Skip to main content
Log in

Is Multilocus Sequence Typing Approach Useful in Identification of Commensal Neisseria from Clinical Samples?

  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

There is a lack of information concerning commensal Neisseria, as most studies focus on pathogenic Neisseria. To evaluate the use of Multilocus Sequence Typing (MLST) as a molecular identification tool, we determined the sequences of 700 bp fragments in seven housekeeping genes (abcZ, adk, aroE, fumC, gdh, pdhC and pgm) of 24 commensal Neisseria isolates collected from neutropenic patients in the Bone Marrow Transplant Center of Tunisia. Results were then compared to those obtained by conventional biochemical testing. In 79% (19/24), more than one possibility was given by MLST and in 46% (11/24), one of the possibilities offered by MLST, agreed with the result given by conventional biochemical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Marri, P.R., Paniscus, M., Weyand, N.J., Rendon, M.A., et al., Genome sequencing reveals widespread virulence gene exchange among human Neisseria species, PLoS One, 2010, vol. 5, p. e11835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Smith, N.H., Holmes, E.C., Donovan, G.M., Carpenter, G.A., et al., Networks and groups within the genus Neisseria: Analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species, Mol. Biol. Evol., 1999, vol. 16, no. 6, pp. 773–783.

    Article  PubMed  CAS  Google Scholar 

  3. Janda, W.M. and Knapps, J.S., Neisseria and Moraxella catarrhalis, in Manual of Clinical Microbiology, Murray, P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A., and Yolken, R.H., Eds., Washington, DC: American Society for Microbiology Press, 2003, pp. 585–608.

    Google Scholar 

  4. Knapp, J.S., Historical perspectives and identification of Neisseria and related species, Clin. Microbiol. Rev., 1998, vol. 1, pp. 415–431.

    Article  Google Scholar 

  5. Mechergui, A., Touati, A., Baaboura, R., Achour, W., et al., Phenotypic and molecular characterization of β‑lactams resistance in commensal Neisseria strains isolated from neutropenic patients in Tunisia, Ann. Microbiol., 2011, vol. 61, pp. 695–697.

    Article  CAS  Google Scholar 

  6. Taha, M.K., Giorgini, D., Ducos-Galand, M., and Alonso, J.M., Continuing diversification of Neisseria meningitidis w135 as a primary cause of meningococcal disease after emergence of the serogroup in 2000, J. Clin. Microbiol., 2004, vol. 42, no. 9, pp. 4158–4163.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barrett, S.J. and Sneath, P.H., A numerical phenotypic taxonomic study of the genus Neisseria, Microbiology, 1994, vol. 140, pp. 2867–2891.

    Article  PubMed  CAS  Google Scholar 

  8. Cherkaoui, A., Emonet, S., Ceroni, D., Candolfi, B., et al., Development and validation of a modified broad-range 16S rDNA PCR for diagnostic purposes in clinical microbiology, J. Microbiol. Methods, 2009, vol. 79, pp. 227–231.

    Article  PubMed  CAS  Google Scholar 

  9. Morgan, M.C., Boyette, M., Goforth, C., Sperry, K.V., et al., Comparison of the biolog omnilog identification system and 16S rDNA PCR for diagnostic purposes in clinical microbiology, J. Microbiol. Methods, 2009, vol. 79, pp. 336–343.

    Article  PubMed  CAS  Google Scholar 

  10. Harris, C. and Perry, K., Neisseria spp Identification Kits: A Review of Evaluation Literature, London: Centre for Infections–Health Protection Agency, 2006, Report 06040.

  11. Barbé, G., Babolat, M., Boeufgras, J.M., Monget, D., et al., Evaluation of API NH, a new 2-hour system for identification of Neisseria and Haemophilus species and Moraxella catarrhalis in a routine clinical laboratory, J. Clin. Microbiol., 1994, vol. 32, pp. 187–189.

    PubMed  PubMed Central  Google Scholar 

  12. Kolbert, C.P. and Persing, D.H., Ribosomal DNA sequencing as a tool for identification of bacterial pathogens, Curr. Opin. Microbiol., 1999, vol. 2, pp. 299–305.

    Article  PubMed  CAS  Google Scholar 

  13. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing. Approved Guideline. CLSI Document MM18-A. Clinical and Laboratory Standards, Wayne, PA: Clinical and Laboratory Standards Institute, 2008.

  14. Godoy, D., Randle, G., Simpson, A.J., Aanensen, D.M., et al., Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and B. mallei, J. Clin. Microbiol., 2003, vol. 41, pp. 2068–2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Baldwin, A., Mahenthiralingam, E., Thickett, K.M., Honeybourne, D., et al., Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex, J. Clin. Microbiol., 2005, vol. 43, pp. 4665–4673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hanage, W.P., Fraser, C., and Spratt, B.G., Fuzzy species in recombinogenic bacteria, BMC Biol., 2005, vol. 3, p. 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hanage, W.P., Kaijalainen, T., Herva, E., Saukkoriipi, A., et al., Using multilocus sequence data to define the Pneumococcus, J. Bacteriol., 2005, vol. 187, pp. 6223–6230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Thompson, F.L., Gevers, D., Thompson, C.C., Dawyndt, P., et al., Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis, Appl. Environ. Microbiol., 2005, vol. 71, pp. 5107–5115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fox, A.J., Taha, M.K., and Vogel, U., Standardized nonculture techniques recommended for European reference laboratories, FEMS Microbiol. Rev., 2007, vol. 31, pp. 84–88.

    Article  PubMed  CAS  Google Scholar 

  20. Forquin, M.P., Duvergey, H., Proux, C., Loux, V., et al., Identification of Brevibacteriaceae by multilocus sequence typing and comparative genomic hybridization analyses, Appl. Environ. Microbiol., 2009, vol. 75, pp. 6406–6409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wattiau, P., Van Hessche, M., Neubauer, H., Zachariah, R., et al., Identification of Burkholderia pseudomallei and related bacteria by multiple-locus sequence typing-derived PCR and real-time PCR, J. Clin. Microbiol., 2007, vol. 45, pp. 1045–1048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arij Mechergui.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arij Mechergui, Achour, W., Giorgini, D. et al. Is Multilocus Sequence Typing Approach Useful in Identification of Commensal Neisseria from Clinical Samples?. Mol. Genet. Microbiol. Virol. 33, 248–253 (2018). https://doi.org/10.3103/S0891416818040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818040055

Keywords:

Navigation