Skip to main content
Log in

Nonperturbative effects caused by the radiative component of the electron magnetic moment in hydrogen-like atoms

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The lower levels of the discrete spectrum of a hydrogen-like atom are calculated within the point-like nucleus approximation with nonperturbative consideration for the Schwinger interaction of the radiative component of the magnetic moment of a free electron with the Coulomb field of a nucleus. The behavior of the 1s 1/2, 2s 1/2, 2p 1/2, and 2p 3/2 levels is investigated depending on the nuclear charge values, including the range of Z > 137, where the Dirac Hamiltonian continues to be self adjoint in the presence of the Schwinger term. It is shown that the Schwinger interaction for large Z causes significant changes in the properties of the discrete spectrum; in particular, the first level that reaches the threshold of a negative continuum is 2p 1/2 and this occurs at Z = 147. The behavior of the g-factor of an electron for the 1s 1/2 and 2p 1/2 states as a function of Z is considered as well and it is shown that for extremely large charges the correction to the g-factor due to the Schwinger term becomes a very significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 97, 030802 (2006); G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 99, 039902 (2007)

    Article  ADS  Google Scholar 

  2. M. Vogel, J. Alonso, K. Blaum, W. Quint, B. Schabinger, S. Sturm, J. Verdu, A. Wagner, and G. Werth, Eur. Phys. J. Spec. Top. 163, 113 (2008).

    Article  Google Scholar 

  3. D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 12801 (2008).

    Article  Google Scholar 

  4. M. Dawling, J. Mondejar, Jan H. Piclum, and A. Czarnecki, Phys. Rev. A: At., Mol., Opt. Phys. 81, 022509 (2010).

    Article  ADS  Google Scholar 

  5. J. Mondejar, J. H. Piclum, and A. Czarnecki, Phys. Rev. A: At., Mol., Opt. Phys. 81, 062511 (2010).

    Article  ADS  Google Scholar 

  6. A. Czarnecki, M. Dawling, J. Mondejar, and J. H. Piclum, arXiv:1007.1176v1[hep-ph].

  7. S. G. Karshenboim, Phys. Lett. A 266, 380 (2000).

    Article  ADS  Google Scholar 

  8. T. Beier, I. Lindgren, H. Persson, S. Salomonson, and P. Sunnergren, Phys. Rev. A: At., Mol., Opt. Phys. 62, 032510 (2001).

    Article  ADS  Google Scholar 

  9. V. M. Shabaev and V. A. Yerokhin, Phys. Rev. Lett. 88, 091801 (2002).

    Article  ADS  Google Scholar 

  10. B. Odom, D. Hanneke, B. D’Urso, and G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006).

    Article  ADS  Google Scholar 

  11. T. Kinoshita, “Lepton g-2 from 1947 to Present,” in Lepton Dipole Moments, in Advanced Series on Directions in High Energy Physics, Ed. by B. L. Roberts and W. J. Marciano (World Sci., Singapore, 2010), Vol. 20, p. 69.

    Google Scholar 

  12. S. Laporta and E. Remiddi, “Analytic QED Calculations of the Anomalous Magnetic Moment of the Electron,” in Lepton Dipole Moments, in Advanced Series on Directions in High Energy Physics, Ed. by B. L. Roberts and W. J. Marciano (World Sci., Singapore, 2010), Vol. 20, p. 119.

    Google Scholar 

  13. D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrietse, arXiv:1009.4831v1[physics.aatom-ph].

  14. T. Kinoshita and M. Nio, Phys. Rev. D: Part. Fields 73, 013003 (2006).

    Article  ADS  Google Scholar 

  15. T. Beier, Phys. Rep. 339, 79 (2000).

    Article  ADS  Google Scholar 

  16. P. J. Mohr and B. N. Taylor, Rev. Mod. Phys. 72, 351 (2000).

    Article  ADS  MATH  Google Scholar 

  17. K. Pachuki, A. Czamecki, U. D. Jentschura, and V. A. Yerokhin, Phys. Rev. A: At., Mol., Opt. Phys. 72, 022108 (2005).

    Article  ADS  Google Scholar 

  18. G. Breit, Nature 122, 649 (1928).

    Article  ADS  Google Scholar 

  19. V. M. Shabaev, Phys. Rev. A: At., Mol., Opt. Phys. 64, 052104 (2001).

    Article  ADS  Google Scholar 

  20. H. Grotch, Phys. Rev. Lett. 24, 39 (1970).

    Article  ADS  Google Scholar 

  21. A. Czamecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. A: At., Mol., Opt. Phys. 63, 012509 (2001).

    Article  ADS  Google Scholar 

  22. R. N. Lee, A. I. Milstein, I. S. Terekhov, and S. G. Karshenboim, Phys. Rev. A: At., Mol., Opt. Phys. 71, 052501 (2005).

    Article  ADS  Google Scholar 

  23. U. D. Jentschura, A. J. Czarnecki, K. J. Pachuki, and V. A. Yerokhin, arXiv:0510049v2[physics.atom-ph].

  24. U. D. Jentschura, Phys. Rev. A: At., Mol., Opt. Phys. 79, 044501 (2009).

    Article  ADS  Google Scholar 

  25. S. L. Karshenboim, B. G. Ivanov, and V. M. Shabaev, J. Exp. Theor. Phys. 93, 477 (2001).

    Article  ADS  Google Scholar 

  26. V. M. Shabaev, O. V. Andreev, A. N. Artemyev, S. S. Baturin, A. A. Elizarov, Y. S. Kozhedub, N. S. Oreshkina, I. I. Tupitsyn, V. A. Yerokhin, and O. M. Zherebtsov, arXiv:0510083v1[physics.atom-ph].

  27. J. Schwinger, Phys. Rev. 73, 416 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Dzh. D. B’erken and S. L. Drell, Relativistic Quantum Theory (McGraw-Hill, New York, 1964; Mir, Moscow, 1978).

    Google Scholar 

  29. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  30. A. O. Barut and J. Kraus, Phys. Lett. B 59, 175 (1975); A. O. Barut and J. Kraus, J. Math. Phys. 17, 506 (1976).

    Article  ADS  Google Scholar 

  31. S. S. Gershtein and Ya. B. Zel’dovich, J. Exp. Theor. Phys. 30, 358 (1970).

    Google Scholar 

  32. W. Pieper and W. Greiner, Z. Phys. 218, 327 (1969).

    Article  ADS  Google Scholar 

  33. Ya. B. Zel’dovich and V. S. Popov, Sov. Phys.-Usp. 14, 673 (1971).

    Article  ADS  Google Scholar 

  34. L. L. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  35. W. Greiner and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).

    Book  Google Scholar 

  36. J. Reinhardt and W. Greiner, Quantum Electrodynamics, 3rd ed. (Springer, Berlin, 2003).

    MATH  Google Scholar 

  37. A. Hosaka and H. Toki, Phys. Rep. 277, 65 (1996); A. Hosaka and H. Toki, Quarks, Baryons and Chiral Symmetry (World Sci., Singapore, 2001).

    Article  ADS  Google Scholar 

  38. W. Greiner, S. Schramm, Am. J. Phys. 76 (2008), 509–528.

    Article  ADS  Google Scholar 

  39. R. Ruffini, G. Vereshchagin, and S.-S. Xue. Phys. Rep. 487 (2010), 1–140, arXiv:0910.0974v3.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Khomovskii.

Additional information

Original Russian Text © K.A. Sveshnikov, D.I. Khomovskii, 2012, published in Vestnik Moskovskogo Universiteta. Fizika, 2012, No. 5, pp. 18–24.

About this article

Cite this article

Sveshnikov, K.A., Khomovskii, D.I. Nonperturbative effects caused by the radiative component of the electron magnetic moment in hydrogen-like atoms. Moscow Univ. Phys. 67, 429–436 (2012). https://doi.org/10.3103/S0027134912050128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134912050128

Keywords

Navigation