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Abstract—A method for analyzing network traffic based on quantum machine learning is presented.
A method for network traffic encoding into quantum computer terms is developed. The experimental
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Since 1969, when the first computer network was created by the U.S. Defense Advanced Research
Projects Agency, a steady increase in the amount of network traffic has been observed. Throughout this
history, the amount of Internet traffic has been increasing unevenly always depending on technological
advance: availability of desktop computers, prevalence of broadband Internet, advent of laptops and
smartphones, and improvement of wireless communications. The emergence of Internet of Things
devices, digitalization of production, implementation of next generation 5G/5G+ wireless networks, and
development of streaming services have resulted in extremely high amounts of traffic recorded by network
equipment vendors. For example, in March 2020, Frankfurt DE-CIX, one of the busiest network hubs of
the world, recorded the all-time traffic peak, over 9.1 Tbps [1].

Leading IT companies unanimously predict a further increase in the load on network infrastructure
around the world. According to a forecast made by Cisco, global IP traffic is to increase more than
threefold by 2022. The number of stationary and mobile devices will reach 28.5 billion (3.6 per person),
and more than half of all connections will be made by smart devices, sensors, appliances, and so on [2].
Nokia Bell Labs analysts believe that in 2022, the total amount of traffic will reach the level of 330 EB
per month [3].

At the same time, the obvious impact of the COVID-19 pandemic on people’s minds is worth men-
tioning. Even when the virus is defeated, such changes in our lifestyle as distance learning at schools and
universities, employee transfer to remote work, and online shopping will undoubtedly remain more or less
in our life, thereby considerably increasing network loading.

In these circumstances, the issues of information security, protection of personal data, and support of
the sustainable functioning of digital infrastructure are even more urgent. The software of many endpoints
does not have built-in security features and needs regular updates, so they can be compromised by attack-
ers, combined into a botnet, and used to generate malicious traffic [4, 5].

Traditional intrusion detection systems (IDSs) based on signature analysis have been used successfully
for a long time as protection against network attacks. However, the method for the incoming traffic map-
ping to attack patterns has several disadvantages when analyzing big data. Firstly, the diversity of attacks
requires creating huge constantly updated databases of malicious signatures, whose search slows down sig-
nificantly the IDS operation [6, 7]. Secondly, certain attacks, such as coercive energy consumption and
coercive topology modification, have divided sequences of operations, time intervals in the chain of
actions, and some attacks may have nonlinear sequences of actions. Thirdly, there is a class of polymor-
phic attacks that have mutations (namely, local differences, omissions, and delays) of the action sequences
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during the attack implementation. Such attacks adapt to a wide range of conditions, operating systems,
and circumstances; they strive to avoid being scanned by security tools and aim to infect endpoints [8].

In the recent decade, information security researchers and IDS developers have focused on artificial
intelligence methods [9–12]. The main advantages of the AI systems are their self-learning capacity, capa-
bility to detect unknown attacks, high speed of operation, and the absence of necessity to create large data-
bases of malicious signatures. However, when processing not just big data, but huge data >106, these sys-
tems display a decrease in the accuracy of network traffic classification, and an increase in the processing
time of incoming packets.

It is proposed to use quantum machine learning methods to analyze huge amounts of network traffic.
The following problems are solved: development of a dataset for training and testing, development of a
method for encoding network traffic in quantum computer terms, and assessment of the accuracy and
performance of the developed quantum classifier.

QUANTUM MACHINE LEARNING
The basic idea of quantum machine learning is to merge machine learning and quantum computing

techniques. Quantum computers use quantum mechanical phenomena, such as superposition and entan-
glement, to perform computations. The quality of decision-making during the data driven learning
directly depends on the availability of large amounts of data and reliable processing. Quantum machine
learning uses hybrid methods involving both classical and quantum processing, where computationally
complex routines are outsourced to a quantum device [13, 14]. Since these routines can have more com-
plex nature, they can be executed faster by quantum devices.

Quantum computers DWave and IBM Q are the most elaborated. DWave has a status of the “analog
quantum computer,” because it can solve only a narrow range of quantum annealing problems. At the
same time, its claimed power is 2000 qubits. IBM Q is a project for the development of universal quantum
computers that can execute arbitrary quantum algorithms. Systems of 20 qubits (commercial use) and
open source Q Experience systems of 16 and 5 qubits are currently in operation. The main platforms for
quantum computing implementation are presented in Table 1.

The Qiskit platform that allows managing resource overhead and adapting applications for specific
devices appears to be the most promising. In addition, the platform contains the implemented algorithms:
QSVM, VQC, and QGAN.

Quantum computing is successfully applied in various fields. Quantum distribution of cryptographic
keys successfully solves the problem of distributing keys between users through open communication
channels secured at a level of fundamental laws of nature. In 2014, Chinese researchers first implemented
handwriting recognition using quantum computing [15]. The instantaneous processing of huge amounts
of data and the solution of optimization problems make quantum technologies one of the most promising
tools in the field of artificial intelligence and machine learning. For this reason, in 2013, Google and
NASA created a joint laboratory for research in this area.

Researchers consider quantum machine learning to be one of the most promising areas in the field of
quantum computing [16]. When processing large amounts of data, the use of quantum computing can
achieve quadratic and even exponential acceleration compared to their classical counterparts. The existing
libraries of quantum machine learning are presented in Table 2.

Tensorflow Quantum library developed by Google is chosen for further use based on the analysis of the
available frameworks. Its main advantages are f lexibility, availability of ready-to-use machine learning
models and application packages, scalability by using hardware and software, large online community,
and compatibility with the Keras library. Its disadvantage is supporting only NVIDIA GPUs.

STREAM DATASET GENERATION
The existing datasets, such as IEEEDataPort IoT Network Intrusion Dataset [17], Stratosphere Lab

Malware on IoT Dataset [18], and NSW Canberra The BoT-IoT Dataset [19], contain network packets of
two categories: “with attack” and “without attack.” However, in practice, the approach to classifying indi-
vidual packets has certain significant drawbacks. Firstly, the content of many packets from the available
datasets is not malicious. For example, packets of the Denial of Service category do not contain malicious
signatures; the classifier categorizes such packets as malicious solely based on the sender’s IP address.
Secondly, there are attacks that can distribute the payload over different packets. Thirdly, many attacks are
carried out in stages, so an IDS based on packet classification is ineffective in such cases. Modern IDSs
such as Snort and Suricata use packet-grouping techniques to analyze the network traffic. In this paper,
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Table 1. Comparison of quantum computing platforms
Name QDK Qiskit ProjectQ Forest

Developer Microsoft IBM ETH Zurich Rigetti
1st release January 2018 March 2017 January 2017 January 2017
Open source codes + + + +
Supported OS Mac, Windows, Linux Mac, Windows, Linux Mac, Windows, Linux Mac, Windows, Linux
Requirements Visual Studio Code Python 3.5+, Jupyter

Notebooks 
Anaconda 3

Python 2 or 3 Python 3, Anaconda

Quantum program-
ming language

Q# Qiskit ProjectQ pyQuil

Quantum language – OpenQASM – Quil
Quantum hardware – IBMQX2 (5 qubits),

IBMQX4 (5 qubits),
IBMQX5 (16 qubits),

QS1 1 (20 qubits)

Can be connected to 
the IBM backend

8 qubits

Simulation size 30 qubits locally, 
40 qubits via Azure 

cloud

∼25 qubits locally, 30 
qubits via the cloud

∼28 qubits locally ∼20 qubits locally, 
26 qubits with most API 
keys for QVM, 30+ with 

private access
Features Built-in algorithms 

and examples
QASM code genera-

tion, topology-specific 
compiler, Slack com-
munity channel, cir-

cuit panel, Aqua library

Circuit building, con-
nection to IBM server 
modules, availability of 
several library plug-ins

Quil code generation, 
algorithm examples in 

Grove, compiler for spe-
cific topology, noise fea-
tures in simulator, Slack 

community channel

Table 2. Comparing quantum machine learning frameworks

Name Tensorflow 
Quantum PyTorch Cirq Strawberry 

Fields PennyLane

Tutorials and examples +++ + + ++ ++
Capability of modeling convo-
lutional neural networks

+++ +++ ++ ++ ++

Capability of modeling recur-
rent neural networks

++ ++ + ++ +

Architecture: easy-to-use mod-
ular interface

+++ ++ + ++ +

Operation speed +++ +++ ++ ++ ++
Multiple GPU support ++ ++ + ++ +
Strengths Fast processing of 

large data sets
Academic use and 

production
Studying the 

machine learning
Image 

processing
High-speed 
computing
we propose transforming the IoT Network Intrusion Dataset that contains six types of attacks and normal
traffic into a stream dataset.

Such fields as 'tcp.srcport', 'tcp.dstport', 'udp.srcport', 'udp.dstport', 'tcp.checksum.status', and
'udp.checksum.status' were merged into 'srcport', 'dstport', and 'l4.checksum.status' to get rid of the
dependency on the forth layer protocol type. The 'tcp.stream' and 'udp.stream' fields have been merged
into the 'stream' field that is used to group packets into streams. The fields in the stream represent the
transformed fields of the packets included in that stream. For example, for the 'ip.ttl', 'tcp.seq_raw',
'tcp.ack_raw' and 'tcp.window_size_value' fields, the average, minimum, and maximum values, and the
standard deviation are calculated. The intervals between packets in the stream are analyzed separately,
which allows one to judge the frequency of packet sending. For example, a f looding attack stream with
equal intervals between packets will give a low average deviation of interval values. Table 3 provides a
description of the stream fields used.
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Table 3. Description of the stream fields

Field name Description

ip.flags.rb.mean

Mean flag values

ip.f lags.df.mean
ip.flags.mf.mean
tcp.flags.res.mean
tcp.flags.ns.mean
tcp.flags.cwr.mean
tcp.flags.ecn.mean
tcp.flags.urg.mean
tcp.flags.ack.mean
tcp.flags.push.mean
tcp.flags.reset.mean
tcp.flags.syn.mean
tcp.flags.fin.mean
frame.len.std

Minimum, maximum, and mean packet length and standard deviation
frame.len.min
frame.len.max
frame.len.mean
frame.len.rate Bps throughput
payload.std.mean

Minimum, maximum, and mean values of packet data bytes and standard 
deviation

payload.min.mean
payload.max.mean
payload.mean.mean
payload.print.mean Mean number of printable characters in packet data
srcport.std Standard deviation of the source port value
dstport.std Standard deviation of the destination port value
ip.checksum.status.std

Checksum analysis in Layer 3 and Layer 4 headers

ip.checksum.status.min
ip.checksum.status.max
ip.checksum.status.mean
l4.checksum.status.std
l4.checksum.status.min
l4.checksum.status.max
l4.checksum.status.mean
ip.ttl.std

Minimum, maximum, and mean values of the packet lifetime and stan-
dard deviation

ip.ttl.min
ip.ttl.max
ip.ttl.mean
tcp.seq_raw.std

Minimum, maximum, and mean values of the packet sequence number 
and standard deviation

tcp.seq_raw.min
tcp.seq_raw.max
tcp.seq_raw.mean
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 55  No. 8  2021
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In the larger-scale experiments, the traffic was additionally generated with Nmap and Hping pro-
grams, and Wireshark program was used to capture packets. Tshark, the console version of Wireshark,
received a .pcap file and a set of parameters at input; then, text data was read from the standard output
stream and written in the CSV format. As a result, a streaming data set with more than 10 million records
consisting of 58 fields was developed.

THE CODING METHOD DEVELOPED
A quantum model training based on real data requires the capability to translate data from a bit to a

qubit representation. To solve this problem, a network stream coding method is developed.
First, the Cirq library is used to create a qubit that is to be placed in the circuit.
>>> qubit=cirq.GridQubit(1,1)
Next, the IP address is transformed into a number that is the basis for setting the rotation angle, and

then a Pauli gate is added to the circuit. The number, to which the IP address is transformed, is used as
the rotation angle.

>>> C=cirq.Circuit()
>>> a =make_num_from_ip(i[0])
>>> a =make_angle(a)
>>> C.append(cirq.rx(a)(qubit))
Then the algorithm starts working with the fields that contain numerical values. In total, there are 58

such fields. The rotation angle is generated for each of them, and the next Pauli gate is added to the circuit.
>>> for j in range(1,58):
>>> angle=make_angle(i[j])
>>> C.append(cirq.rx(angle)(qubit))
Therefore, each stream field is transformed into a number from 0 to π, after which a qubit is created for

each stream. Then Pauli valves are successively applied to the qubit. The value obtained at the previous
step is used as the rotation angle, and, then, the resulting quantum circuit is added to the list, which serves
to train the classifier. In Fig. 1, the f lowchart of the coding algorithm is shown.

An example of a quantum circuit is shown in Fig. 2.
tcp.ack_raw.std

Minimum, maximum, and mean values of the packet confirmation num-
ber and standard deviation

tcp.ack_raw.min
tcp.ack_raw.max
tcp.ack_raw.mean
tcp.window_size_value.std

Minimum, maximum, and mean values of the packet window size and 
standard deviation

tcp.window_size_value.min
tcp.window_size_value.max
tcp.window_size_value.mean
count Number of packets
duration Stream duration
int.std

Minimum, maximum, and mean values of the inter-packet interval and 
standard deviation

int.min
int.max
int.mean
prate Number of packets per second
proto Layer 4 protocol
category Stream category

Field name Description

Table 3.  (Contd.)
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Fig. 2. Quantum circuit corresponding to one stream.

(1, 1): Rx(0.48�) Rx(0.913�) Rx(0.35�) Rx(0.14�) Rx(0.839�) Rx(0.44�) Rx(0.327�) Rx(0.267�)

Fig. 1. Flowchart of the developed coding algorithm.

Start

Transformation of the
ip-address into the rotation angle

Adding to the circuit of a Pauli gate
with the obtained angle of rotation

Adding to the circuit of a Pauli gate
with the obtained angle of rotation

No

Yes

Transformation of the ith
part of the stream

into the rotation angle

Adding the resulting
circuit to the list

with training data

End

i < 58
EXPERIMENTAL RESULTS

The test bench presented in Fig. 3 was designed for the experiments.

The Ubuntu operating system provides interaction between hardware and software. Python 3.7 pro-
gramming language provides interaction between the user program and the operating system. The Cirq
library is designed for creating and executing quantum circuits. Nvidia CUDA provides faster emulation
for running quantum circuits. The Tensorflow platform is a tool for creating machine learning methods
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 55  No. 8  2021
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Fig. 4. Experimental results obtained using the classical SVM.

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.5 0.8 1.0

ROC curves

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

ROC curve of class 0 (area = 0.93)
ROC curve of class 1 (area = 1.00)
ROC curve of class 2 (area = 0.79)
ROC curve of class 3 (area = 0.86)
ROC curve of class 4 (area = 1.00)
ROC curve of class 5 (area = 0.78)
ROC curve of class 6 (area = 0.98)

Confusion matrix

ACK_flooding

HTTP_flooding

Normal

OS_version_detection

Port_scanning

SYN_flooding

Telnet_bruteforce

A
C

K
_fl

oo
di

ng

H
T

T
P_

flo
od

in
g

N
or

m
al

O
S_

ve
rs

io
n_

de
te

ct
io

n

Po
rt

_s
ca

nn
in

g

SY
N

_fl
oo

di
ng

Te
ln

et
_b

ru
te

fo
rc

e

Tr
ue

 la
be

l

Predicred label

0.17

0.00

0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.000.00

0.01

0.00

0.00 0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00 0.24

0.06 0.02

0.02

0.02

1.00

1.00

0.64

0.36

0.72

0.55 0.07

0.08

0.09

0.23 0.40

0.76

0.20

0.18

0.17

Fig. 3. Test bench.

Tensorflow quantum

TensorflowCirq

Nvidia cuda Python 3.7

Ubuntu
and neural networks. Tensorflow Quantum contains basic structures such as qubits, logic elements, cir-
cuits, and measurement operators.

The support vector machine (SVM) method was chosen to classify network streams. This method is
effective when dealing with big data, has no tendency to overtraining, provides high accuracy when dealing
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 55  No. 8  2021
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Fig. 5. Experimental results obtained using the quantum SVM.
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with a large attribute space, and allows using the kernel trick [19]. In Figs. 4 and 5, the experimental results
for the huge data classification problem (>106 records]) using classical SVM and quantum SVM are pre-
sented.

When the classical SVM is used, only HTTP flooding and port scanning attacks are detected with high
accuracy. The accuracy of most other classes is in the range from 0.4 to 0.8. Practically, network streams
containing the ACK flooding attack have never been detected correctly. When using the quantum SVM,
the binary classification problem was solved with a high accuracy of 98%.

Table 4 shows the training times of classical and quantum SVM (QSVM) when processing huge data.
QSVM was more than twice faster than the classical one. If a more productive computer or a real quan-

tum computer were used, the difference would be even larger.
AUTOMATIC CONTROL AND COMPUTER SCIENCES  Vol. 55  No. 8  2021

Table 4. Comparison of SVM and QSVM learning times

Size of a training sample SVM learning time, hours QSVM learning time, hours

100000 0.5 0.4
200000 1.4 0.80
300000 2.2 1.3
400000 3.1 1.7
500000 4.4 2.3
600000 5.9 3
700000 6.8 3.3
800000 7.7 3.8
900000 8.9 4.5

1000000 9.6 5.2
2500000 12.6 6.1
5000000 16.9 8

10000000 22.4 10.6
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CONCLUSIONS
The possibility of applying quantum-learning methods to solve the problem of Huge Data analysis is

considered. The analysis of existing platforms and libraries for the implementation of quantum computing
shows that the Qiskit platform and Tensorflow Quantum library are the most promising. A stream dataset
is formed, in which network packets are grouped into streams. This approach allows improving the effec-
tiveness of detection of more complex attacks that are carried out in several stages, distribute malicious
code over several packets, and change IP addresses. The method for encoding a bit representation of net-
work streams into a qubit representation is developed for quantum information processing. The experi-
mental results show the superiority of quantum machine learning over classical machine learning in solv-
ing the problem of classification of a huge amount of network traffic. Quantum SVM outperforms classi-
cal SVM in both accuracy and processing speed. The use of quantum machine learning reduce the
learning time more than twice.
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