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Abstract—We present an analysis of a self-supervised learning approach for monocular depth and ego-
motion estimation. This is an important problem for computer vision systems of robots, autonomous
vehicles and other intelligent agents, equipped only with monocular camera sensor. We have explored
a number of neural network architectures that perform single-frame depth and multi-frame camera
pose predictions to minimize photometric error between consecutive frames on a sequence of camera
images. Unlike other existing works, our proposed approach called ERF-SfMLearner examines the
influence of the deep neural network receptive field on the performance of depth and ego-motion esti-
mation. To do this, we study the modification of network layers with two convolution operators with
extended receptive field: dilated and deformable convolutions. We demonstrate on the KITTI dataset
that increasing the receptive field leads to better metrics and lower errors both in terms of depth and
ego-motion estimation. Code is publicly available at github.com/linukc/ERF-SfMLearner.
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1. INTRODUCTION
Today, deep neural networks are the most popular tool in autonomous systems development. They can

be effective prediction models based on different input sensor data [1]. We are especially interested in neu-
ral depth and ego-pose estimation for the onboard monocular camera. This is essential both for the tasks
of detecting and tracking three-dimensional objects [2] and for high-quality mapping of the area in which
the camera is moving [3]. Also, monocular camera depth estimation is much more complicated than the
reconstruction of depth maps from a stereo pair of images [4, 5], where we can accurately estimate the
scale and pixel disparity both analytically and using neural networks [6].

Existing results [7, 8] show that neural networks can successfully cope with this problem on one level
with feature-based methods. However, they are still significantly affected by noise in the reconstructed
depth maps.

For each specific task it is also necessary to have a large data set. To compile such a set for the ego-
motion estimation, it is necessary to have accurate equipment for taking ground truth (GT) values. It is
not always possible, especially if you plan to test the performance of the algorithm with your data. There-
fore, we chose an joint self-supervised learning approach [7] as the main algorithm, which does not
require pre-labeling for training, but uses an additional single-frame depth and multi-frame pose predic-
tions to minimize the photometric error.

The process of choosing neural network architectures is empirical since there are no mathematically
proved rules for their compilation. Different models can solve the same problem with a big difference in
the final metrics. Our approach builds upon the insight that the receptive field is an important hyperpa-
rameter that greatly affects the ability of neural networks to perform a task. Experiments on the KITTI [9]
dataset show the trueness of this assumption for both pose and depth prediction.

In summary, our work makes the following main contributions:
• a novel convolutional neural approach called ERF-SfMLearner for monocular depth and ego-

motion estimation with extended receptive field;
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• analysis of neural network receptive filed influence on monocular depth and ego-motion estimation
on KITTI dataset with different resolutions of the input image.

2. RELATED WORK
Most self-supervised methods use single-frame depth and multi-frame pose predictions to minimize

photometric error from source to a target frame from the sequence of images. This idea was first intro-
duced by Zhou et al. [7]. Based on this principle a lot of works were proposed. Mahjourian et al. [10] offer
an approach to combine photometric loss with geometric constraints using 3D-based loss. Godard et al.
[11] in Monodepth2 enhance reprojection loss and design it to robustly handle occlusions. Subsequent
methods propose improvements based on various techniques, such as supervision from optical f low [12–
16], semantic segmentation [17, 18] or combination of these techniques [19, 20]. Wang et at. [21] propose
to synthesize new views from raw images, thereby enriching the training data and improving the perfor-
mance of the pose network. Tak-Wai Hui in [22] rethink the utilization of image sequence in the RNN
acitecture. Suri et at. in [23] introduce pose constraints to reduce depth inconsistencies and scale ambi-
guity. Lee et at. in [24] suggest to integrate IMU sensor to disambiguate depth scale.

However, most of these methods inherit learning setup and neural architectures from [7]. Our analysis
shows that they can be more improved if they leverage our findings on the importance of the neural net-
work receptive field in the task of self-supervised monocular depth and ego-motion estimation.

3. METHOD
3.1. ERF-SfMLearner Architecture

In a deep learning context, receptive field (RF) is defined as the size of the region in the input that pro-
duces the feature. Basically, it is a measure of association of an output feature (of any layer) to the input
region (patch). Specifically, for self-supervised pose and depth estimation, we would like each output fea-
ture of the encoder to have a big receptive field, so as to ensure that no crucial information was not taken
into account [25]. We establish a strong baseline for our algorithm by following practices from this work
[7]. In baseline method, neural networks are implemented as a convolution network (Fig. 1, top). So, for
a more fair comparison, we choose two convolution operators type to effectively increase the receptive
field of the neural network without global architecture redesign: dilated convolution and deformable con-
volution (Figs. 2, 3).

3.2. Learning Approach
An overview of the baseline approach is shown in Fig. 1. It can learn depth and camera motion from

unlabeled data. The method consists of two parts: depth prediction network and pose estimation network,
which are trained jointly.

For two adjacent frames,  and , if the depth map of  and the relative pose between the two views
are given, then  view can be reconstructed from . Taking  as input, depth prediction network gener-
ates depth map, denoted as . The relative camera pose between two views can be estimated from the pose
estimation network, denoted as . Denote  as the homogeneous coordinates of a pixel in  and  as
the corresponding pixel in . The projected coordinates then can be expressed as:

(1)

where K is the camera intrinsic matrix,  is the camera coordinate transformation matrix from the 
frame to the  frame,  is the depth value of the  pixel in the  frame, and the coordinates are homo-
geneous.

The loss function includes photometric, smooth and regularization losses [7].

3.3. Receptive Field Extension with Dilated Convolution
Dilated convolution is a very similar to a basic convolution operator. In essence, dilated convolutions

introduce another parameter, denoted as r, called the dilation rate. Dilations incorporate holes in a con-
volutional kernel [26]. The “holes” basically define a spacing between the values of the kernel. So, while
the number of weights in the kernel is unchanged, the weights are no longer applied to spatially adjacent
samples.
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Fig. 1. Baseline network architecture (SfMLearner) and ERF-SfMLearner (extended receptive field SfMLearner). Each
rectangular block indicates the output channels after convolution operation. DepthNet has “U-net” like architecture with
multi-scale side predictions. The kernel size is 3 for all the layers except for the first 4 conv layers with 7, 7, 5, 5, respec-
tively. PoseNet predicts 6-DoF relative pose. Kernel size is 3 for all the layers except for the first two conv where we use
kernel 7 and 5, respectively. ERFDepthNet encoder shares the same architecture with baseline besides 4 first blocks of
deformable convolutions (DFC ERFDepthNet, Fig. 3a). In ERFPoseNet 4 blocks of deformable convolution place at
the end of the encoder (DFC ERFPoseNet, Fig. 2c).
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Fig. 2. Network architectures for ERFPoseNet. (a) PoseNet from baseline paper. (b–d) Different ERFPoseNets with
extended RF.
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Fig. 3. Different ERFDepthNet encoder’s architectures.
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(a) ERFDepthNet (Dfc) (b) ERFDepthNet (Dfcv2)
3.4. Receptive Field Extension with Deformable Convolution
Deformable convolution adds 2D offsets to the regular grid sampling locations in the standard convo-

lution. It enables free form deformation of the sampling grid. The offsets are learned from the preceding
feature maps, via additional convolutional layers. Thus, the deformation is conditioned on the input fea-
tures in a local, dense, and adaptive manner [27]. In our work we also examine second version of deform-
able convolution: each sample not only undergoes a learned offset, but is also modulated by a learned fea-
ture amplitude. The network module is thus given the ability to vary both the spatial distribution and the
relative influence of its samples [28].

4. EXPERIMENTS

We evaluate the performance of our methods and compare them with baseline’s approach on multi-
frame ego-motion estimation and single-view depth as well. We use the KITTI dataset [9] for benchmark-
ing.

Dataset. We use monocular image sequences for training and test. The original image size is 375 ×
1242, and images are downsampled during training. In order to compare fairly with baseline, we use two

different splits of the KITTI dataset: KITTI Odometry1 to train networks and evaluate ERFPoseNet and

Kitti Eigen split2 to test ERFDepthNet. We train models on KITTI Odometry sequence 00–08 and eval-
uate the pose error on sequence 09 and 10.

Training details. For all the experiments we set epoch-size = 1000, sequence-length = 5, photo-loss-
weight = 1, mask-loss-weight = 0, smooth-loss-weight = 0.2. During training, we used batch normaliza-

tion for all the layers except for the output layers, and the Adam optimizer with , ,

learning rate of 0.0002 and mini-batch size of 4. More details can be found in our repository.3

4.1. Pose Estimation
To evaluate the impact of RF on ego-motion prediction we use different ERFPoseNet’s architectures

as visualized in Fig. 2 and jointly train them with the DepthNet from the baseline. To resolve scale ambi-

1 https://www.cvlibs.net/datasets/kitti/eval_odometry.php.
2 https://github.com/tinghuiz/SfMLearner/tree/master/data/kitti.
3 github.com/linukc/ERF-SfMLearner.

1 = 0.9β 2 = 0.999β
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Table 1. Absolute Trajectory Error and Rotation Error on the KITTI Odometry split averaged over all 5 frame-snip-
pets (lower is better)

Seq. 09 Seq. 10

Method (image resolution)

PoseNet 248 × 75 0.04 0.0419 0.0058 0.0035 0.0218 0.0147 0.0052 0.0035

PoseNet 310 × 94 0.0272 0.0251 0.0054 0.0033 0.0162 0.0105 0.0052 0.0034

PoseNet 416 × 128 0.021 0.0157 0.0048 0.0029 0.0145 0.009 0.0047 0.0034

ERFPoseNet (Dilated) 416 × 128 0.0187 0.0147 0.0048 0.003 0.0141 0.0092 0.0049 0.004

ERFPoseNet (Dfc) 416 × 128 0.018 0.0124 0.0042 0.0027 0.0135 0.0094 0.0043 0.0036

ERFPoseNet (Dfcv2) 416 × 128 0.0206 0.0138 0.0049 0.0028 0.0143 0.0091 0.0048 0.0035

PoseNet 620 × 188 0.0186 0.0117 0.0048 0.0036 0.0137 0.0086 0.0049 0.0042

ERFPoseNet (Dilated) 620 × 188 0.0182 0.0108 0.0048 0.0033 0.0132 0.0088 0.0047 0.0033
ERFPoseNet (Dfc) 620 × 188 0.0165 0.0087 0.0043 0.0024 0.0132 0.0095 0.0042 0.0036

ERFPoseNet (Dfcv2) 620 × 188 0.0173 0.0102 0.0048 0.0029 0.0136 0.0096 0.005 0.0045

PoseNet 1241 × 376 0.0165 0.008 0.0056 0.005 0.0148 0.0095 0.0056 0.0054

meanATE stdATE meanRE stdRE meanATE stdATE meanRE stdRE
guity during evaluation, we first optimize the scaling factor for the predictions made by each method to
best align with the ground truth, and then measure the Absolute Trajectory Error (ATE) and Rotation

Error (RE) as the metrics (Table 1). RE between  and  is defined as the angle of  when converted
to axis/angle:

(2)

As shown in Table 1, RF increase helps to get lower errors and better metrics in ego-motion estimation.
Moreover, dilated convolution slightly improves the metrics, but the use of deformable convolution for the
last layers of the ERFPoseNet is a much more profitable method. As shown in Fig. 4, RF with deformable
convolution covers the entire input, which could explain this result. On the other hand, applying deform-
able convolution to the four first layers of the ERFPoseNet (Dfcv2) leads to results worse than ERFPo-
seNet (Dilated) and similar to ERFPoseNet (Dfc).

4.2. Depth Estimation
To evaluate the impact of RF on depth prediction we also used ERFDepthNet architectures, shown in

Fig. 3. We study changing convolution operations only in the encoder block and replacing them with the
deformable convolutions (Table 2). Since the depth predicted by method is defined up to scale factor, for

1R 2R 1

1 2R R −

( )1

1 2= ( ( ) 1) 2 .RE arccos trace R R − −
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Fig. 4. The receptive field (RF) of ERFPoseNet. Top, left to right: original image from KITTI dataset, RF for baseline
PoseNet. Bottom, left to right: RF for ERFPoseNet (Dilated), RF for ERFPoseNet (Dfc) and ERFPoseNet (Dfcv2). We
use backprop to compute the RF and exploit the fact that the values of the weights of the network are not relevant for com-
puting RF. We change the weight for every layer to be 0.05 and the bias to be 0. To create a situation in which the gradient
at the output of the model depends only on the location of the pixels a white image is passed into the network. For visu-
alization, we only compute RF for the one pixel in the first channel of the penultimate conv layer—set the corresponding
gradient value to 1 and all the others to 0. When we backpropagate this gradient to the input layer and light up the RF as
a red mask.
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Table 2. Results for depth estimation on Eigen KITTI split: ERFDepthNets + PoseNet architectures. The errors are
only computed where the depth is less than 80 m

Method (image resolution)
Scale Error metric Accuracy metric

PoseNet GT Abs Rel Sq Rel RMSE

ERFDepthNet (Dfc) 416 × 128 ✓ 0.1988 1.8269 6.6759 0.7091 0.8866 0.953

ERFDepthNet (Dfcv2) 416 × 128 ✓ 0.214 2.1015 6.8433 0.6805 0.8811 0.9503

ERFDepthNet (Dfc) 416 × 128 ✓ 0.3097 3.9491 7.7958 0.55 0.7944 0.8982

ERFDepthNet (Dfcv2) 416 × 128 ✓ 0.3303 4.6615 8.1794 0.5344 0.7709 0.8797

ERFDepthNet (Dfc) 620 × 188 ✓ 0.1927 1.8134 6.3779 0.7334 0.9082 0.9639
ERFDepthNet(Dfc) 620 × 188 ✓ 0.2832 3.2512 7.5411 0.5665 0.805 0.9015

< 1.25δ 2
< 1.25δ 3

< 1.25δ

Table 3. Results for depth estimation on Eigen KITTI split: DepthNets + ERFPoseNets architectures. The errors
are only computed where the depth is less than 80 m

Method (image resolution)
Scale Error metric Accuracy metric

PoseNet GT Abs Rel Sq Rel RMSE

DepthNet + PoseNet 248 × 75 ✓ 0.2375 2.2019 7.4432 0.6201 0.8539 0.9373

DepthNet + PoseNet 310 × 94 ✓ 0.2215 2.0839 7.1324 0.656 0.8726 0.9463

DepthNet + PoseNet 416 × 128 ✓ 0.2135 1.8977 6.7938 0.6789 0.875 0.946

DepthNet + ERFPoseNet 

(Dilated) 416 × 128

✓ 0.2041 1.7651 6.736 0.6922 0.8872 0.9539

DepthNet + ERFPoseNet (Dfc) 

416 × 128

✓ 0.2017 1.8202 6.7059 0.704 0.8902 0.9529

DepthNet + ERFPoseNet 

(Dfcv2) 416 × 128

✓ 0.2083 2.0195 6.8569 0.695 0.884 0.9506

DepthNet + PoseNet 416 × 128 ✓ 0.354 5.0006 8.3413 0.5026 0.7519 0.8628

DepthNet + ERFPoseNet 

(Dilated) 416 × 128

✓ 0.3305 3.6844 8.1672 0.4968 0.7378 0.8509

DepthNet + ERFPoseNet (Dfc) 

416 × 128

✓ 0.3132 4.7717 7.8997 0.5478 0.7907 0.8957

DepthNet + ERFPoseNet 

(Dfcv2) 416 × 128

✓ 0.3123 4.2249 8.0961 0.5371 0.78 0.8903

DepthNet + PoseNet 620 × 188 ✓ 0.2034 2.1613 6.7045 0.7147 0.8929 0.9529

DepthNet + ERFPoseNet 

(Dilated) 620 × 188

✓ 0.1977 1.9366 6.5297 0.7185 0.8948 0.9557

DepthNet + ERFPoseNet (Dfc) 

620 × 188

✓ 0.2125 2.7657 6.8724 0.7048 0.8874 0.948

ERFDepthNet (DFC) + ERF-

PoseNet (Dfc) 620 × 188

✓ 0.1928 1.8521 6.4198 0.7425 0.8983 0.9631

DepthNet + PoseNet 620 × 188 ✓ 0.3162 4.3905 7.9923 0.5455 0.7783 0.8821

DepthNet + ERFPoseNet 

(Dilated) 620 × 188

✓ 0.3083 3.8333 7.8461 0.5499 0.7744 0.8769

DepthNet + ERFPoseNet (Dfc) 

620 × 188

✓ 0.2972 4.5935 7.9023 0.5773 0.8033 0.8994

ERFDepthNet (DFC) + ERF-

PoseNet (Dfc) 620 × 188

✓ 0.2865 3.4243 7.6243 0.5863 0.8092 0.9001

DepthNet + PoseNet 1241 × 376 ✓ 0.2202 3.0018 7.183 0.6976 0.8897 0.9515

< 1.25δ 2
< 1.25δ 3

< 1.25δ
evaluation we multiply the predicted depth maps by a scalar s that matches the median with the ground-

truth, i.e. s = median( )/median( ). This we call GT supervisor. As a result, lower errors and best

accuracy show deformable convolution, applied to the first four DepthNet layers in ERFDepthNet(Dfc).
Also we compare different baseline’s DepthNet with ERFPoseNets (Table 3). With joint training,
increasing of RF in the original PoseNet gives positive effect on DepthNet predictions, producing depth
metrics comparable with ERFDepthNet (Dfc).

gtD predD
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5. CONCLUSIONS

We present ERF-SfMLearner, a result of the analysis of receptive field importance in self-supervised
deep learning method for monocular depth prediction and camera ego-motion estimation tasks. The
experimental evaluation on KITTI dataset shows that bigger receptive field may be a one key to the suc-
cessful solution of this task. The best result that we have been able to achieve is an increase of receptive
field through the use of deformable convolution both for ERFPoseNet and ERFDepthNet models. Also,
our work highlights an important fact: in joint training with self-supervised loss changing the architecture
of one neural module can affect another module’s result. With this knowledge, more advanced neural
architectures can be proposed to better cope with the task of the monocular depth and ego-motion esti-
mation and, as a consequence, with a high-quality mapping and better localization.

FUNDING

This work was partially supported by the Analytical Center for the Government of the Russian Federation in

accordance with the subsidy agreement, agreement identifier 000000D730321P5Q 0002; grant no. 70-2021-00138.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes

were made. The images or other third party material in this article are included in the article’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative

Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creative-

commons.org/licenses/by/4.0/.

REFERENCES

1. Qusay Sellat and Kanagachidambaresan Ramasubramanian, Advanced techniques for perception and localiza-
tion in autonomous driving systems: A survey, Opt. Mem. Neural Networks, 2022, vol. 31, no. 2, pp. 123–144.

2. Shepel, I., Adeshkin, V., Belkin, I., and Yudin, D.A., Occupancy grid generation with dynamic obstacle seg-
mentation in stereo images, IEEE Trans. Intell. Transp. Syst., 2021, vol. 23, no. 9, pp. 14779–14789.

3. Bokovoy, A., Muraviev, K., and Yakovlev, K., Map-merging algorithms for visual slam: Feasibility study and
empirical evaluation, in Russian Conference on Artificial Intelligence, Springer, 2020, pp. 46–60.

4. Angermann, Ch., Schwab, M., and Haltmeier, M., Laubichler, Ch., and J’onsson, S., Unsupervised single-shot
depth estimation using perceptual reconstruction, Mach. Vision Appl., 2023, vol. 34, no. 5, p. 82.

5. Goshin, Y., Coplanarity-based approach for camera motion estimation invariant to the scene depth, Opt. Mem.
Neural Networks, 2022, vol. 31 (Suppl. 1), pp. 22–30.

6. Kasatkin, N. and Yudin, D., Real-time approach to neural network-based disparity map generation from stereo
images, in International Conference on Neuroinformatics, Springer, 2021, pp. 261–268.

7. Tinghui Zhou, Brown, M., Noah Snavely, and Lowe, D.G., Unsupervised learning of depth and ego-motion
from video, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1851–
1858.

8. Muravyev, K., Bokovoy, A., and Yakovlev, K., tx2_fcnn_node: An open-source ros compatible tool for mon-
ocular depth reconstruction, SoftwareX, 2022, vol. 17, 100956.

9. Geiger, A., Lenz, Ph., and Urtasun, R., Are we ready for autonomous driving? The kitti vision benchmark suite,
in 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012, pp. 3354–3361.

10. Mahjourian, R., Wicke, M., and Angelova, A., Unsupervised learning of depth and egomotion from monocular
video using 3d geometric constraints, in Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, 2018, pp. 5667–5675.

11. Godard, C., Oisin Mac Aodha, Firman, M., and Brostow, G.J., Digging into selfsupervised monocular depth
estimation, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3828–3838.

12. Zhichao Yin and Jianping Shi, Geonet: Unsupervised learning of dense depth, optical f low and camera pose, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1983–1992.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 32  Suppl. 2  2023



INFLUENCE OF NEURAL NETWORK RECEPTIVE FIELD... S213
13. Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, Ram Nevatia, and Alan Yuille, Every pixel
counts++: Joint learning of geometry and motion with 3d holistic understanding, IEEE Trans. Pattern Anal.
Mach. Intell., 2019, vol. 42, no. 10, pp. 2624–2641.

14. Anurag Ranjan, Varun Jampani, Balles, L., Kihwan Kim, Deqing Sun, Wulff, J., and Black, M.J., Competitive
collaboration: Joint unsupervised learning of depth, camera motion, optical f low and motion segmentation, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12240–12249.

15. Yuhua Chen, Cordelia Schmid, and Cristian Sminchisescu, Self-supervised learning with geometric constraints
in monocular video: Connecting f low, depth, and camera, in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019, pp. 7063–7072.

16. Baigan Zhao, Yingping Huang, Wenyan Ci, and Xing Hu, Unsupervised learning of monocular depth and ego-
motion with optical f low features and multiple constraints, Sensors, 2022, vol. 22, no. 4, p. 1383.

17. Xiaobin Wei, Jianjiang Feng, and Jie Zhou, Semantics-driven unsupervised learning for monocular depth and
ego-motion estimation. arXiv preprint arXiv:2006.04371, 2020.

18. Jaehoon Choi, Dongki Jung, Donghwan Lee, and Changick Kim, Safenet: Self-supervised monocular depth
estimation with semantic-aware feature extraction. arXiv preprint arXiv:2010.02893, 2020.

19. Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Luigi Di Stefano, and Ste-
fano Mattoccia, Distilled semantics for comprehensive scene understanding from videos, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4654–4665.

20. Vertens, J. and Burgard, W., Usegscene: Unsupervised learning of depth, optical f low and ego-motion with se-
mantic guidance and coupled networks. arXiv preprint arXiv:2207.07469, 2022.

21. Guangming Wang, Jiquan Zhong, Shijie Zhao, Wenhua Wu, Zhe Liu, and Hesheng Wang, 3d hierarchical re-
finement and augmentation for unsupervised learning of depth and pose from monocular video, IEEE Trans.
Circuits Syst. Video Technol., 2022, vol. 33, no. 4, pp. 1776–1786.

22. Tak-Wai Hui, Rm-depth: Unsupervised learning of recurrent monocular depth in dynamic scenes, in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1675–1684.

23. Zeeshan Khan Suri, Pose constraints for consistent self-supervised monocular depth and egomotion, in Scan-
dinavian Conference on Image Analysis, Springer, 2023, pp. 340–353.

24. Chungkeun Lee, Changhyeon Kim, Pyojin Kim, Hyeonbeom Lee, and H. Jin Kim, Scale-aware visual-inertial
depth estimation and odometry using monocular self-supervised learning, IEEE Access, 2023, vol. 11,
pp. 24087–24102.

25. Adaloglou, N., Understanding the receptive field of deep convolutional networks, AI Summer, 2020.

26. Andr’e Araujo, Wade Norris, and Jack Sim, Computing receptive fields of convolutional neural networks, Dis-
till, 2019, vol. 4, no. 11, p. e21.

27. Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei, Deformable convolu-
tional networks, in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773.

28. Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai, Deformable convnets v2: More deformable, better results,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9308–9316.

29. Basharov, I. and Yudin, D, Real-time deep neural networks for multiple object tracking and segmentation on
monocular video, Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2021, vol. 44, pp. 15–20.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 32  Suppl. 2  2023


	1. INTRODUCTION
	2. RELATED WORK
	3. METHOD
	3.1. ERF-SfMLearner Architecture
	3.2. Learning Approach
	3.3. Receptive Field Extension with Dilated Convolution
	3.4. Receptive Field Extension with Deformable Convolution

	4. EXPERIMENTS
	4.1. Pose Estimation
	4.2. Depth Estimation

	5. CONCLUSIONS
	REFERENCES

		2023-11-18T19:25:54+0300
	Preflight Ticket Signature




