135.

    Article  CAS  Google Scholar 

  16. Kim, H.J., Lee, C.H., and Hwang, S.Y., Superhard nano WC–12%Co coating by cold spray deposition, Mater. Sci. Eng., A, 2005, vol. 39, pp. 243–248.

    Google Scholar 

  17. Ji, G.C., Wang, H.T., Chen, X., Bai, X.B., Dong, Z.X., and Yang, F.G., Characterization of cold-sprayed multimodal WC–12Co coating, Surf. Coat. Technol., 2013, vol. 235, pp. 536–543.

    Article  CAS  Google Scholar 

  18. Nahvi, S.M. and Jafari, M., Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings, Surf. Coat. Technol., 2016, vol. 286, pp. 95–102.

    Article  CAS  Google Scholar 

  19. Lekatou, A., Sioulas, D., Karantzalis, A.E., and Grimanelis, D., A comparative study on the microstructure and surface property evaluation of coatings produced from nano-structured and conventional WC–Co powders HVOF-sprayed on Al7075, Surf. Coat. Technol., 2015, vol. 276, pp. 539–556.

    Article  CAS  Google Scholar 

  20. Luo, X.T., Li, C.X., Shang, F.L., Yang, G.J., Wang, Y.Y., and Li, C.J., High velocity impact induced microstructure evolution during deposition of cold spray coatings: A review, Surf. Coat. Technol., 2014, vol. 254, pp. 11–20.

    Article  CAS  Google Scholar 

  21. Li, C.J., Yang, G.J., Gao, P.H., Ma, J., Wang, Y.Y., and Li, C.X., Characterization of nanostructured WC–Co deposited by cold spraying, J. Therm. Spray Technol., 2007, vol. 16, nos. 5–6, pp. 1011–1020.

    Article  CAS  Google Scholar 

  22. Wang, D., Zhang, B., Jia, C., Gao, F., Yu, Y., Chu, K., Zhang, M., and Zhao, X., Influence of carbide grain size and crystal characteristics on the microstructure and mechanical properties of HVOF-sprayed WC–CoCr coatings, Int. J. Refract. Met. Hard Mater., 2017, vol. 69, pp. 138–152.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the National Natural Science Foundation of China (grant nos. 51705481 and 51705482) and Ningbo City (2017D10017) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Song.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie Chen, Song, H., Liu, G. et al. Improving Wear and Corrosion Properties of Magnesium Alloy by Cold Sprayed Nano WC-17Co Coating. J. Superhard Mater. 43, 213–221 (2021). https://doi.org/10.3103/S1063457621030047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621030047

Keywords:

Navigation