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Abstract—For autonomous AI systems, it is important to process spatiotemporal information to
encode and memorize it and extract and reuse abstractions effectively. What is natural for natural intel-
ligence is still a challenge for AI systems. In this paper, we propose a biologically plausible model of
spatiotemporal memory with an attractor module and study its ability to encode sequences and effi-
ciently extract and reuse repetitive patterns. The results of experiments on synthetic and textual data
and data from DVS cameras demonstrate a qualitative improvement in the properties of the model
when using the attractor module.

Keywords: sequential memory, spatiotemporal abstractions, spatial pooler, temporal memory, spatial
attractor

DOI: 10.3103/S1060992X23060097

1. INTRODUCTION
Modern artificial intelligence systems are often interactive and therefore rely on the ability to process

and remember sequentially incoming information [1, 2]. Unlike the human brain, for which the continu-
ous processing of spatiotemporal information is natural, this is still a challenging task for AI systems [3, 4].

In this paper, we propose a biologically plausible model of spatiotemporal memory with an attractor
module. We study its ability to efficiently encode sequences and extract and reuse repetitive patterns in
experiments on synthetic and textual data, and data from DVS cameras. We demonstrate qualitative and
quantitative improvements of the sequence memory when using the attractor module and compare its per-
formance to the LSTM model [5]. Experiments show that the attractor module significantly increases the
temporal memory’s capacity and its convergence speed. We also investigate properties of the attractor
module itself and test significance of its different components.

The remainder of the paper is structured as follows: The biologically plausible paradigm for the neo-
cortex modeling that serves as the foundation of our study is introduced in Section 2. Our temporal mem-
ory model is described in Section 3. Section 4 describes the experimental setup that was used as well as the
outcomes. The results are discussed in Section 5, which also offers suggestions for future research.

2. BACKGROUND
Our spatiotemporal memory model is inspired by HTM framework, which describes a discrete-time

multi-compartment computational model of a pyramidal neuron with active dendrites of the cerebral cor-
tex and hippocampus [6, 7]. Such neuron has its dendritic synapses grouped into segments and then into
compartments. The proximal basal compartment has a single segment and is responsible for the feedfor-
ward input from other layers, while the distal basal compartment unites segments with synapses to neurons
of the same layer. A single segment defines the unit of neuron activation—segments become active based
on the activity of their receptive field, regardless of the activity of the others.

There are two sub-algorithms that define important building blocks in our model: a spatial pooler and
a temporal memory.
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Spatial Pooler (SP) is a neural network algorithm capable of encoding input stimuli patterns using the
local Hebbian rule [8]. The main function of SP is the spatial specialization of neurons’ receptive fields
through k-WTA (  winners take all) inhibition [9]. SP output activity is a sparse distributed representation
(SDR), that is only a small percentage of neurons are active at each moment of time and the semantics is
spread across them. There are evidences that mammal brains might employ an analogous strategy for cod-
ing, which is efficient and noise tolerant [10]. One of the key properties of our model is that all its parts
operate and communicate with SDRs.

Temporal Memory (TM) is a recurrent neural network algorithm that implements the sequential pat-
tern memory [6, 11]. TM neurons are organized into ensembles called minicolumns. The neurons of the
minicolumn share proximal basal segment’s receptive field and therefore recognize the same feedforward
input pattern. Activity of TM neurons is determined on the basis of two parallel factors: the relative ability
of minicolumns to recognize an incoming feedforward spatial pattern and the threshold ability of neurons
to recognize spatiotemporal patterns of the context arriving at the distal compartment from neurons of the
same layer [12–14]. As the result, active minicolumns encode feedforward input, while active neurons
represent TM’s hidden state.

3. METHODS

3.1. Sequence Memory Model

In this work we propose a sequence memory model that consists of three modules: (1) the spatial
encoder for the input sequence elements, (2) the sequence memory itself, and (3) the memory hidden
state attractor. An illustration of the model is shown in Fig. 1.

3.1.1. Spatial encoder. The spatial encoder (SE) is a module that accepts current observation  and
transforms it to the latent state SDR . Its main role is to prepare input for easier processing while retain-
ing input patterns pairwise similarity to keep as much information about sequence elements as possible.
We expect it help clusterize/separate entire sequences resulting in the easier memorization task for the
sequence memory. SE is based on SP algorithm and is tuned for these properties. If an input stream has
already been encoded appropriately in terms of sparsity and topology semantics, using SE is optional.
Likewise, since SE learns online, the output representation can be highly unstable during the early phases,
which could bring performance drop.

3.1.2. Temporal memory. TM module represents sequence memory itself and is implemented with a
high-order temporal memory (TM). Given feedforward SDR , TM updates its hidden state , which is
then used to predict the next hidden state . The high efficiency of temporal memory is largely due to
its ability to represent the context of the observed element of a sequence, which is the sequence’s prefix,
in a unique way. While the TM algorithm efficiently separates different contexts, it is much less efficient
at representing similar contexts with similar latent states. For the task of perfect memorization of near-
symbolic sequences and anomaly detection, these properties may be desirable. But for the tasks that
require sequence abstraction and generalization, it is a major drawback.

3.1.3. Attractor. We propose the attractor module to help TM consolidate similar contexts. It is an
attractor network operating in the TM latent state space with the purpose of correcting TM predictions.
The attractor module is expected to push predictions toward the strongest nearest neighbour memories.
The module has two parts: spatial attractor and associative attractor.

3.1.4. Spatial attractor. A spatial attractor (SA) is a neural network implemented with the Spatial
Pooler algorithm. It gets the f lattened vector of the predicted TM hidden state SDR  as input and trans-
forms it recurrently several times—that is, the output from the spatial attractor  is fed to itself as an input,
and so on for  iterations.

The role of the spatial attractor in the learning process is to form stable representations for the recurring
TM hidden states, which represent sequences (or their prefixes). We expect that the spatial attractor
trained with the Hebbian rule forms an attractor network in which representations corresponding to the
frequently observed subsequences act as attractors. This could allow us to integrate contexts correspond-
ing to similar [sub-]sequences.

Note that the SDR , which is meant to correct the temporal memory prediction , no longer cor-
responds to the columnar structure of the temporal memory, because SA learns without supervision. As
the result, the attractor module needs another part—the associative attractor.
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Fig. 1. Sequence memory model with attractor module. An input SDR  is encoded with spatial encoder (SE) to a latent
vector . It is forwarded to the temporal memory (TM), which updates its hidden state  and predicts the next-time state

. Attractor module corrects this prediction. First, f latten SDR  is passed to the recurrent spatial attractor (SA) for
 recurrent iterations. The result  is then passed to the associative attractor (AA) to form the corrected prediction .

It is returned back and overwrites TM prediction state. On the next timestep, the mismatch between the feedforward 
and the TM prediction  forms a feedback signal for TM and AA learning.
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3.1.5. Associative attractor. The associative attractor (AA) is an associative memory, which is imple-
mented with the first-order Temporal Memory algorithm. AA learns the inverse mapping from the SA
representations space back to the TM latent state space—it learns to predict the TM’s next hidden state,
same as TM itself, but given the SA output SDR  as a feedforward input. The AA prediction is used to
correct the TM original prediction  by overwriting it. The AA learns with the prediction error signal
from the TM.

It is worth noticing that the resulting attractor module has an autoencoder-like architecture with the
SA playing the role of an encoder and AA playing a role of a decoder. It is also worth pointing out that the
SA in the attractor block is optional, that is  could be set to zero. For both cases  and , we
expect the associative attractor to also have properties of an attractor network (hence the name) because
due to the lag between TM and AA learning (note that the attractor module learns over what TM has
already learned), it will act as an additional regularizing filter. For the AA’s segments we also set receptive
fields larger than those of the TM to reinforce context consolidation effects.

Previous work [15] showed that the attractor properties of the attractor module are mostly due to the
AA block alone, while the include of the SA does not bring any visible benefits. In this work we provide
more thorough experimental analysis of the SA attractor properties.

In the process of testing the proposed model, we also end up with an alternative version of the attractor
module (it is marked with |W on figures), in which it is applied to the current TM’s winner cells instead
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of the predictions. Another difference is that the corrected prediction does not overwrite the existing TM’s
prediction, but is added to it with the union operation. It means that the attractor module is regularized
itself and learns only the strongest relations between two timesteps. The idea behind this version becomes
more clear, given the results of the main attractor module and, therefore, we discuss it in Section 4.1.

4. EXPERIMENTS
In this work we set two separate experiments. With the first we examine the ability of the model to

memorize sequences and also extract and reuse abstractions, that is repeating subsequences. In this exper-
iment, besides using single TM we also use LSTM (400 hidden state size) as the second baseline model.
With the other experiment we study attractor properties of the spatial attractor.

4.1. Sequential Data Memorization Task
For this experiment, we used three different datasets: synthetic symbolic sequences, program code text,

and event-based camera video. A synthetic dataset does not have a regular structure, and therefore only
tests the memorization speed and memory capacity. The program code, on the contrary, has a fairly clear
structure due to the syntax of the language and contains a large number of repetitive abstractions: vari-
ables, conditions and loops, functions and classes. Therefore, with this dataset, we test the model ability
highlight and reuse abstractions to a greater extent. We chose programming language over natural lan-
guage because of the more pronounced structure. The DVS-camera video dataset was chosen as a bal-
anced option, in which regularities exist, but are noticeably less pronounced. Moreover, it shows practical
applicability of the model to real data of this type.

Every run is split into  epochs, and within an epoch the model observes  sequences with  SDRs
each. The model was evaluated in two regimes: few-shot and zero-shot. The former assumes the same set
of sequences is observed for  consecutive epochs, while for the latter each epoch the new set of sequences
is sampled from the dataset. Regarding the model’s ability generalize and reuse learned representations,
these setups represent two difficulty levels.

The synthetic dataset consists of randomly generated symbolic sequences of length  from an alpha-
bet of size  with controlled varying degrees of elementwise similarity between sequences. For the pro-
gram code dataset we used the codebase of the Python implementation of our model, which is available
online [16]. For both symbolic datasets, sequence elements are encoded into SDRs by mapping each sym-
bol to a random SDR with 3% sparsity. DVS dataset contains outdoor walking scenes recorded with a DVS
camera [17]. We preprocess its data to transform a stream of camera events to an SDR dataset. For this,
we aggregate events into 0.5 ms frames, downsample resulted images from (240, 180) to (40, 30), average
out polarity for image pixels and finally ternarize it (two polarity signs and off-state). Then each image is
split into two binary images for both polarity signs, f lattened and concatenated to a single binary SDR vec-
tor. For the DVS dataset, we use an additional SE before passing data to the model in order to normalize
input sparsity level.

To evaluate the memory performance we use the model prediction miss rate—the mismatch between
two SDRs representing TM prediction about the hidden state  and the actual hidden state :

. To estimate the efficiency of the memory we also introduce column (and

cell) prediction volume metric, which is the total number of predicted TM minicolumns (cells) divided by
the number of active minicolumns. For minicolumns it estimates the number of possible observation out-
comes TM expects, while for cells it roughly estimates the number of possible context outcomes.

Results in Figs. 2, 3, which are averaged over  random seeds and smoothed with the running average
window of size , show that the attractor module significantly improves the memory performance on all
datasets.

The memory performance for the zero-shot setup on the synthetic dataset (Fig. 2a) has a high plateau
for all models because not much memorized information can be reused. Therefore predictably, LSTM
performs poorly here, particularly in the zero-shot task. On the other hand, the improvement from the
attractor module is pronounced for the few-shot setup (Fig. 2b). Figure 2c shows that the +SE+AA version
of the attractor module predicts the similar amount of patterns compared to the baseline TM, but it is able
to consolidate different contexts within the active columns and maintain them active for the successful
predictions (Fig. 2d). Interestingly, while the alternative version +SE+SA+AA|W shows slightly worse per-
formance even than the baseline, its active context and predictions are significantly more effective.
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Fig. 2. Memorization task performance on random sequences. While LSTM performs poorly compared to the others, the
attractor module (+SE+AA) performs better than the TM baseline because it consolidates and maintains active different
contexts within active columns (c, d).
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Results for the program code and DVS datasets confirm +SE+AA superior performance (Figs. 3a and 3b).
Due to the specifics of these datasets, the ability to consolidate different contexts plays here a supportive
role for the correct pattern prediction—continuations for the subsequences, which were repeatedly seen in
the contexts that differ from the current, are also predicted (Figs. 3c and 3d). However, this ability has a
downside too. The attractor module learns associations excessively, which results to the much lower com-
putational performance and lower prediction power (i.e. precision). In extreme case, the AA is able to fuse
and consolidate contexts (and to some extent, patterns) entirely. As both TM and AA have a parameter
responsible for the inhibition of the incorrectly predicted segments, we used increased values to balance
the strength of the consolidation. Despite the fact that LSTM performs noticeably better on text data than
on a synthetic dataset due to more structured nature of sequences, which is favorable for generalization,
the performance still lags far behind the proposed model.

4.2. Attractor Properties of Spatial Attractor

It is known that the Spatial Pooler algorithm, when forming distributed representations, on the one
hand, seeks to separate the input patterns, on the other hand, to preserve a certain portion of their simi-
larity. This raises the question of whether it is possible to increase the proportion of intersection for similar
patterns if SP is recurrently applied to the same pattern. This idea underlies the SA algorithm, which we
investigate in this section. First, the original pattern is encoded to SDR with one SP (SE). Then the result-
ing representation is fed to the second SP (SA). The input and output representations of the SA have the
same size and spacing. The output from the attractor is again transferred to its own input for several iter-
ations.

In this experiment we use handwritten MNIST digits dataset. Since images corresponding to the same
digit have many similarities, we assumed that SA should monotonically bring together the patterns of the
same class in SDR space, improving the possibility of their classification. A number of studies on the
properties of SP algorithm have shown that the use of SDR really improves the quality of classification
compared to the classification on the original images. However, the recurrent application of SP to a SDR,
like in our SA algorithm, has not yet been studied.
OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 32  Suppl. 2  2023
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Fig. 3. Zero-shot memorization task performance on text and DVS datasets. The attractor module (+SE+AA and
+SE+SA+AA|W) significantly increases the performance of the temporal memory (TM). +SE+AA memorizes more and
keeps larger context active, while +SE+SA+AA|W represents context more effectively, leading to the better prediction pre-
cision (c, d).
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As the main metric of the attractor properties of SA, the average relative proximity of patterns of one
class compared to the proximity of patterns of other classes is considered, which is calculated by the for-
mula:

(1)

where  is the average proximity of SDR from class  with respect to class  and  is the total number
of classes.

The proximity of distributed representations is defined as follows:

(2)

where  is the set of active bits of the distributed representation ,  is the cardinality of
the set.

Figure 4a shows how the average  over all classes depends on the number of SP iterations. Zero
iteration corresponds to the proximity of the original binarized images. The first iteration step corresponds
to the exit from the SE, and the subsequent steps correspond to the exit from the SA. As can be seen from
the plot, the  metric falls only after SE, but then gradually grows. This means that only the use of SE
improves the clustering, and SA worsens it. However, this negative effect is less pronounced if the SA is
trained on its own output. With the help of self-organizing maps, images of clusters were also obtained
(Fig. 4b), from which it is clear that only the first iteration gives a visible improvement in the separation
of patterns corresponding to different classes, and further iterations lead to mixing of classes.

A characteristic heat map was also constructed for the system under consideration, which, regardless
of the class, shows the form of mapping from the proximity space of a pair of input patterns to the prox-
imity space of a pair of final ones. Since in the MNIST sample the proximity of image pairs is unevenly
represented, random patterns with different proximity were artificially generated. As can be seen from Fig. 5, as
iterations increase, the patterns are separated more strongly, even those that were initially as similar as
possible.
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Fig. 4. (a) The average  over all classes depending on the iteration of the application of SP. Zero iteration corresponds
to the similarity of the original binarized images, the first–to the exit from SE, and the subsequent iterations–to the exit
from SA (b) Distribution of classes by neurons of a self-organizing map. The neuron indices are plotted along the axes.
The cell color means the average Euclidean distance of the neuron’s weights to the weights of its nearest neighbors. The
clearer and richer the digit, the more often this digit activates this neuron. After the first iteration more neurons are
involved but at the same time class separability is improved, however further iterations net to reversed effects as digits
become blurred.
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The results of the experiments showed that the SP algorithm has poor attractor properties on its own
and, on the contrary, tends to separate patterns. As can be seen from the visualization of self-organizing
maps trained on distributed representations, such a separation can be useful for classification. However,
with an increase in iterations, information about the proximity of the original images is lost in the output
patterns.

5. CONCLUSION AND DISCUSSION

In this work, we proposed a biologically inspired memory model that is able to effectively memorize
sequential data with the regular structure. The proposed model consists of several optional components—
the spatial encoder module and the attractor module consisting of spatial and associative attractors—that
support a sequence memory based on a temporal memory algorithm.

We tested the model on different datasets—random, program code and DVS camera video—to show
how each component contributes to the model performance and to compare it with the LSTM baseline.
The attractor module significantly changes the learned sequence memory hidden state representations by
making them reflect the context similarity. This brings the sequence memory an ability to consolidate
similar contexts, which improves the memory performance on all datasets in terms of the miss rate met-
rics. Compared to LSTM results, the proposed model shows significantly better zero-shot performance
on any of the tested datasets via combination of pure TM memorization and the attractor module induced
context consolidation.

Preliminary analysis [15] showed that the context consolidation effect of the attractor module is due to
the associative attractor alone, while the spatial attractor brings neglible benefits to the model. In this work
we separately studied the SA attractor properties and showed that it tends to distinct even close patterns.
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Nevertheless, we still believe that the spatial attractor itself has potential, for example as a short-term self-
attention module that is analogous to Fast Weights networks [18]. We did not study attentive mechanisms
of the spatial attractor in this work and plan to further investigate it in future works.

We also supplied the memory performance results with the prediction volume analysis to show that
better memorization comes with a price in terms of the computational performance and the prediction
precision. Also, this analysis indicates that the large part of the context consolidation ability in the
+SE+AA version is achieved via maintaining multiple contexts active on each timestep. We believe that
ideally such feature should play lesser role, and the consolidation should take place mostly on the context
representation level itself. That is, the memory should allocate repeated subsequences more strictly, and
thus in the current context representation, a larger share should be occupied by the representation of the
current short subsequence than by the more general context of the entire sequence. For this particular
problem, we believe that the results of the attractor module alternative version +SE+SA+AA|W are of spe-
cial importance. On the datasets with regular structure this version shows promising results and proper-
ties—while having mostly better than the baseline TM memory performance it has much more effective
prediction volume, which we explain with the better consolidation properties. We leave the thorough anal-
ysis of this version for the future work.
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