Skip to main content
Log in

Carbon Nanotube Electrodes for Semitransparent Perovskite Light-Emitting Electrochemical Cells

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Multiwall carbon nanotubes can be used for development of semitransparent light-emitting electrochemical cells. Due to its chemical inertness, they can withstand highly corrosive materials like halide perovskites, which are the most promising material for fabrication of next generation optoelectronic devices. Here we investigate how perovskite-based light-emitting electrochemical cell can be fabricated only with carbon nanotubes as anode and cathode. We show that for the fabrication drop-casting technique should be used instead of conventional spin-coating method. High roughness of the multiwall carbon nanotubes can be overcome with drop casting method of material deposition that allows fabrication of thick films. Light-emitting electrochemical cells demonstrate relatively low maximum luminance of 50 cd/m2 and we demonstrate the issue behind it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Gets, D., Alahbakhshi, M., Mishra, A., Haroldson, R., Papadimitratos, A., Ishteev, A., Saranin, D., Anoshkin, S., Pushkarev, A., Danilovskiy, E., Makarov, S., Slinker, J.D., and Zakhidov, A.A., Adv. Opt. Mater., 2021, vol. 9, 2001715. https://doi.org/10.1002/adom.202001715

    Article  Google Scholar 

  2. Bowler, M.H., Mishra, A., Adams, A.C., C.Blangy, L.D., and Slinker, J.D., Adv. Funct. Mater., 2020, vol. 1, 1906715. https://doi.org/10.1002/adfm.201906715

    Article  Google Scholar 

  3. Xue, Z., He, D., and Xie, X., J. Mater. Chem. A, 2015, vol. 3, p. 19218. https://doi.org/10.1039/c5ta03471j

    Article  Google Scholar 

  4. Greiner, M.T. and Lu, Z., NPJ Asia Mater., 2013, vol. 5, e55. https://doi.org/10.1038/am.2013.29

  5. Meier, S.B., Tordera, D., Pertegás, A., Roldán-Carmona, C., Ortí, E., and Bolink, H.J., Mater. Today, 2014, vol. 17, p. 217 https://doi.org/10.1016/j.mattod.2014.04.029

    Article  Google Scholar 

  6. Fresta, E. and Costa, R.D., Adv. Funct. Mater., 2020, vol. 30, 1908176. https://doi.org/10.1002/adfm.201908176

    Article  Google Scholar 

  7. Jamshaid, A., Guo, Z., Hieulle, J., Stecker, C., Ohmann, R., Ono, L.K., Qiu, L., Tong, G., Yin, W., and Qi, Y., Energy Environ. Sci., 2021, vol. 14, p. 4541. https://doi.org/10.1039/d1ee01084k

    Article  Google Scholar 

  8. Yoo, J.J., Seo, G., Chua, M.R., Park, T.G., Lu, Y., Rotermund, F., Kim, Y., Moon, C.S., Jeon, N.J., Bulović, V., Shin, S.S., and Bawendi, M.G., Nature, 2021, vol. 590, p. 587. https://doi.org/10.1038/s41586-021-03285-w

    Article  ADS  Google Scholar 

  9. Wang, J., Li, J., Zhou, Y., Yu, C., Hua, Y., Yu, Y., Li, R., Lin, X., Chen, R., Wu, H., Xia, H., and Wang, H.L., J. Am. Chem. Soc., 2021, vol. 143, p. 7759. https://doi.org/10.1021/jacs.1c02118

    Article  Google Scholar 

  10. Zhao, L., Roh, K., Kacmoli, S., K. Al Kurdi, Jhulki, S., Barlow, S., Marder, S.R., Gmachl, C., and Rand, B.P., Adv. Mater., 2020, vol. 32, 2000752. https://doi.org/10.1002/adma.202000752

    Article  Google Scholar 

  11. Eames, C., Frost, J.M., Barnes, P.R.F., O’Regan, B.C., Walsh, A., and Islam, M.S., Nat. Commun., 2015, vol. 6, p. 7497. https://doi.org/10.1038/ncomms8497

    Article  ADS  Google Scholar 

  12. Besleaga, C., Abramiuc, L.E., Stancu, V., Tomulescu, A.G., Sima, M., Trinca, L., Plugaru, N., Pintilie, L., Nemnes, G.A., Iliescu, M., Svavarsson, H.G., Manolescu, A., and Pintilie, I., J. Phys. Chem. Lett., 2016, vol. 7, p. 5168. https://doi.org/10.1021/acs.jpclett.6b02375

    Article  Google Scholar 

  13. Alahbakhshi, M., Papadimitratos, A., Haroldson, R., Mishra, A., Shteev, A., Velten, J., Gu, Q., Slinker, J., and Zakhidov, A.A., Proc. SPIE, 2020, vol. 11473, 114731N. https://doi.org/10.1117/12.2567751

    Article  Google Scholar 

  14. Baughman, R.H., Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., D. De Rossi, Rinzler, A.G., Jaschinski, O., and Roth, S., Science, 1999, vol. 284, p. 1340. https://doi.org/10.1126/science.284.5418.1340

    Article  ADS  Google Scholar 

  15. Hussain, I., Chowdhury, A.R., Jaksik, J., Grissom, G., Touhami, A., Ibrahim, E.E., Schauer, M., Okoli, O., and Uddin, M.J., Appl. Surf. Sci., 2019, vol. 478, p. 327. https://doi.org/10.1016/j.apsusc.2019.01.233

    Article  ADS  Google Scholar 

  16. Slinker, J.D., DeFranco, J.A., Jaquith, M.J., Silveira, W.R., Zhong, Y., Moran-Mirabal, J.M., Craighead, H.G., Abruña, H.D., Marohn, J.A., and Malliaras, G.G., Nat. Mater., 2007, vol. 6, p. 894. https://doi.org/10.1038/nmat2021

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project 075-15-2021-1349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bodyago.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyago, E.V., Gets, D.S. & Makarov, S.V. Carbon Nanotube Electrodes for Semitransparent Perovskite Light-Emitting Electrochemical Cells. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S24–S27 (2022). https://doi.org/10.3103/S1062873822700320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700320

Keywords:

Navigation