Skip to main content
Log in

Granulation Effect on Chemically Activated SHS of MgAlON

  • BRIEF COMMUNICATION
  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

MgAlON were prepared by self-propagation high temperature synthesis (SHS) using powder and granular mixtures of aluminum, aluminum oxide, magnesium oxide, and magnesium perchlorate. The influence of granulation of starting particles of Al + Al2O3 + MgO + Mg(ClO4)2 powder mixtures on the microstructure and phase composition of combustion products was studied. It was revealed that the granulation of mixtures reduces the combustion temperature and burning velocity. It was found that the combustion products derived from granular mixtures consists of up to four phases (MgAlON, aluminum oxide, aluminum nitride, and unreacted aluminum), while the products of powder mixtures are represented by single MgAlON phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Tong, S., Li, Y., Yan, M., Jiang, P., Ma, J., and Yue, D., In situ reaction mechanism of MgAlON in Al–Al2O3–MgO composites at 1700°C under flowing N2, Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 1061–1066. https://doi.org/10.1007/s12613-017-1496-0

    Article  CAS  Google Scholar 

  2. Zhang, R., Wang, H., Tian, M., Wang, Y., Liu, M., Wang, H., and Zhang, G., Pressureless reaction sintering and hot isostatic pressing of transparent MgAlON ceramic with high strength, Ceram. Int., 2018, vol. 44, no. 14, pp. 17383–17390. https://doi.org/10.1016/j.ceramint.2018.06.203

    Article  CAS  Google Scholar 

  3. Yan, M., Li, Y., Li, H., Sun, Y., Chen, H., Chenhong, M., and Sun, J., Evolution mechanism of MgAlON in the Al–Al2O3–MgO composite at 1800°C in flowing nitrogen, Ceram. Int., 2017, vol. 44. https://doi.org/10.1016/j.ceramint.2017.11.174

  4. Morey, O. and Goeuriot, P., “MgAlON” spinel structure: A new crystallographic model of solid solution as suggested by 27Al solid state NMR, J. Eur. Ceram. Soc., 2005, vol. 25, no. 4, pp. 501–507. https://doi.org/10.1016/j.jeurceramsoc.2004.01.023

    Article  CAS  Google Scholar 

  5. Schramm, A., Thümmler, M., Fabrichnaya, O., Brehm, S., Kraus, J., Kortus, J., Rafaja, D., Scharf, C., and Aneziris, C.G., Reaction sintering of MgAlON at 1500°C from Al2O3, MgO and AlN and its wettability by AlSi7Mg, Crystals, 2022, vol. 12, no. 5. https://doi.org/10.3390/cryst12050654

  6. Jiang, X., Shan, Y., Sun, X., Huang, C., Ma, L., Xu, J., and Li, J., A two-step heating strategy for low-temperature fabrication of high sinterability and fine MgAlON powder with MgAl2O4 as Mg source, Ceram. Int., 2022, vol. 48, no. 20, pp. 30348–30355. https://doi.org/10.1016/j.ceramint.2022.06.308

    Article  CAS  Google Scholar 

  7. Liu, X., Wang, H., Tu, B., Wang, W., and Fu, Z., Novel divalent europium doped MgAlON transparent ceramic for shortwave ultraviolet erasable windows, Scr. Mater., 2015, vol. 105, pp. 30–33. https://doi.org/10.1016/j.scriptamat.2015.04.021

    Article  CAS  Google Scholar 

  8. Liu, L., Zhang, C., Takahashi, K., Nishimura, T., Segawa, H., Hirosaki, N., and Xie, R.-J., Uniform and fine Mg-γ-AlON powders prepared from MgAl2O4: A promising precursor material for highly-transparent Mg-γ-AlON ceramics, J. Eur. Ceram. Soc., 2018, vol. 39, pp. 928–933. https://doi.org/10.1016/j.jeurceramsoc.2018.10.028

    Article  CAS  Google Scholar 

  9. Granon, A., Goeuriot, P., Thevenot, F., Guyader, J., L’Haridon, P., and Laurent, Y., Reactivity in the Al2O3–AlN–MgO system. The MgAlON spinel phase, J. Eur. Ceram. Soc., 1994, vol. 13, no. 4, pp. 365–370. https://doi.org/10.1016/0955-2219(94)90012-4

    Article  CAS  Google Scholar 

  10. Zhang, W., Wang, Y., Chen, J., Jiang, R., Shi, Z., Yang, G., Hu, W., Xu, Q., Xie, X., Tan, Y., Huang, S., Zhang, Z., and Song, H.-Z., Preparation and elastic–plastic indentation response of MgAlON transparent ceramics, Ceram. Int., 2022, vol. 48, no. 1, pp. 855–863. https://doi.org/10.1016/j.ceramint.2021.09.167

    Article  CAS  Google Scholar 

  11. Chen, Q., Wang, Y., Qi, J., and Wang, H., A contrast of carbothermal reduction synthesis of MgAlON and AlON powders for transparent ceramics, J. Alloys Compd., 2019, vol. 791, pp. 856–863. https://doi.org/10.1016/j.jallcom.2019.03.387

    Article  CAS  Google Scholar 

  12. Ma, B., Wang, Y., Zhang, W., and Chen, Q., Pressureless sintering and fabrication of highly transparent MgAlON ceramic from the carbothermal powder, J. Alloys Compd., 2018, vol. 745, pp. 617–623. https://doi.org/10.1016/j.jallcom.2018.02.254

    Article  CAS  Google Scholar 

  13. Ma, B., Zhang, W., Wang, Y., Xie, X., Song, H., Yao, C., Zhang, Z., and Xu, Q., Hot isostatic pressing of MgAlON transparent ceramic from carbothermal powder, Ceram. Int., 2018, vol. 44, pp. 4512–4515. https://doi.org/10.1016/j.ceramint.2017.12.023

    Article  CAS  Google Scholar 

  14. Borovinskaya, I.P., Loryan, V.E., and Zakorzhevsky, V.V., Combustion Synthesis of Nitrides for Development of Ceramic Materials of New Generation, Nitride Ceramics: Combustion Synthesis, Properties, and Applications, Gromov, A.A. and Chukhlomina, L.N., Eds., 2014, pp. 1–48. https://doi.org/10.1002/9783527684533.ch1

  15. Akopdzhanyan, T.G., Rupasov, S.I., and Vorotilo, S., Chemically activated combustion synthesis of AlON under high nitrogen pressure, Combust. Flame, 2021, vol. 232, p. 111560. https://doi.org/10.1016/j.combustflame.2021.111560

    Article  CAS  Google Scholar 

  16. Kharatyan, S.L. and Merzhanov, A.G., Coupled SHS reactions as a useful tool for synthesis of materials: An overview, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 1, pp. 59–73. https://doi.org/10.3103/S1061386212010074

    Article  Google Scholar 

  17. Ksandopulo, G.I. and Baidel’dinova, A.N., Combustion in a system of conjugated layers and high-temperature synthesis of materials, Russ. J. Appl. Chem., 2004, vol. 77, no. 3, pp. 364–368. https://doi.org/10.1023/B:RJAC.0000031272.43669.c0

    Article  CAS  Google Scholar 

  18. Merzhanov, A.G., Thermally coupled processes of self-propagating high-temperature synthesis, Dokl. Phys. Chem., 2010, vol. 434, no. 2, pp. 159–162. https://doi.org/10.1134/S0012501610100015

    Article  CAS  Google Scholar 

  19. Prokofiev, B.G. and Smolyakov, V.K., Gasless combustion of a system of thermally coupled layers, Combust. Explos. Shock Waves, 2016, vol. 52, no. 1, pp. 62–66. https://doi.org/10.1134/S0010508216010081

    Article  Google Scholar 

  20. Sytschev, A.E., Vrel, D., Boyarchenko, O.D., Roshchupkin, D.V, and Sachkova, N.V, Combustion synthesis in bi-layered (Ti−Al)/(Ni−Al) system, J. Mater. Process. Technol., 2017, vol. 240, pp. 60–67. https://doi.org/10.1016/j.jmatprotec.2016.09.010

    Article  CAS  Google Scholar 

  21. Linde, A.V, Studenikin, I.A., Kondakov, A.A., and Grachev, V.V, Thermally coupled SHS processes in layered (Fe2O3 + 2Al)/(Ti + Al)/(Fe2O3 + 2Al) structures: An experimental study, Combust. Flame, 2019, vol. 208, pp. 364–368. https://doi.org/10.1016/j.combustflame.2019.07.010

    Article  CAS  Google Scholar 

  22. Chukhlomina, L.N., Chemically and thermally conjugate synthesis of silicon nitride based compositions using ferrosilicon, Glas. Ceram., 2009, vol. 66, no. 7, p. 288. https://doi.org/10.1007/s10717-009-9185-8

    Article  CAS  Google Scholar 

  23. Licheri, R., Orrù, R., and Cao, G., Chemically-activated combustion synthesis of TiC–Ti composites, Mater. Sci. Eng. A, 2004, vol. 367, no. 1, pp. 185–197. https://doi.org/10.1016/j.msea.2003.10.238

    Article  CAS  Google Scholar 

  24. Seplyarskii, B.S., Abzalov, N.I., Kochetkov, R.A., and Lisina, T.G., Effect of the content of polyvinyl butyral on the synthesis and phase composition of products of combustion of Ti–Cr–C granular mixtures, Russ. J. Phys. Chem. A, 2021, vol. 95, no. 12, pp. 2410–2416. https://doi.org/10.1134/S0036024421120189

    Article  CAS  Google Scholar 

  25. Akopdzhanyan, T., Abzalov, D., Moskovskikh, D., Mohammad, A., and Romanovski, V., Combustion synthesis of magnesium–aluminum oxynitride MgAlON with tunable composition, Materials, 2023, vol. 16, pp. 3648–3662. https://doi.org/10.3390/ma16103648

    Article  CAS  Google Scholar 

  26. Yukhvid, V. I, Gorshkov, V.A., Borshch, V., Miloserdov, P., Sachkova, N. V., and Alymov, M.I., SHS-metallurgy of aluminum oxynitride and its subsequent purification from impurities, Lett. Mater., 2017, vol. 7. pp. 332–336. https://doi.org/10.22226/2410-3535-2017-3-332-336

    Article  Google Scholar 

  27. Borovinskaya, I.P., Ignat’eva, T.I., Semenova, V.N., and Chemagina, E.A., Aluminum oxynitride by SHS in chemical furnace, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, pp. 142–147. https://doi.org/10.3103/S1061386215030036

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-79-00045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Akopdzhanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abzalov, D.I., Akopdzhanyan, T.G., Abzalov, N.I. et al. Granulation Effect on Chemically Activated SHS of MgAlON. Int. J Self-Propag. High-Temp. Synth. 32, 338–343 (2023). https://doi.org/10.3103/S1061386223040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386223040106

Keywords:

Navigation