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Abstract—The results of calculations of the stress-strain states of an elastoplastic material containing a
single cylindrical continuity defect and loaded with external pressure are presented. The hydrostatic
pressure on the surface distant from the defect initially increases, remains constant for some time and
then gradually decreases to zero. The process of comprehensive compression leaves, after unloading,
a formed level and distribution of residual stresses in the vicinity of the continuity defect. The change
in such stresses is calculated upon repeated loading and unloading. Intensity and nature of repeated
loads are considered identical to the original ones. Calculations are carried out within the framework
of the stated one-dimensional problem of the theory of large deformations. The material is assumed
to be incompressible. The development of areas of viscoplastic f low in the active part of the process
and their attenuation during unloading are taken into account. Changes in the geometric dimensions
of the evolving defect are assessed.
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1. INTRODUCTION
Continuity defects in the form of micropores or microcracks are inevitably present in metal product

materials. Under operating conditions of products, defects may increase in size and new ones may appear.
This circumstance leads to the development of a defective structure of the material. Taking into account
such facts in mechanics is associated with a special state parameter called damageability, and in this way
an approach to the study of long-term strength of materials is established. The destruction associated with
the evolution of the defect structure was described in the Rabotnov [1] and Kachanov [2] studies. This
scientific direction remains relevant and developing at the present time [3–5]. A fairly complete review of
the results obtained in this area of research is given in [6].

On the other hand, strengthening of materials was also noted when they were treated with an increased
level of hydrostatic compression [7–11]. This effect was explained by the phenomenon of “healing” of
microdefects of continuity due to the intense impact on the material of all-round pressure. Attempts to
calculate this phenomenon [10–13] led to problems in the theory of large elastoplastic deformations, since
in the vicinity of a defect the displacements are comparable to its geometric dimensions and therefore the
deformations cannot be assumed to be small. The results of calculations for the one-dimensional problem
of all-round compression of an elastoplastic material with a single continuity defect have great impact for
further considerations [14, 15]. The effect of “adaptability” of the defect to cyclic loading of the “load-
unload” type was observed, when after each unloading the size of the defect, the level and distribution of
residual stresses in its vicinity were repeated. This paradoxical circumstance was explained by the fact that
the calculations used a mathematical model of an ideal elastoplastic medium. It was believed that rejection
of the ideality of plastic f low would lead either to the development of a defect or to its “healing”. Here we
abandon the ideality of elastoplastic deformation, adding viscous resistance to plastic f low to the dissipa-
tive properties of the material. The mathematical model used, as in [14, 15], is based on the determination
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of reversible and irreversible deformations using differential equations for their change [15–17]. Due to the
increase in the amount of calculations, we limit ourselves to only two steps. First one is creation of a field
of residual stresses in the vicinity of the defect during the initial loading and unloading; and the second
one is its changing during repeated loading and unloading. This makes it possible to trace the direction of
such changes, including the beginning of the evolution of the defect size.

2. BASIC RELATIONS OF THE MODEL
In the large deformation model, the tensors of reversible e and irreversible p deformations are deter-

mined by the differential equations of their change (transfer) [15]

(2.1)

In these dependencies  is the velocity vector,  is the tensor of rates of change of irreversible defor-
mations. The second equation (2.1) determines the objective time derivative, which ensures the geometric
correctness of the kinematics of the deformable medium. If , the irreversible deformation tensor p
remains unchanged, and its components change in accordance with the second equation (2.1), which is
typical for the unloading process.

Almansi total deformation tensor d according to (2.1) has the form

(2.2)

From (2.2) it follows that the tensor e is the linear part of the reversible deformation tensor
. However, as a measure of reversible deformations we use the tensor e, for which the first

equation of change (2.1) is written.
We assume that the material is incompressible. Then it follows from the law of conservation of energy

that the stresses in the material are completely determined by reversible deformations

(2.3)

Here,  and  are the unknown functions of additional hydrostatic pressure; I is the unit tensor;
 is the elastic potential;  is the density of the material in its free state;  is the thermodynamic

potential (free energy distribution density), for which the hypothesis of its independence from the irre-
versible deformation tensor p is accepted. For an isotropic deformable material, we expand the elastic
potential into the Maclaurin series

(2.4)

In dependencies (2.4), μ is the shear modulus, a, b, ,  are the other mechanical constants.
As the loading surface, we take the generalized Tresca–Saint-Venant yield criterion [18]
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(2.5)

the consequence of which is the associated law of plastic f low [18, 19]

(2.6)

In relations (2.5) and (2.6), ,  are the main values of the stress tensors and plastic strain rates; k is
the yield strength; η is the coefficient of viscous resistance to plastic f low.

3. STATEMENT OF THE PROBLEM. ELASTIC EQUILIBRIUM
We consider a boundary value problem about the behavior of a continuity defect in a deformable mate-

rial under conditions of repeated loads being applied to it. Since the loaded surface of the material signifi-
cantly exceeds the dimensions of the continuity defect, the deformation can be considered as one-dimen-
sional, and the boundary of this defect can be taken as a circular cylindrical surface of the original radius

. We also assume that the boundary action is carried out on a cylindrical surface of the original radius
( ). Let the material be deformed under the following boundary conditions

(3.1)

Here,  is the radial component of the stress tensor in the cylindrical coordinate system , , z, R* and
s* are the radii of the outer and inner cylindrical surfaces under equilibrium conditions. For the conditions
under consideration, we find that the displacement vector has only one nonzero component . On
the boundary surfaces we obtain

(3.2)
From relation (2.2), we write out the nonzero components of the Almansi strain tensor

(3.3)

From the condition of incompressibility of the medium and dependencies (3.3), we get the differential
equation for the displacement component

(3.4)

Solving equation (3.4) with the assumption that the points of the boundary surfaces with the initial
coordinates  and  at the current moment of time have coordinates  and ,
accordingly, we have

(3.5)
From (3.3) and (3.5) for the components of the Almansi strain tensor, we get

(3.6)

For non-zero components of the stress tensor, we obtain the following dependencies from (2.3) and
(2.4)

(3.7)

Taking into account dependencies (3.6) for the strain components from (3.7), we determine the
stresses

= = σ − σ − η εσ ε σ ε
1( , ) , ( , ) max max
2

p p p
i j kF k F

∂= ξ ξ >
∂

, 0.p F
ε

σ

σi ε p
k

0r
0R @0 0R r

= =σ = − σ =* **, 0.rr rrr R r rp

σrr r ϕ

=ru u

( ) ( )= − = −0 0* * , * * .u R R R u r r r

( )
ϕϕ

∂= − = − =
∂

2 2

2

'
' , , ' .

2 2
rr

u u u ud u d u
r rr

( ) ( )− − =1 ' 1 1.uu
r

= 0r R = 0r r ( )=r R t ( )=r s t

( ) ( ) ( ) ( )= − + ϕ ϕ = − = −2 2 2 2 2
0 0, .u r r t t R R t r s t

( )−
ϕϕ

ϕ= − = − = +1
2

1 1(1 ), 1 , 1 .
2 2rrd H d H H

r

( ) ( )
( ) ( )
ϕϕ ϕϕ ϕϕ

ϕϕ ϕϕ ϕϕ

σ = − + σ = − + σ = −
= − + μ − + + κ + ζ + + ζ2 2

1

, , , , ,

2 3 ( ) 6 ,
rr rr rr zz

rr rr rr

P G d d P G d d P

P P a b d d d d d d

( ) = − − + + +2 3 2 2
1 2 3 4 5, ( 2 ),G x y k x k x k xy k x k xy x y

( ) ( )
( ) ( )

= μ = + + κ = + κ
= κ + ζ = κ + ζ

1 2 3

4 5

2 , 2 2 2 , 2 2 ,
6 , 2 3 .

k k a b k b
k k
MECHANICS OF SOLIDS  Vol. 58  No. 6  2023



CHANGES IN RESIDUAL STRESSES IN THE VICINITY 2027
(3.8)

To calculate the unknown function,  we use the equilibrium equation

(3.9)

Integrating Eq. (3.9) taking into account (3.8), for the stress components and function P we obtain the
final dependences

(3.10)

When writing (3.10), the second boundary condition (3.1), in which r* is replaced by s0, has been used.
The notation s0 is introduced for the extreme value of the radius of the inner surface corresponding to the
pressure p0 on the outer surface, at which the yield criterion (2.5) is first satisfied on the inner boundary
surface in the form

(3.11)

The second Eq. (3.11) is used to find the value of s0. The value of loading pressure p0 at which the yield
criterion is first satisfied on the inner surface follows from the first relation (3.10) and the first boundary
condition (3.1) in the following form :

(3.12)

4. VISCOPLASTIC FLOW UNDER INCREASING AND CONSTANT LOADING PRESSURE

In a state of elastic equilibrium, the deformable material is under the influence of pressure  until
time t = 0. Then, from time t = 0, we begin to increase the external pressure. Thus, the boundary condi-
tions of the problem take the form

(4.1)

As the pressure p(t) increases from the inner boundary surface,  the region  in
which viscoplastic f low occurs increases. The elastoplastic boundary  separates the expanding
flow region from the region  in which the material is deformed reversibly. In the entire
region of viscoplastic f low, the yield criterion (2.5) is satisfied in the form
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Equilibrium equation (3.9) at  replace with the equation of motion of the medium

(4.3)

Here,  is the nonzero component of the velocity vector. For this component and its time derivative,
from relations (2.1) and (3.5), we have

(4.4)

Then equation (4.3), taking into account (4.4), takes the form

(4.5)

Integrating the equation of motion (4.5) in the region of reversible deformation  and
taking into account the first boundary condition (4.1), we find the stress components

(4.6)

In the f low region , from (2.4) the stress components, we get

(4.7)

From dependencies (2.2), (3.6) and (4.7) we obtain

(4.8)

We integrate the equation of motion (4.5) in the region of viscoplastic f low  taking into
account the third dependence (4.8) and the second boundary condition (4.1) and find the stress compo-
nent , eliminating the unknown function 

(4.9)

From dependencies (2.1) follow the relations
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(4.13)

The initial conditions for Eq. (4.13) are the following conditions

(4.14)

The system of equations (4.11)–(4.14) for unknown functions prr, m(t)  has been solved numeri-
cally using the finite-difference method.

In the region of reversible deformation, from (2.2) and (3.6) we find the components of the reversible
deformation tensor

(4.15)
Relations (2.2), (3.6) and (4.10) make it possible to obtain dependencies for the components of the

reversible strain tensor in the region of viscoplastic f low

(4.16)

At some point in time t1 we fix the external loading pressure at a value  and assume that it
remains constant. Such a change in the loading mode does not lead to significant changes in the deforma-
tion pattern. All relations in this section are satisfied in this case.

5. SLOWING DOWN OF THE FLOW WITH DECREASING PRESSURE

At the moment of time  we begin to reduce the pressure at the outer boundary  according
to the law

(5.1)
A decrease in pressure (5.1) leads to the appearance of an unloading region in the deformed material

, in which . In this case, the components of the irreversible deformation tensor 
continue to change according to the second Eq. (2.1). The new elastoplastic boundary  separates
the unloading region  from the contracting region  in which viscoplastic
flow is present. And in the region  the material is still deformed reversibly.

The components of the stress tensor in the region of reversible deformation  satisfy
relations (4.6), and in the region of viscoplastic f low we have  (4.8) and (4.9). Integrating
the equation of motion (4.5) in the unloading region , we establish that the stress tensor
component  satisfies dependence (4.9). Also from (2.2), (2.4) and (3.6) for the stress components in
this region, we get relations (4.7) and (4.8).

In the f low region, the irreversible deformation component  satisfies the differential equation (4.11).
In the unloading region,  according to the last dependence (4.10) and the second equa-
tion (2.1), the differential equation follows for the component of the irreversible deformation tensor

(5.2)

The condition of stress continuity at the elastoplastic boundary  leads to the equality
 = 2k. Comparing it with the second equation (3.12), we obtain
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The continuity of the stress tensor component  at the boundary  leads to the integro-differ-
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ity of the functions  and  at the time t2.
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From dependencies (3.2) and (3.5) follows the equation for the boundary 

(5.4)

Equations (4.11), (4.13), (5.2)–(5.4) with respect to unknown functions  (in the f low and unloading
regions), ,  and  have been solved simultaneously using the finite-difference method.

The components of the reversible deformation tensor have the form (4.15) in the region of reversible
deformation and (4.16) in the regions of viscoplastic f low and unloading.

At the calculated moment of time , the elastoplastic boundary  reaches the internal
boundary surface . From this point in time, the deformable material is divided into two regions:
the region of reversible deformation  and the region with accumulated irreversible defor-
mations .

Stresses are determined by relations (4.6) in the region of reversible deformation and (4.8), (4.9) in the
region with residual irreversible deformations. The component of residual irreversible deformations prr in
the region  satisfies Eq. (5.2). For the function,  the integro-differential equation
(4.13) remains valid with the conditions of continuity of functions  and  at time . Equation (5.4)
continues to hold for the boundary . The system of Eqs. (4.13), (5.2) and (5.4) for unknown func-
tions ,  and  is also solved by the finite-difference method.

At the moment of time  corresponding to complete unloading, the pressure at the outer
boundary  becomes equal to zero. At this moment in time, the stress tensor component  on the
inner and outer boundary surfaces is also equal to zero. However, at the same time, residual stresses, as
well as elastic and plastic deformations, are present in the deformed material.

6. REPEATED LOADING

From the moment of complete unloading , we again increase the external load according to the law
. With increasing pressure, reversible deformation of the material first occurs. In this

case, the functions ,  and  are calculated from the system of equations (4.13), (5.2) and (5.4).
To find stresses and reversible deformations, relations (4.6) and (4.15) are used in the region of reversible
deformation and (4.8), (4.9) and (4.16) in the region with residual irreversible deformations.

At some point in time , under external pressure,  the yield criterion  =
2k where  is satisfied on the internal boundary surface . From the moment of time

 with a further increase in the external load from the internal boundary surface , a region of vis-
coplastic f low  develops. The boundary  separates it from the area with residual
irreversible deformations . And in the region  the material continues to
deform reversibly. Integrating the equation of motion (4.5) taking into account the boundary conditions
and the condition of stress continuity, we obtain dependencies for calculating the components of the stress
tensor: in the areas  and  – (4.8), (4.9), in the area  –
(4.6). To determine the component of the irreversible deformation tensor prr in the f low region, one can
use equation (4.11), and in the region with accumulated irreversible deformations, one can use equation
(5.2). From the condition of continuity of stresses on the elastoplastic boundary , it follows that
Eq. (5.3) where  is satisfied. The elastoplastic boundary  satisfies equation (5.4) where

.
At the calculated moment of time , the elastoplastic boundary  reaches the boundary

. Thus, with a subsequent increase in pressure from time t6, two regions remain in the material:
the region of viscoplastic f low  and the region of reversible deformation .

Next, at the moment of time , we stop the increase in external pressure at the value
 and continue loading at constant pressure. Such a change in loading conditions does not cause

qualitative changes in the deformation process.
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Fig. 1. Graphs of (a) radius of the internal boundary surface and (b) elastoplastic boundaries as a function of time.
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Fig. 2. Residual stresses (a)  and (b) .
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Starting from a certain point in time , we reduce the pressure according to the law
 where . This change in the loading mode leads to the emergence of a new

unloading area . In the decreasing region  the viscoplastic f low is pres-
ent and in the region  the material deforms reversibly. At the calculated moment of time

, the elastoplastic boundary  reaches the internal boundary , after which the vis-
coplastic f low in the material stops. Two regions remain in the material: the reversible deformation region

 and the unloading region . At the moment of time,  the
external pressure becomes equal to zero, as well as the values of the stress tensor components  at the
internal and external boundaries. However, as with the first unloading, there are residual stresses and
deformations in the material. In this case, the level of residual stresses during repeated complete unloading
becomes higher, and the radius of the internal boundary surface is smaller than during the first complete
unloading. Thus, if we now again load the material with external pressure, then viscoplastic f low begins to
develop at a pressure value greater than p2. That is, the viscosity of the material with each repeated loading
contributes to an increase in the threshold that the pressure must reach to begin the f low process in the
material. If the external pressure is assumed to be sufficiently high, then a repeated (reverse) viscoplastic
flow may occur during unloading [15, 20]. The possibility of this effect occurring at some subsequent load
cycle cannot be ruled out. In this case, the calculations become significantly more complicated, but when
formulating conclusions, this circumstance should be taken into account.

Calculations have been carried out in dimensionless variables  and  with constant val-
ues: , , , , , , ,

, , . Figure 2a shows a graph of the radius of the inner boundary
surface  versus time. Here , , , , , , , ,

. Figure 1b illustrates the change in elastoplastic boundaries  in the time interval
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Fig. 3. Residual (a) irreversible and (b) reversible deformations.
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Figure 2 shows graphs of residual stresses. The solid line shows the components of residual stresses
 (Fig. 2a) and  (Fig. 2b) at the moment of complete unloading  during the first loading, and

the dotted line shows the same components at the moment of complete unloading τ10 upon repeated load-
ing.

Residual irreversible and reversible deformations at time τ10 are presented in Figs. 3a and 3b respec-
tively.

7. CONCLUSIONS

This article analyzes the processes of development and stopping-down of viscoplastic f low in a material
with a single continuity defect under two successive loadings. Loading has been carried out by applying
external pressure, first increasing with time, then constant and then decreasing to zero. Next, the second
cycle of loading with external pressure has been carried out in the same order. Taking into account the
additional dissipative factor introduced by viscous resistance to plastic f low leads to the disappearance of
the effect of defect adaptability to cyclic loads of the “load-unload” type, which occurs under conditions
of ideal elastoplasticity. The level of residual stresses increases, the radius of the defect decreases, despite
the non-increasing value of the loading pressure. The pressure is chosen so that recurrent f low does not
occur during unloading. However, with each loading cycle the probability of its occurrence increases,
which leads to more complicated calculations.
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