Skip to main content
Log in

Estimating a periodicity parameter in the drift of a time inhomogeneous diffusion

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We consider a diffusion (ξ t ) t≥0 whose drift contains some deterministic periodic signal. Its shape being fixed and known, up to scaling in time, the periodicity of the signal is the unknown parameter ϑ of interest. We consider sequences of local models at ϑ corresponding to continuous observation of the process ξ on the time interval [0, n] as n → ∞, with suitable choice of local scale at ϑ. Our tools - under an ergodicity condition — are path segments of ξ corresponding to the period ϑ, and limit theorems for certain functionals of the process ξ, which are not additive functionals. When the signal is smooth, with local scale n −3/2 at ϑ, we have local asymptotic normality (LAN) in the sense of Le Cam [21]. When the signal has a finite number of discontinuities, with local scale n −2 at ϑ, we obtain a limit experiment of different type, studied by Ibragimov and Khasminskii [14], where smoothness of the parametrization (in the sense of Hellinger distance) is Hölder 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bingham, C. Goldie, and J. Teugels, Regular Variation (Cambridge, 1987).

  2. C. Brandt, Partial Reconstruction of the Trajectories of a Discretely Observed Branching Diffusion with Immigration and an Application to Inference, PhD thesis (Universität Mainz, 2005).

  3. I. Castillo, C. Lévy-Leduc, and C. Matias, “Exact Adaptive Estimation of the Shape of a Periodic Function with Unknown Period Corrupted by White Noise,” Math. Methods Statist. 15, 1–30 (2006).

    MathSciNet  Google Scholar 

  4. S. Dachian, “On Limiting Likelihood Ratio Processes of Some Change-Point Type Statistical Models”, J. Statist. Plann. Inference 140, 2682–2692 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Davies, “Asymptotic Inference when the Amount of Information is Random”, in: Proc. of the Berkeley Symposium in Honour of J. Neyman and J. Kiefer, Ed. by L. Le Cam and R. Olshen (Wadsworth, 1985), Vol. II.

  6. H. Dehling, B. Franke, and T. Kott, “Drift Estimation for a Periodic Mean Reversion Process”, Statist. Inference Stoch. Proc. 13, 175–192 (2010).

    Article  MathSciNet  Google Scholar 

  7. J. Deshayes and D. Picard, “Lois asymptotiques des tests et estimateurs de rupture dans un modèle statistique classique”, Ann. Inst. H. Poincaré B 20, 309–327 (1984).

    MATH  MathSciNet  Google Scholar 

  8. G. Golubev, “Computation of Efficiency of Maximum-Likelihood Estimate when Observing a Discontinuous Signal in White Noise”, Problems Inform. Transmission 15, 61–69 (1979).

    MATH  MathSciNet  Google Scholar 

  9. G. Golubev, “Estimating the Period of a Signal of Unknown Shape Currupted by White Noise”, Problems Inform. Transmission 24, 38–52 (1988).

    MathSciNet  Google Scholar 

  10. J. Hájek, “A Characterization Theorem of Limiting Distributions for Regular Estimators”, Z. Wahrsch. verw. Geb. 14, 323–330, 1970.

    Article  MATH  Google Scholar 

  11. J. Hájek and Z. Šidák, Theory of Rank Tests (Academic Press, 1967).

  12. R. Höpfner and Y. Kutoyants, “Estimating Discontinuous Periodic Signals in a Time-Inhomogeneous Diffusion”, Statist. Inference Stoch. Proc. 13, 193–230 (2010).

    Article  Google Scholar 

  13. R. Höpfner and Y. Kutoyants, “On LAN for Parametrized Continuous Periodic Signals in a Time-Inhomogeneous Diffusion”, Statistics & Decisions 27, 309–326 (2010).

    Article  Google Scholar 

  14. I. Ibragimov and R. Hasminskii, Statistical Estimation: Asymptotic Theory (Springer, 1981).

  15. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. 2nd ed. (North-Holland/Kodansha, 1989).

  16. J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes (Springer, 1987).

  17. J. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. (Springer, 1991).

  18. U. Küchler and Y. Kutoyants, “Delay Estimation for Some Stationary Diffusion-Type Processes”, Scand. J. Statist. 27, 405–414 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Kutoyants, Statistical Inference in Spatial Poisson Processes, in Springer Lect. Notes Math. (Springer, 1998), Vol. 134.

  20. Y. Kutoyants, Statistical Inference for Ergodic Diffusion Processes (Springer, 2004).

  21. L. Le Cam, Théorie asymptotique de la décision statistique (Univ. Montréal, 1969).

  22. L. Le Cam and G. Yang, Asymptotics in Statistics. Some Basic Concepts (Springer, 1990), 2nd ed. (Springer, 2002).

  23. F. Liese and K. Miescke, Statistical Decision Theory (Springer, 2008).

  24. R. Liptser and A. Shiryaev, Statistics of Random Processes (Springer, 1981), 2nd ed. (Springer, 2001), Vols. I, II.

  25. J. Pfanzagl, Parametric Statistical Inference (de Gruyter, 1994).

  26. H. Rubin and K. Song, “Exact Computation of the Asymptotic Efficiency of Maximum Likelihood Estimators of a Dicontinuous Signal in a Gaussian White Noise”, Ann. Statist. 23, 732–739 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Strasser, Mathematical Theory of Statistics (de Gruyter, 1985).

  28. A. van der Vaart, Asymptotic Statistics (Cambridge, 1998).

  29. H. Witting and U. Müller-Funk, Mathematische Statistik (Teubner, 1995), Vol. II.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Höpfner.

About this article

Cite this article

Höpfner, R., Kutoyants, Y. Estimating a periodicity parameter in the drift of a time inhomogeneous diffusion. Math. Meth. Stat. 20, 58–74 (2011). https://doi.org/10.3103/S1066530711010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530711010042

Keywords

2000 Mathematics Subject Classification

Navigation