Skip to main content
Log in

Optical Biosensor in a One-Dimensional Photonic Structure with Bound States in the Continuum

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

In this paper, we present the main results of the numerical calculation of the bound states in the continuum (BICs) application in the refractive index (RI) sensing. We consider two types of one-dimensional rectangular photonic structure at subwavelength regime and study the Fano resonance shift for off-Γ BIC. The results obtained will make it possible to create photonic structures for biosensing, for which a high-Q resonance is observed at nonzero incidence angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Maksimov, D.N. et al., Enhanced sensitivity of an all-dielectric refractive index sensor with an optical bound state in the continuum, Phys. Rev. A, 2022, vol. 105, no. 3, p. 033518.

    Article  MathSciNet  Google Scholar 

  2. Koshelev, K., Sadrieva, Z., Shcherbakov, A., Kivshar, Y., and Bogdanov, A., Bound states in the continuum in photonics. arXiv preprint arXiv:2207.01441, 2022.

  3. Maksimov, D.N., Gerasimov, V.S., Romano, S., and Polyutov, S.P., Refractive index sensing with optical bound states in the continuum, Opt. Express, 2020, vol. 28, no. 26, pp. 38907–38916.

    Article  Google Scholar 

  4. Liu, Yonghao, Weidong Zhou, and Yuze Sun, Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs, Sensors, 2017, vol. 17.8, p. 1861.

    Article  Google Scholar 

  5. Tang, S., Chang, C., Zhou, P., and Zou, Y, Numerical Study on a Bound State in the Continuum Assisted Plasmonic Refractive Index Sensor, MDPI Photonics, 2022, March, vol. 9, no. 4, p. 224.

    Article  Google Scholar 

  6. Pitruzzello, G. and Krauss, T.F., Photonic crystal resonances for sensing and imaging, J. Opt., 2018, vol. 20.7, p. 073004.

    Article  Google Scholar 

  7. Wang, S., Liu, Y., Zhao, D., Yang, H., Zhou, W., and Sun, Y., Optofluidic Fano resonance photonic crystal refractometric sensors, Appl. Phys. Lett., 2017, vol. 110, no. 9, p. 091105.

    Article  Google Scholar 

  8. Shankaran, D.R., Gobi, K.V., and Miura, N., Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sens. Actuators, B, 2007, vol. 121, no. 1, pp. 158–177.

    Article  Google Scholar 

  9. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., and van Duyne, R.P., Biosensing with plasmonic nanosensors, Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, pp. 308–319.

  10. Mejía-Salazar, J.R. and Oliveira, O.N., Jr., Plasmonic biosensing: Focus review, Chem. Rev., 2018, vol. 118, no. 20, pp. 10617–10625.

    Article  Google Scholar 

  11. Dyshlyuk, A.V., Eryusheva, U.A., and Vitrik, O.B., Splitting of resonances in a curved optical fiber-based Fabry-Perot resonator, Comput. Opt., 2021, vol. 45, no. 1, pp. 38–44.

    Article  Google Scholar 

  12. Nesterenko, D., Resonance characteristics of transmissive optical filters based on metal/dielectric/metal structures, Comput. Opt., 2020, vol. 44.2, pp. 219–228.

    Article  Google Scholar 

  13. Kazanskiy, N.L., Butt, M.A., Degtyarev, S.A., and Khonina, S.N., Achievements in the development of plasmonic waveguide sensors for measuring the refractive index, Comput. Opt., 2020, vol. 44, no. 3, pp. 295–318.

    Article  Google Scholar 

  14. Lai, W.C., Chakravarty, S., Zou, Y., Guo, Y., and Chen, R.T., Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors, Appl. Phys. Lett., 2013, vol. 102, no. 4, p. 041111.

    Article  Google Scholar 

  15. Kang, C., Phare, C.T., Vlasov, Y.A., Assefa, S., and Weiss, S.M., Photonic crystal slab sensor with enhanced surface area, Opt. Express, 2010, vol. 18, no. 26, pp. 27930–27937.

    Article  Google Scholar 

  16. Yang, D., Tian, H., Ji, Y., and Quan, Q., Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors, JOSA B, 2013, vol. 30, no. 8, pp. 2027–2031.

    Article  Google Scholar 

  17. Hsu, C.W., Zhen, B., Lee, J., Chua, S.L., Johnson, S.G., Joannopoulos, J.D., and Soljačić, M., Observation of trapped light within the radiation continuum, Nature, 2013, vol. 499, no. 7457, pp. 188–191.

    Article  Google Scholar 

  18. Gladyshev, S. Shalev, A., Ladutenko, K., and Bogdanov, A., Angular pinning of accidental bound state in the continuum, Photonics and Electromagnetics Research Symposium (PIERS), 2021, pp. 2579–2582.

  19. Bulgakov, E. and Maksimov, D., Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods, Phys. Rev. A, 2017, vol. 96.6, p. 063833.

    Article  Google Scholar 

  20. Shcherbakov, A.A., GratingFMM. https://github.com/ aashcher/GratingFMM. Accessed March 9, 2023.

  21. COMSOL MULTIPHYSICS Software. https://www.comsol.com/. Accessed March 9, 2023.

  22. Aspnes, D., Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev., Phys. Rev. B, 1983, vol. 27, no. 2, p. 985.

    Article  Google Scholar 

  23. Dodge, M.J., Refractive index in handbook of laser science and technology, Optical Materials, Part 2, Boca Raton, CRC Press, 1986, vol. IV, p. 30.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-72-30018 and by Priority 2030 Federal Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravshanjon Nazarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravshanjon Nazarov, Zarina Sadrieva Optical Biosensor in a One-Dimensional Photonic Structure with Bound States in the Continuum. Opt. Mem. Neural Networks 32 (Suppl 1), S97–S101 (2023). https://doi.org/10.3103/S1060992X23050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X23050156

Keywords:

Navigation