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Abstract—A classical plane problem of the theory of elasticity about a crack in a stretched orthotropic
elastic unbounded plane is considered, which leads to a singular solution for stresses in the vicinity of
the crack edge. The relations of the generalized theory of elasticity, including a small scale parameter,
are given. The equations of the generalized theory are of a higher order than the equations of the clas-
sical theory and allow eliminating the singularity of the classical solution. The scale parameter is deter-
mined experimentally. The results obtained determine the effect of the crack length on the bearing
capacity of the plate and are compared with the experimental results for plates made of fiberglass and
carbon fiber reinforced plastic.
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1. INTRODUCTION – THE CLASSIC SOLUTION TO THE CRACK PROBLEM
Let us consider an unrestricted orthotropic plate with a crack of length 2c under conditions of uniaxial

tension by stress σ0 (Fig. 1). The stress-strain state of the plate is determined by the classical solution
obtained by the method of complex potentials [1]. The stresses are determined by the equalities

(1.1)

(1.2)

(1.3)

Here, A and B are some constant coefficients, , , ,  and k1, 2
are related to the roots of the characteristic equation corresponding to the generalized biharmonic equa-
tion of the plane problem, and are expressed in terms of the elastic constants of an orthotropic material as
follows:

Let us take y = 0 and consider the interval  corresponding to the boundaries of the crack
(Fig. 1). It follows from equalities (1.1) and (1.2) that  on this interval. Expression (1.3) allows
us to conclude that the condition  at the crack boundary is satisfied if
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Fig. 1. Orthotropic plate with a crack.
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At , the stress  should tend to  (Fig. 1). It can be shown that, in the limit, for any ray 
hold the limit relations

As a result, from the condition  we obtain . This condition, together with
Eq. (1.4), gives

(1.5)

However, equality (1.1) implies that for these values of the coefficients σx also tends not to zero, but to
σ0 at  To eliminate this effect, the stress state of the plate, corresponding to Fig. 1, should be sub-
jected to compression in the direction of the x axis with a stress of σ0 [1]. Finally, from equalities (1.1)–
(1.3) and (1.5) we obtain

(1.6)

On the real axis at  and , we have

(1.7)

(1.8)

2. EQUATIONS OF THE PLANE PROBLEM
OF THE GENERALIZED THEORY OF ELASTICITY

The generalized theory of elasticity allows one to obtain a regular solution to problems that have a sin-
gular solution within the framework of classical elasticity [2]. To derive the corresponding equations, con-
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Fig. 2. Plate element.
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sider the element shown in Fig. 2, which has small but finite dimensions a and b. We introduce local coor-
dinates α and β such that , . We represent the symmetric stress tensor

 by the Taylor series in the vicinity of the point (x, y), i.e.

(2.1)

We restrict ourselves to the terms presented in equality (2.1) and find the resultant stresses acting on
the faces 1-2 and 3-4 of the element shown in Fig. 2. Taking  and substituting expansion (2.1),
we obtain

Here,  and the symbol  mean that the resultant forces acting on the edges of 2-3 and 1-4 ele-
ments are obtained if we mutually replaced x, y; ,  and a, b. The equilibrium equations of an element
have the form

Substituting here the resultant R, one can obtain the differential equilibrium equations of the plane
problem. Omitting further transformations described in [2] for the case a = b, we write the equilibrium
equations in the final form

(2.2)

where

(2.3)

Here,  is the generalized stress, expressed in terms of the traditional stress according to formulas (2.3),
and s and r are structural parameters expressed in terms of the dimensions of the element a and b [2].

By analogy with generalized stresses, we introduce generalized deformations (Fig. 2)
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(2.4)

Here,  is the displacement of the point (x, y) (Fig. 2). Suppose that the displacements can be represented
in the vicinity of the point (x, y) by expansions similar to equality (2.1). Then the generalized deformations
(2.4) take the following final form:

(2.5)

where

(2.6)

is the generalized displacement and L is the operator defined by the second equality (2.3).
For an orthotropic material, generalized stresses are related to generalized deformations as follows:

(2.7)

For r = s = 0 , relations (2.7) degenerate into the traditional Hooke’s law. Elastic constants E, , G are
determined from experiments in which the stress-strain state of the material is homogeneous. In this case,
the operator  and the generalized stresses and strains coincide with the traditional ones. Thus,
the elasticity relations (2.7) include traditional elastic constants. In addition, the obtained relations con-
tain two structural parameters s and r, which are determined experimentally in relation to the problem
under consideration.

Equations (2.2), (2.5), and (2.7) coincide in form with the corresponding equations of the classical
theory of elasticity only, instead of the traditional stresses and displacements  and , they include gener-
alized characteristics T and  As a solution to system (2.2), (2.5), and (2.7), one can use a solution cor-
responding to the classical theory of elasticity, which determines the generalized stresses and displace-
ments T, U. Traditional stresses and displacements t, u are found by integrating the Helmholtz equations
(2.3) and (2.6). If the classical solution has no singularities and agrees with experiment, then s = r = 0 and
the generalized solution degenerates into the classical one. If the classical solution has a singularity, then
the solution of the additional Helmholtz equation allows us to eliminate it.

3. GENERALIZED SOLUTION TO THE CRACK PROBLEM
As follows from equalities (1.6), the singularity of the solution manifests itself on the crack axis at x = c.

In this regard, we will use a particular form of the equations of the generalized theory of elasticity obtained
in the previous section, taking , that is, we assume that the size of the element shown in Fig. 2 is
finite in the direction of the  axis and infinitesimal in the direction of the y axis. Then, in the relations
obtained above, it is necessary to take r = 0. As shown in [3] for an isotropic material, this approach has
satisfactory accuracy in relation to the experiment and the solution of the two-dimensional problem [4].
Thus, Eq. (2.3) for stresses  and  takes the form

(3.1)

where, in accordance with equalities (1.7) and (1.8)

(3.2)

Consider the stress  This stress does not include elastic constants, so the equation

is similar to the corresponding equation for an isotropic plate, and its general solution has the form [3]
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Fig. 3. Dependence of relative stresses on  at .
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Here,   and  The regularity condition for the solution at  is satisfied if we
take

Determining the constant C1 from the condition at the end of the crack , we finally obtain
the following expression for the stress on the  axis at 

(3.3)

The solution to the first equation (3.1) for  has the form

(3.4)

Solutions (3.3) and (3.4), in contrast to the classical solutions (1.7) and (1.8), are not singular. Depen-
dences of stresses  on the coordinate  at λ = 50 and are shown in Fig. 3 by solid lines. The dashed
lines correspond to the classical solution (1.7) and (1.8).

4. EXPERIMENTAL STUDY
The experiment was carried out on fiberglass and carbon fiber plates, in which the reinforcement direc-

tions coincide with the x and y axes (Fig. 1).
Elastic constants of fiberglass are  GPa,  MPa,  GPa, ,  =

0.116. Tensile strength is  MPa and  MPa. The test plates were 250 mm long, 40 mm
wide, and 1.12 mm thick Cracks with lengths of 5, 10, 15 and 20 mm were cut in the middle of the longi-
tudinal edge of the stretched plates. It should be noted that the edge crack experiment is described here by
solving the central crack problem (Fig. 1). The possibility of such an approach is based on the asymptotic
analysis of the stress state near the crack tip [5], according to which this state weakly depends on the load-
ing conditions far from the crack and the crack shape. Figure 4 shows the stress strain diagrams for plates
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Fig. 4. Deformation diagram of plates with cracks of various lengths.
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with cracks of various lengths in the direction of the  axis. The numbers on the curves correspond to the
crack lengths in mm. The stress σ0 is measured in MPa, and the  value on the horizontal axis determines
the mutual displacement in mm of the test machine grips on a 175 mm base The maximum stresses acting
in the plate near the crack are represented as follows:  and , where kx and ky are the
stress concentration coefficients in the vicinity of the crack. Using solution (3.3) and (3.4) for the experi-
mental plate, it is possible to plot the dependences of kx and ky on the parameter  shown in Fig. 5. To
assess the strength of a plate with a crack, we use the quadratic strength criterion [6]

(4.1)

where  is the ultimate strength of the material. The limiting curve corresponding to criterion (4.1) is in
good agreement with the experiment for glass fiber laminate (Fig. 6). Expressing stresses in terms of con-
centration coefficients and using criterion (4.1), we can obtain the following dependence for the ultimate
stress stretching the plate:

The dependence of , measured in MPa, on the parameter  plotted using the curves shown in Fig. 5, is
shown in Fig. 7.

Determination of the breaking stress  is carried out as follows. For a plate with a crack 5 mm long
(curve 5 in Fig. 4), the experimental fracture stress is σ0 = 179 MPa. According to the graph in Fig. 7, we
find the corresponding value of the parameter  and the scale factor  mm. The main
idea of the further calculation is that the parameter s is considered independent of the crack length. Then,
for a plate with a crack 10 mm long, we obtain  and from Fig. 7 it follows that  MPa.
The corresponding experimental result (curve 10 in Fig. 4) is  MPa. The calculation results are
presented in Table 1.

As follows from Table 1, the proposed method satisfactorily predicts the fracture stress for cracked
plates. It should be noted that in the last plate, for which the error reaches 10%, the crack length is half the
width of the plate.

The carbon fiber plates had a special hybrid structure, that is, they were formed from unidirectional
carbon fiber, cross-stitched with glass threads. The elastic constants of the material required for the cal-
culation are  GPa,  GPa. Tensile strengths are  MPa,  MPa. The
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Fig. 5. Dependences of the stress concentration factors on the parameter λ.
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Fig. 6. Limiting curve for fibergalss fabric (—) and experimental results (●).
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samples are 30 mm wide and 1.5 mm thick. Cracks with lengths of 3, 6, 9, and 12 mm were applied to the
longitudinal edges of the samples loaded with tension. Since the strength and stiffness of the plates under
tension in the longitudinal direction (y, Fig. 1) are much higher than the corresponding characteristics for
the transverse direction (x), the criterion of maximum stresses can be used to assess the strength of plates
made of the material under consideration. In this case, the curve for ky in Fig. 5 can be used to determine
the stress concentration factor. The calculation is carried out by the method described above. For a plate
with a crack 3 mm long, the limiting stress  MPa was experimentally obtained, which corre-σ =0 690
MECHANICS OF SOLIDS  Vol. 56  No. 6  2021

Table 1. Calculated and experimental values of stresses for fiberglass plates with cracks of various lengths

Crack length c, 
mm

Parameter s, 
mm Parameter 

Calculated 
ultimate stress, 

MPa

Experimental 
ultimate stress, 

MPa
Error, %

10 0.25 40 114 118 3.4
15 0.25 60 90 84 7.1
20 0.25 80 78 71 9.8

λ
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Fig. 7. Dependence of the limiting stress on the parameter λ.
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Table 2. Calculated and experimental values of ultimate stress for carbon fiber plates with cracks of various lengths

Crack length c, 
mm

Parameter s, 
mm Parameter 

Calculated 
ultimate stress, 

MPa

Experimental 
ultimate stress, Error, %

6 0.27 22.2 523 549 4.7
9 0.27 33.3 432 441 2

12 0.27 44.4 370 353 4.8

λ

sponds to the stress concentration coefficient . According to the graph in Fig. 5, we find
λ = 11 and the parameter . For a plate with a crack length of 6 mm at the found value of the
parameter  we have , which corresponds to  and the limiting stress  MPa.
The corresponding experimental value is  MPa. The calculation results are presented in Table 2.

Table 2 confirms the satisfactory accuracy of the method.

5. CONCLUSIONS

Thus, according to the proposed method, the problem of analysis for a plate with a crack is reduced to
the traditional problem of stress concentration. For a plate with given elastic characteristics and crack
length, the scale parameter s is experimentally determined, which is assumed to be independent of the
crack length and determines the stress concentration coefficient in the vicinity of the crack tip.
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